The e-learning paradigm is now a well-established vehicle of modern education. It caters to a wide spectrum of students with diverse backgrounds who enroll with their own learning aims. A core challenge under this scenario is to generate personalized learning paths so that each student can achieve her learning aim most effectively. Prior works used static attributes such as prior knowledge level, learning ability, browsing preferences, learning style etc. to generate personalized learning paths. In this paper, we take an entirely new route by taking into account the continuous improvement of a learner in the light of her own learning aim, to redefine her learning path at each level of the course. We introduce the concept of personalized examination system that systematically evaluates the dynamic learning ability of every student according to her pre-set goals. The proposed intelligent e-learning system uses Ant Colony Optimization to iteratively optimize the forward learning paths. Experimental results reveal that the system is able to tap a student’s improved learning ability to choose more difficult paths that contribute highly towards her own aims. We demonstrate that the overall learning success of weaker students doubles as compared to statically generated paths while there is considerable improvement of 50% in the learning success for average students as well. This clearly indicates that our approach gives realistic benefits to initially weak students who gradually evolve as the course progresses.

Sushma Hans, S. Chakraverty, Aditya Bindal
Netaji Subhas Institute of Technology, India

Personalized e-Learning, Learning Aims, Ant Colony Optimization, Dynamic Learning Ability, Learning Success
Published By :
Published In :
ICTACT Journal on Soft Computing
( Volume: 5 , Issue: 1 )
Date of Publication :
October 2014

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.