TRAFFIC SIGN BOARD DETECTION AND RECOGNITION FOR AUTONOMOUS VEHICLES AND DRIVER ASSISTANCE SYSTEMS

ICTACT Journal on Image and Video Processing ( Volume: 9 , Issue: 3 )

Abstract

vioft2nntf2t|tblJournal|Abstract_paper|0xf4ff2f0e2a0000000c3f020001000500
In the recent year's many approaches have been made that uses image processing algorithms to detect traffic sign boards. Edge detection is used to avoid segmentation problems of the existing method. Color based segmentation faces the challenge of adaptive thresholding which fails in real time scenarios. This proposed algorithm is yet another approach to detect traffic sign boards from video sequences. The first step of this work is the pre-processing of the video frame which is achieved by the gray scale conversion and edge detection and the second step is the extraction of the objects. Hough Transform algorithm is then applied to measure properties of image regions for further analysis. The different feature points which include perimeter, area, filled area, solidity and centroid are extracted for the detection of the traffic sign board. Feature generation and classification are done on the recognition side to get the class of the detected object. The input for the project is video sequences taken from a camera placed on the vehicle.

Authors

Y D Chincholkar, Ayush Kumar
Sinhgad College of Engineering, India

Keywords

Hough Transform, Machine Learning Algorithm, Traffic Detection, Feature Classification

Published By
ICTACT
Published In
ICTACT Journal on Image and Video Processing
( Volume: 9 , Issue: 3 )
Date of Publication
February 2019
Pages
1954-1959

ICT Academy is an initiative of the Government of India in collaboration with the state Governments and Industries. ICT Academy is a not-for-profit society, the first of its kind pioneer venture under the Public-Private-Partnership (PPP) model

Contact Us

ICT Academy
Module No E6 -03, 6th floor Block - E
IIT Madras Research Park
Kanagam Road, Taramani,
Chennai 600 113,
Tamil Nadu, India

For Journal Subscription: journalsales@ictacademy.in

For further Queries and Assistance, write to us at: ictacademy.journal@ictacademy.in