
ISSN: 2229-6956 (ONLINE) ICTACT JOURNAL ON SOFT COMPUTING, JANUARY 2022, VOLUME: 13, ISSUE: 02

DOI: 10.21917/ijsc.2023.0402

2827

META HEURISTIC OPTIMIZATION APPROACH FOR CMOS BASED ANALOG

CIRCUIT DESIGN AND PERFORMANCE EVALUATION OF EVOLUTIONARY

ALGORITHMS

Sureshbhai L. Bharvad1, Pankaj P. Prajapati2 and Anilkumar J. Kshatriya3
1Department of Electronics and Communication Engineering, Gujarat Technological University, India

2,3Department of Electronics and Communication Engineering, L D College of Engineering, India

Abstract

Manual design of Complementary Metal Oxide Semiconductor

(CMOS) based analog circuit design becomes more challenging and

tedious task due to very complex physical models and variation in the

fabrication process as technology scale down. In this continuously

changing era, the demand of mixed signal System on Chip (SoC)

increasing day by day which digital and analog circuits integrated on

same silicon chip. For the digital circuit design, many mature computer

based automated tools have been established and limited research

efforts made towards automization of the analog circuit design. This

gap opens the ample research space for the researcher in the field of

analog circuit design. Automization of analog circuit design makes the

mixed signal SoC is the best approach to cope up with this problem,

cost considerations and the time to market. This motivates the analog

circuit designer to explore more automated computer aided tools in the

field of analog circuit design. In this review paper, performance

evaluation of various evolutionary algorithms is compared. The

comparison includes most used Differential Evolution (DE) algorithm,

Cuckoo Search (CS) algorithm, Particle Swarm Optimization (PSO)

algorithm, hybrid CSPSO algorithm. The performance evaluations of

these algorithms are compared with the different standard benchmark

functions and the convergence graphs of these standard benchmark

functions are compared to test number of runs with respect to number

of iterations.

Keywords:

Automation of Analog Circuit Design, Optimization, DE Algorithm,

PSO Algorithm, Hybrid CSPSO

1. INTRODUCTION

The real world is analog in nature and modern digital systems

are requires an integrated analog part built on the same chip to

improve speed and reduce power dissipation. The integration of

digital and analog systems is more common in the modern

System-on-Chips (SoCs) and nearly 75 % of SoCs contain an

analog part to communicate with the outside world [1].

Complementary Metal Oxide Semiconductor (CMOS) based

design of analog circuit is a more challenging task to meet the

desired specifications. Determination of the values of the design

parameters of a circuit is known as circuit sizing (schematic-level

design) which controls the overall performance of the circuit. In

the schematic level design flow, numbers of design parameters are

requiring to be adjusted by a circuit designer to obtain the desired

specifications for a given circuit [2]. Conventional analog circuit

is designed by converting device behaviour in the general analytic

equations and these equations need to be simulated to check

whether the circuit works as per estimation or not. This is an

iterative, time-consuming, and tedious job and there is no

assurance about optimum circuit design in terms of channel

length, gain, bandwidth, slew rate, power consumption etc. One

more aspect that designer needs to be considered is, given analog

circuit requires to meet more than one design metrics and most of

the design metrics are trade-off with each other which turns the

analog circuit design task into multi-objective optimization

problem. The Fig.1 shows an analog design octagon which

illustrates the trade-off with typical design metrics.

Nowadays much research is being spent to develop a novel

methodology that automates the analog circuit design flow.

Automization of analog circuit can save a vast portion of the

overall design cycle time and reduces the cost of IC. Many

research institutions and researchers across the world are working

on this research problem and have been trying to develop a

Computer Aided Design (CAD) tool which can handle all design

problems in short period of time.

Fig.1. Analog circuit design octagon [3]

For the automated design of analog circuit at schematic level

many techniques have presented in the literature. These

techniques mainly classify in to two categories. (1) The

Knowledge based approach and (2) The Optimization based

approach. In the knowledge-based approach, the circuit designer

generates synthesis rules based on the expertise and experience in

the field of the analog circuit design and these rules are

incorporated into an algorithm to find the solution of design

problem [4]. This approach makes the analog circuit design

tedious, time consuming and limited to few circuit topologies. The

optimization-based approach uses a search algorithm that forces

the value of design parameters towards a solution specific

provided by the user [5]. The optimization-based approach is

highly reliable and more accurate for the analog circuit design

which is independent of topologies of the circuit.

