PREDICTION OF COMPACTION PARAMETERS OF SOIL USING GA AND PSO OPTIMIZED RELEVANCE VECTOR MACHINE (RVM)

ICTACT Journal on Soft Computing ( Volume: 13 , Issue: 2 )

Abstract

vioft2nntf2t|tblJournal|Abstract_paper|0xf4ff8315310000001fd6100001000500
The present research introduces the best architectural relevance vector machine (RVM) model for predicting the compaction parameters of soil. The two types of RVM models, i.e., single kernel function-based (SRVM) and dual kernels (parallel) function-based (DRVM), have been constructed in this study. However, the RVM is a kernel function-based approach. Therefore, linear, gaussian, laplacian, and polynomial kernel functions have been implemented in these models. Each model has been optimized by each Genetic algorithm (GA) and particle swarm optimization (PSO) algorithm. For this purpose, 59 soil samples have been collected from the literature. The root mean square error (RMSE), mean absolute error (MAE), and correlation coefficient (R) statistical tools have been used to measure the performance and accuracy of models. From the overall analysis, models MC10 and MD12 have predicted OMC (RMSE = 0.8194%, R = 0.9956, MAE = 0.7920%) and MDD (RMSE = 0.1310g/cc, R = 0.9941, MAE =0.0008g/cc) better than other RVM models. It has also been observed that the DRVM model predicts the compaction parameters better than the SRVM models. The GA algorithm is robust in predicting OMC prediction, and the PSO algorithm is robust in MDD prediction. The score analysis also confirms the robustness of the dual kernel function based DRVM models for predicting OMC and MDD of soil. The sensitivity analysis demonstrates that compaction parameter prediction is strongly influenced by the specific gravity, liquid limit, and plasticity index of soil.

Authors

Jitendra Khatti, Kamaldeep Singh Grover
Rajasthan Technical University, India

Keywords

Compaction Parameters, Hybrid Approach, Genetic Algorithm, Particle Swarm Optimization Algorithm, Relevance Vector Machine

Published By
ICTACT
Published In
ICTACT Journal on Soft Computing
( Volume: 13 , Issue: 2 )
Date of Publication
January 2023
Pages
2890 - 2903

ICT Academy is an initiative of the Government of India in collaboration with the state Governments and Industries. ICT Academy is a not-for-profit society, the first of its kind pioneer venture under the Public-Private-Partnership (PPP) model

Contact Us

ICT Academy
Module No E6 -03, 6th floor Block - E
IIT Madras Research Park
Kanagam Road, Taramani,
Chennai 600 113,
Tamil Nadu, India

For Journal Subscription: journalsales@ictacademy.in

For further Queries and Assistance, write to us at: ictacademy.journal@ictacademy.in