A DEEP LEARNING APPROACH FOR ROAD EXTRACTION FROM REMOTE SENSING IMAGERY

ICTACT Journal on Soft Computing ( Volume: 13 , Issue: 2 )

Abstract

vioft2nntf2t|tblJournal|Abstract_paper|0xf4ff8215310000001fd6100001000400
In recent years, Deep Learning (DL) is proving very successful set of tools for several image analysis, segmentation, and classification tasks. In this paper an automated Deep Learning Architecture (DLA) called the Deep Belief Neural Networks (DBN) stacked by Restricted Boltzmann Machines (RBMs), is designed, implemented, and experimentally evaluated for extracting semantic maps of roads in Remote Sensing (RS) images. Representative features are extracted by unsupervised pre-training of DBN and supervised fine-tuning phase. A Logistic Regression (LR) is added to the end of feature learning system to constitute a DBN-LR architecture. This LR classifier is employed to fine-tune the whole pre-trained network in a supervised way and classifies the patches from RS images. The features extracted from the image patches are fed to the architecture as input and it produces the class labels as a probability matrix as either a positive sample (road) or a negative sample (non-road). A math morphology algorithm is used to improve DBN performance during post processing. Experiments are conducted on a dataset of 970 RS scene images of urban and suburban areas to demonstrate the performance of the proposed network architecture. The proposed deep model resulted in an Overall Accuracy (OA) of 96.57% and F1-score of 0.9552. The results of the proposed architectures are compared with those of other network architectures. Experimental results demonstrate the effective performance of the proposed method for extracting roads from a complex scene.

Authors

Md. Abdul Alim Sheikh1, Tanmoy Maity2, Alok Kole3
Aliah University, India1, Indian Institute of Technology, Dhanbad, India2, RCC Institute of Information Technology, India3

Keywords

Remote Sensing Imagery, Road Networks Extraction, Deep Learning, Deep Belief Network, Restricted Boltzmann Machine

Published By
ICTACT
Published In
ICTACT Journal on Soft Computing
( Volume: 13 , Issue: 2 )
Date of Publication
January 2023
Pages
2879 - 2889

ICT Academy is an initiative of the Government of India in collaboration with the state Governments and Industries. ICT Academy is a not-for-profit society, the first of its kind pioneer venture under the Public-Private-Partnership (PPP) model

Contact Us

ICT Academy
Module No E6 -03, 6th floor Block - E
IIT Madras Research Park
Kanagam Road, Taramani,
Chennai 600 113,
Tamil Nadu, India

For Journal Subscription: journalsales@ictacademy.in

For further Queries and Assistance, write to us at: ictacademy.journal@ictacademy.in