MULTIMODAL FINGER DORSAL KNUCKLE MAJOR AND MINOR PRINT RECOGNITION SYSTEM BASED ON PCANET DEEP LEARNING

ICTACT Journal on Image and Video Processing ( Volume: 10 , Issue: 3 )

Abstract

vioft2nntf2t|tblJournal|Abstract_paper|0xf4ffed652b0000000f3e030001000300
Hand-based recognition systems with different traits are widely used techniques and are trustworthy ones. We can find it in different real life fields such as banks and industries due to its stability, reliability, acceptability, and the wide range features. In this paper, we present a finger dorsal knuckle print multimodal recognition system, where we use PCAnet (principal component analysis network) deep learning to extract the features from both Major and Minor finger dorsal knuckles to allow a deeper insight into the exploited trait. Then SVM is used for the matching stage of the two modalities, followed by a score level fusion method to combine the scores using different rules. In order to establish the effectiveness of the proposed system, several experiments in the course of this work have been done on the finger knuckle images of the publicly available database PolyUKV1. The results show that the proposed method has better results in comparison with a unimodal system.

Authors

Nour Elhouda Chalabi1, Abdelouahab Attia2, Abderraouf Bouziane3
Mohamed El Bachir El Ibrahimi University of Bordj Bou Arreridj, Algeria1,3, Mohamed El Bachir El Ibrahimi University, Algeria2

Keywords

Finger Knuckle Print, Major, Minor, PCAnet, Score Level Fusion, SVM

Published By
ICTACT
Published In
ICTACT Journal on Image and Video Processing
( Volume: 10 , Issue: 3 )
Date of Publication
February 2020
Pages
2153-2158

ICT Academy is an initiative of the Government of India in collaboration with the state Governments and Industries. ICT Academy is a not-for-profit society, the first of its kind pioneer venture under the Public-Private-Partnership (PPP) model

Contact Us

ICT Academy
Module No E6 -03, 6th floor Block - E
IIT Madras Research Park
Kanagam Road, Taramani,
Chennai 600 113,
Tamil Nadu, India

For Journal Subscription: journalsales@ictacademy.in

For further Queries and Assistance, write to us at: ictacademy.journal@ictacademy.in