SURESHBHAI L BHARVAD: META HEURISTIC OPTIMIZATION APPROACH FOR CMOS BASED ANALOG CIRCUIT DESIGN AND PERFORMANCE EVALUATION OF

EVOLUTIONARY ALGORITHMS

2828

1.1 OPTIMIZATION OF ANALOG CIRCUIT

DESIGN

Optimization is a process of finding the best possible solution

for a given design problem based on the given parameters. It is

the field of computational science which deals with the finding

out the best possible solution for the given design problem

through trial-and-error method [6]. This optimization method

applied on the analog circuit design to meets the design

specifications by optimizing the design parameters through

optimization algorithm. The main design parameters of

Complementary Metal Oxide Semiconductor (CMOS) based

analog circuits may be the width (W), length (L), resistor (R),

Capacitor (C) and biasing current (Ibias). Optimization is an

iterative process where the values of design parameters are

updated until the optimal result obtained [7]. Desired

specifications for a particular circuit topology can be represented

by Eq.(1),

 Speci = f(X,Y), i=1,2,3,…N (1)

 The Eq.(1) shows the desired specifications, represented by

Speci, vector X indicates the design parameters values, vector Y

indicates supply voltage, desired temperature, process

information, etc., N represent the number of desired specifications

of given problem.

Let, consider a circuit which has p number of Metal Oxide

Semiconductor (MOS) transistors, q number of resistors, r

number of capacitors, and reference current source Iref. The

parameters values are allowed within a specified search space

such that it satisfy the constraints limit of the given vector Y. The

Eq.(2) represents the analog circuit design problem [7]. Which

find the values of Wi and Li of transistor, Rj, Ck, and Iref.

1 1 1 1

2 2 2 2

3 3 3 3

.

.

.

N N N N

spec value or spec value

spec value or spec value

spec value or spec value

spec value or spec value

 (2)

Subjected to

min max

min max

min max

min max

min max

, 1, 2,3,...,

, 1, 2,3,...,

, 1, 2,3,...,

, 1, 2,3,...,

i

i

j

k

ref

L L L i p

W W W i p

R R R j q

C C C k r

I I I

 =

 =
 =

 =

 (3)

For the given vector Y, many optimization methods are

explored for the atomization of circuit sizing in the past and recent

time also. In the literature many optimization methods have been

proposed and mainly classified as: gradient-based optimization

(also known as classical optimization) techniques, evolutionary

optimization (also known as meta-heuristic) optimization

techniques, and convex optimization techniques [8]. These

techniques require computation of the derivatives in each iteration

and good preliminary estimate for the given design variable.

These methods require good initial guess close to global optimum

solution, otherwise stick to a local optimal solution for a Non

deterministic Polynomial (NP) hard type problem, with non-linear

objective functions and the large number of variables. Sequential

quadratic programming [9], steepest descent method [10],

Levenberg-Marquardt method [11], and phase I-II-III feasible

directions method [12], are the examples of gradient-based

optimization techniques.

The convex optimization techniques give the globally optimal

solution but require good knowledge of MOSFET device physics

in which behaviour of device represented by very complex

quadratic mathematical equations. This would be very tough

reviewing the current state-of-the-art complex modern MOSFET

device models [13]. Geometric programming [14], interior-point

algorithm [15] are the examples of convex optimization

techniques.

The evolutionary optimization-based techniques used to solve

multimodal, multi objective optimization design problem and

explore the solution space very robustly [16]. It also not requires

the familiarity of analog circuit design and complex physical

models, as it requires in the convex and gradient-based

optimization. Also not require computing complex mathematical

calculations and it give the global optimum solution. Many

evolutionary algorithms proposed and implemented in the

literature, Artificial Bee Colony (ABC), Ant Colony Optimization

(ACO), Genetic Algorithm (GA), Differential Evolution (DE),

Harmony Search (HS), Particle Swarm Optimization (PSO), Tabu

Search (TS), Simulated Annealing (SA), Cuckoo Search (CS) are

the popular evolutionary algorithm in the field of engineering

application and other field. As stated in the No Free LUNCH

(NFL) theorem, one single algorithm cannot give best suitable

result for the optimization problem, for all the design

specifications [17].

