DIAGNOSIS OF AUTISM IN CHILDREN USING DEEP NEURAL NETWORKS

ICTACT Journal on Data Science and Machine Learning ( Volume: 1 , Issue: 2 )

Abstract

vioft2nntf2t|tblJournal|Abstract_paper|0xf4ffc4952b000000ca4b000001000200
The autism spectrum disorder is a common term for a group of complex brain and neurodevelopment disorder. The EEG medical imaging technique is a perfect tool for the brain signal analysis. In this study, we identify the variations in EEG signals on the auto-regressive features for classifying the normal and autistic features using Artificial Neural Networks. The simulation result shows that the proposed DNN in classifying the autism features achieves a classification rate of 95.23%.

Authors

N V Kousik
Galgotias University, India

Keywords

Autism Disorder, Auto Regressive Features, Electroencephalography, ANN

Published By
ICTACT
Published In
ICTACT Journal on Data Science and Machine Learning
( Volume: 1 , Issue: 2 )
Date of Publication
March 2020
Pages
49-53
DOI

ICT Academy is an initiative of the Government of India in collaboration with the state Governments and Industries. ICT Academy is a not-for-profit society, the first of its kind pioneer venture under the Public-Private-Partnership (PPP) model

Contact Us

ICT Academy
Module No E6 -03, 6th floor Block - E
IIT Madras Research Park
Kanagam Road, Taramani,
Chennai 600 113,
Tamil Nadu, India

For Journal Subscription: journalsales@ictacademy.in

For further Queries and Assistance, write to us at: ictacademy.journal@ictacademy.in