ANALYSIS AND REVIEW ON FEATURE SELECTION AND CLASSIFICATION METHODS ON CERVICAL CANCER

ICTACT Journal on Soft Computing ( Volume: 12 , Issue: 2 )

Abstract

vioft2nntf2t|tblJournal|Abstract_paper|0xf4ffae332c000000851d060001000700
Cervical cancer is one of the most widely recognized gynecologic malignancies on the world and it is demanding since this malignant growth happens with no signs. As per World Health Organization (WHO), cervical cancer is the fourth most recurrent disease which is higher death rate that influenced women everywhere in the world. It has demonstrated that early discovery of any cancer when followed up with suitable diagnosis and treatment can expand the patient survival rate. But the existing techniques have problem with imbalanced dataset and feature selection-based classification accuracy. To conquer the previously mentioned issues, the existing strategies are analyzed different procedures of data mining and feature selection techniques which can be applied to bring out hidden information from the cervical cancer dataset. In this review, classification process and feature selection-based classification are performed to improve the given cervical cancer dataset accuracy significantly. In the classification process, the imbalanced data and redundant features are not handled effectively. Hence the feature selection-based classification is required to improve the cervical cancer classification accuracy. This survey is also analyzed the merits and shortcomings of each method applied to application. The comparative analysis is done using various classification techniques like Support Vector Machine (SVM), K Nearest Neighbor (KNN), Convolution Neural Network (CNN) and Synthetic Minority Oversampling Technique + Random Forest with Recursive Feature Elimination (SMOTE+RFE+RF) approach. The experimental result shows that the SMOTE+RFE+RF approach provides better performance in terms of higher accuracy, specificity, Positive Predicted Accuracy (PPA) and Negative Predicted Accuracy (NPA) and sensitivity rather than the other existing methods.

Authors

Anjali Kuruvilla1, B Jayanthi2
Rathnavel Subramaniam College of Arts and Science, India1, Rathnavel Subramaniam College of Arts and Science, India2

Keywords

Cervical Cancer, Imbalanced Data, Classification, Early Detection, Machine Learning, Feature Selection

Published By
ICTACT
Published In
ICTACT Journal on Soft Computing
( Volume: 12 , Issue: 2 )
Date of Publication
January 2022
Pages
2551-2558

ICT Academy is an initiative of the Government of India in collaboration with the state Governments and Industries. ICT Academy is a not-for-profit society, the first of its kind pioneer venture under the Public-Private-Partnership (PPP) model

Contact Us

ICT Academy
Module No E6 -03, 6th floor Block - E
IIT Madras Research Park
Kanagam Road, Taramani,
Chennai 600 113,
Tamil Nadu, India

For Journal Subscription: journalsales@ictacademy.in

For further Queries and Assistance, write to us at: ictacademy.journal@ictacademy.in