Genetic Algorithm (GA), the popular optimization algorithm

has been tested for analog circuit design by many researchers [18].

The ACO algorithm is more constituent than the GA with higher

convergence speed makes it suitable for transistor sizing problem,

so it can replace the GA [19]. The GA, TS, and SA algorithm

require more computational time as complexity increases. The

ABC algorithm performs well at exploration but poor at

exploitation results in less convergence speed for the unimodal

problem and trap in local minima for solving the complex

multimodal optimization problem as concluded by the authors in

[20]. The Cuckoo Search algorithm (CS) is a population-based

optimization algorithm developed by Yang and Deb and fewer

parameters need to be adjusted. It gives more efficient

randomization result compared to PSO and DE algorithms. The

performance of PSO, DE, ABC and CS are analysed and

compared in [26], and the authors has concluded that the CS

algorithm gives more precise and robust results than the ABC and

PSO algorithms.

Modern CMOS based analog circuit design uses evolutionary

algorithm based optimization approach to solve analog circuit

design problem and much research work has been devoted in the

field of automated analog circuit design [14]. Three stage CMOS

based Miller op-amp and an ultra-low power CMOS based Miller

OTA are optimized using PSO, Hierarchical PSO (HPSO) and

GA algorithm [33]. Authors have concluded that the Hierarchical

PSO (HPSO) algorithm converges better compared to all other

evolutionary algorithm. The DE, PSO and ABC algorithms have

ISSN: 2229-6956 (ONLINE) ICTACT JOURNAL ON SOFT COMPUTING, JANUARY 2022, VOLUME: 13, ISSUE: 02

2829

been explored to optimize the CMOS based Miller OTA by the

authors in [2] and concluded that DE algorithm performed better

compared to the PSO, and the ABC algorithm does not meet the

require goals. The PSO, DE, ABC and HS algorithms were

applied to optimize nth order filters and authors have concluded

that the HS performs faster among all but having the maximum

fault. The other algorithms converged superiorly [22]. The

Modified PSO (MPSO), ABC and standard PSO algorithm has

been compared and tested to optimize the two-stage CMOS op-

amp and bulk driven OTA. The authors concluded that the

Modified PSO (MPSO) performs better compared to other

algorithms [23].

2. EVOLUTIONARY ALGORITHMS

The Evolutionary Algorithms are nature inspired and are more

efficient, flexible, goal oriented and independent to problem

model. Researcher’s community working on these optimization

techniques and many improved and modified versions are

frequently invented in the field of scientific research. This section

describes the DE, PSO, CS and modified CSPSO evolutionary

algorithms in brief.

2.1 DE ALGORITHM

The Differential Evolution (DE) is an evolutionary algorithm

developed by Storn and Price [27]. In this algorithm the formation

of a new candidate solution is carried out by calculating a

weighted difference between two randomly selected population

numbers added to a third randomly selected population number.

It uses the crossover, selection, and mutation strategies of used in

the GA. For the DE algorithm there are ten mutation techniques

are given as per the literature [27].

DE\best\1\exp

DE\rand\1\exp

DE\rand-to-best\1\exp

DE\best2\exp

DE\rand2\exp

DE\best\1\bin

DE\rand\1\bin

DE\rand-to-best\1\bin

DE\best\2\bin

DE\rand\2\bin

For the optimization problem, DE/rand/1/bin is widely used to

find the optimum global solution [28].

The DE algorithm consists of two arrays with population size

N and dimension D. The N array holds the vector population for

the next generation and D array holds the current vector

population. N competitions are to be carried out for each

generation to obtain the resultant composition of the consecutive

generation. The differential vector (Xr0 – Xr1) is a pair of randomly

chosen vectors Xr0 and Xr1 and weighted difference (Xr0 - Xr1) is

multiplied with weighted factor F, which is further added to

another randomly chosen vector Xr2. The mathematical

representation of this process is represented by the Eq.(4) [28].

