DESIGN OF CARRY DEPENDENT SUM ADDER USING REVERSIBLE LOGIC

ICTACT Journal on Microelectronics ( Volume: 6 , Issue: 3 )

Abstract

vioft2nntf2t|tblJournal|Abstract_paper|0xf4ffb7952b0000000f83050001000500
Low power is a paramount concern in the design of ‘digital signal processor’ (DSP) for future multimedia applications. The quest to achieve low power has made the researchers to look into different techniques. In more recent years, the reversible logic is emerged as an alternate and promising low power technique for next generation technologies. It finds vast applications in nanotechnology, low power CMOS circuit design, approximate computing, optical computing, and quantum computing etc. The full adder being critical element of DSP plays an important role in the contribution of overall power of the system under consideration. This paper proposes a design of novel reversible full adder based on ‘carry-dependent sum full adder’ (CSFA) architecture using the standard reversible logic gates. The proposed reversible FA herein referred to as ‘Reversible CSFA’ (RCSFA). Two variants of RCSFA namely RCSFA-1 and RCSFA-2 have been proposed and discussed. To assess the merits of proposed RCSFAs, they are compared against the state-of-the-art reversible full adders (RFAs) in terms of quantum gate metrics (QGMs) such as number of gates, ‘quantum cost’ (QC), constant inputs, and garbage outputs etc. From the comparison results the proposed RCSFAs are found to be an alternative choice for designers in terms of QC, constant inputs and garbage outputs.

Authors

M C Parameshwara
Vemana Institute of Technology, India

Keywords

Reversible Logic, Low Power, Full Adder, Quantum Gates, Quantum Cost

Published By
ICTACT
Published In
ICTACT Journal on Microelectronics
( Volume: 6 , Issue: 3 )
Date of Publication
October 2020
Pages
964-969

ICT Academy is an initiative of the Government of India in collaboration with the state Governments and Industries. ICT Academy is a not-for-profit society, the first of its kind pioneer venture under the Public-Private-Partnership (PPP) model

Contact Us

ICT Academy
Module No E6 -03, 6th floor Block - E
IIT Madras Research Park
Kanagam Road, Taramani,
Chennai 600 113,
Tamil Nadu, India

For Journal Subscription: journalsales@ictacademy.in

For further Queries and Assistance, write to us at: ictacademy.journal@ictacademy.in