MAN-MADE OBJECT EXTRACTION FROM REMOTE SENSING IMAGES USING GABOR ENERGY FEATURES AND PROBABILISTIC NEURAL NETWORKS

ICTACT Journal on Image and Video Processing ( Volume: 13 , Issue: 2 )

Abstract

vioft2nntf2t|tblJournal|Abstract_paper|0xf4ffb5b42e000000b252100001000700
This paper presents a novel approach for man-made object extraction in remote sensing images. This paper focuses on the design and implementation of a system that allows a user to extract multiple objects such as buildings or roads from an input image without much user intervention. The framework includes five main stages: 1) Pre-processing Stage. 2) Extraction of Local energy features using edge information and Gabor filter followed by down sampling to reduce the redundant information. 3) Further reduction of the size of feature vectors using Wavelet decomposition. 4) Classification and recognition of man-made structures using Probabilistic Neural Network (PNN) 5) NDVI based post-classification refinement. Experiments are conducted on a dataset of 200 RS images. The proposed framework yields overall accuracy of 93%. Experimental results validate the effective performance of the suggested technique for extracting man-made objects from RS images. Compared with other methods; the proposed framework exhibits significantly improved accuracy results and computationally much more efficient. Most notably, it has a much smaller input size, which makes it more feasible in practical applications.

Authors

Md. Abdul Alim Sheikh1, Tanmoy Maity2, Alok Kole3
Aliah University, India1, Indian Institute of Technology, Dhanbad, India2, RCC Institute of Information Technology, India3

Keywords

Remote Sensing Image, Man-Made Object Extraction, Gabor Wavelets, Probabilistic Neural Network

Published By
ICTACT
Published In
ICTACT Journal on Image and Video Processing
( Volume: 13 , Issue: 2 )
Date of Publication
November 2022
Pages
2849 - 2859

ICT Academy is an initiative of the Government of India in collaboration with the state Governments and Industries. ICT Academy is a not-for-profit society, the first of its kind pioneer venture under the Public-Private-Partnership (PPP) model

Contact Us

ICT Academy
Module No E6 -03, 6th floor Block - E
IIT Madras Research Park
Kanagam Road, Taramani,
Chennai 600 113,
Tamil Nadu, India

For Journal Subscription: journalsales@ictacademy.in

For further Queries and Assistance, write to us at: ictacademy.journal@ictacademy.in