 V = Xr2+F*(Xr0-Xr1) (4)

The Eq.(4) represent mutant vector V, target vector X, r0, r1and

r2 are the random numbers consist range of (1,2,…, N). The

weighting factor or mutation scaling factor F is a constant and

specified by the user in the range of (0.5, 1.0) which controls the

amplification of the vector (Xr0- Xr1) [28].

Fig.2. DE algorithm Flowchart [28]

The Fig.2 illustrates the flow diagram of the DE algorithm

where XGbest is generation best vector, u is trial vector, t is a

generation number, and k = 1,2,3,…,N. The termination criterion

decided by either minimum value of the fitness function or a

Population size (N), Weighting factor (F),

Problem size D, Crossover rate (CR),

Desired Fitness value, Number of

generations

Random Population Initialization and

fitness value calculation.

𝑉𝑘,𝑡 + 1 = 𝑋𝑟2,𝑡 + 𝐹 ∗ ൫𝑋𝑟0,𝑡 − 𝑋𝑟1,𝑡൯

𝑢𝑘,𝑡 + 1 = 𝑣𝑘,𝑡 + 1 𝑖𝑓 𝑟𝑎𝑛𝑑 ሺ0,1ሻ

< 𝐶𝑅 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 𝑥𝑘,𝑡

𝑋𝑘,𝑡+1 = 𝑢𝑘,𝑡+1

f(𝑢𝑘,𝑡+1) <
f(𝑋𝑘,𝑡ሻ

𝑥𝑘,𝑡+1 = 𝑥𝑘,𝑡

Optimized Solution Obtained

Yes

Termination criteria

𝐹𝑖𝑛𝑑 𝑋𝐺𝑏𝑒𝑠𝑡

Yes

K = N

No

No

SURESHBHAI L BHARVAD: META HEURISTIC OPTIMIZATION APPROACH FOR CMOS BASED ANALOG CIRCUIT DESIGN AND PERFORMANCE EVALUATION OF

EVOLUTIONARY ALGORITHMS

2830

maximum number of the generations. The Crossover Rate (CR),

weighted factor F, and number N are the main control parameters

of DE algorithm are [28].

2.2 PSO ALGORITHM

The Particle Swarm Optimization (PSO) algorithm is swarm

intelligence based evolutionary algorithm and developed by

Kennedy and Eberhart [29]. This algorithm gets the best optimum

result using a set of birds that fly with different velocities and

different positions. According to their past performance and their

neighbor in the exploration search space the velocities of all these

birds are adjusted. Each solution bird in group is identified as

particle. PSO algorithm works in an iterative way and finds the

best solution. Suppose N number of particles in swam with D

dimension. The velocity and position of kth particle are described

by Vk = [Vk
1, Vk

2,...,Vk
D] and Xk = [Xk

1, Xk
2,...,Xk

D].

The velocity of the kth particle updated after every iteration

according to the Eq.(5) [30].

()

()

1

1 1

2 2

* * *

* *

i i i i

kd kd kd kd

i i

d kd

V V C rand pbest X

C rand gbest X

+ = + −

+ −
 (5)

In the Eq.(5), range of vector k is {1,2,3...,N}, range of vector

d is {1,2,3…,D}, range of vector i is {1,2,3.... maximum iteration

number},
i

kdX and
i

kdV are the position and velocity of kth particle

in dth dimension for the ith iteration respectively,
i

kdpbest is the

personal best position of kth particle in dth dimension for the ith

iteration,
i

dgbest is the dth dimension of the global best particle in

the swarm for the ith iteration, rand1 and rand2 are uniformly

distributed random numbers between 0 and 1, C1 and C2 are

constants known as acceleration coefficients, ω is known as

inertia weight. The value of ω is chosen less than one initially and

then with each iteration it reduced linearly. ω controls the

influence of the previous direction of displacement. The position

of the kth particle in N×D dimension of the search space can be

updated using a Markov chain property as per the Eq.(6), [31].

1 1i i i

kd kd kdX X V+ += + (6)

 The flow diagram of PSO algorithm is illustrated with steps in

Fig.3.

