AN EFFECTIVE RECOMMENDATIONS BY DIFFUSION ALGORITHM FOR WEB GRAPH MINING
Abstract
vioft2nntf2t|tblJournal|Abstract_paper|0xf4ffae710f0000006f3b020001000400
The information on the World Wide Web grows in an explosive rate. Societies are relying more on the Web for their miscellaneous needs of information. Recommendation systems are active information filtering systems that attempt to present the information items like movies, music, images, books recommendations, tags recommendations, query suggestions, etc., to the users. Various kinds of data bases are used for the recommendations; fundamentally these data bases can be molded in the form of many types of graphs. Aiming at provided that a general framework on effective DR (Recommendations by Diffusion) algorithm for web graphs mining. First introduce a novel graph diffusion model based on heat diffusion. This method can be applied to both undirected graphs and directed graphs. Then it shows how to convert different Web data sources into correct graphs in our models.

Authors
S. Vasukipriya, T. Vijaya Kumar
Bannari Amman Institute of Technology, India

Keywords
Recommendation System, Web Mining and Heat Diffusion
Yearly Full Views
JanuaryFebruaryMarchAprilMayJuneJulyAugustSeptemberOctoberNovemberDecember
001000000102
Published By :
ICTACT
Published In :
ICTACT Journal on Soft Computing
( Volume: 3 , Issue: 3 , Pages: 544-548 )
Date of Publication :
April 2013
Page Views :
244
Full Text Views :
4

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.