2.3 CS ALGORITHM PSO

 The Cuckoo Search (CS) algorithm is a bio-inspired meta-

heuristic algorithm developed by Yang and Deb [21]. The CS

algorithm is robust and generic compared to PSO, GA, DE, and

other meta-heuristic algorithms for global optimization problem

due to less number of control parameters and have a fine balance

of exploration and exploitation [34].

CS algorithm motivated by the incomparable lifestyle of

cuckoo species. Cuckoo breeding behavior and Lévy flight

behavior combined to find all optima solution in a search space.

CS algorithm starts with a random initial population like other

meta-heuristic algorithms, at the same time it explores some kind

of selection and/or elitisam as that of HS algorithm [35].

The flow diagram of CS algorithm illustrated in Fig.4 [36]. CS

algorithm, each pattern relates to a nest and each individual

element of pattern relates to a cuckoo egg. The CS algorithm

represented by the Eq. (7) [21].

 Xt+1;i = Xt;i + α⊗Lévy(λ) (7)

Here, Xt;i is the current solution of the ith cuckoo, Xt+1;i is the

next solution generated for the ith cuckoo with Lévy flight, t

represents a number of the present generation and the product ⊗

indicates the entry-wise multiplication, and α>0 is a scaling factor

of the step size that depends on scales of the given problem of

interest. For small dimension problem, α=O(L/10) is suitable and

for large dimension problem, α=O(L/100) is more appropriate

[38]. Big O notation is used to represent the time complexity of

the algorithm. The characteristics of the scale L depend on the

problem to be solved. In addition, Lévy(λ) is a random movement

using Lévy flight that is comparatively more effective in the long

run than a random walk used in other algorithms such as the DE,

ABC, PSO etc. This is a global walk intended for exploration or

diversification of the search space.

Fig.3. Flowchart of PSO algorithm [29]

Lévy(λ) is derived from a Lévy distribution which has an

infinite variance with an infinite mean using the Eq.(8) [21].

 Lévy~u = t-λ; 1<λ≤3 (8)

In the Eq.8, ‘~’ means random numbers drawn from the Lévy

distribution wherein the step size follows a random walk process

with a power-law distribution with heavy-tailed as shown in

Particle number
< max . number

Generate random particle’s position and velocity

Calculate fitness of each particle

For each particle update velocity and position

Yes

No

Choose the particle with the best fitness value
from all as gbest

Termination criteria

Desired optimized solution

Yes

No

pbest = Current
position

Fitness (current
particle) < fitness

(pbest)

Yes

No

Input population size (N) , Problem size (D),
 C1, C2, Vmax, Inertia weight (𝜔),

Number of generations, , Desired fitness value

ISSN: 2229-6956 (ONLINE) ICTACT JOURNAL ON SOFT COMPUTING, JANUARY 2022, VOLUME: 13, ISSUE: 02

2831

Fig.2.4 and λ is the power coefficient [39]. In Fig.5, P(x) is a

probability density function of a random variable x.

Fig.5. Lévy distribution [35]

Input number of nest (N), Problem size (D),

Fraction of worst nest (pa), Number of iterations,

Desired fitness value

Generate initial population of N nest and find

current best solution

Choose the nest with the best fitness value from all

as gbest

Termination criteria

Desired optimized solution

Yes

Generate cuckoo by random Lévy walk

Evaluate fitness of each cuckoo

Replace better quality cuckoo to nest

Abandon a fraction of worse nests (pa), and build

new one at new location via random walk

No

Fig.4. Flowchart of the CS algorithm [21]

Lévy flight has a large coverage range in a search space of the

variables and new numerous solutions can be generated by Lévy

walk near the best solution and improve the speed of local

exploration [40]. To ensure that the CS algorithm will not be

trapped in a local optimum solution, a substantial part of the new

solutions must be generated through far-field randomization, so

that location would be sufficiently far from the current obtained

best solution. Thus, steps generated by Lévy walk can have both

small and large components, which enable the cuckoo search to

do both large-scale explorations and local exploitation [41]. There

are a few methods to generate Lévy distribution, but one of the

most efficient and yet a straightforward method is the Mantegna

algorithm proposed by Mantegna in [42]. This method generates

random numbers according to symmetric Lévy stable distribution.

The simple way to generate a new solution using the Lévy walk

is mathematically expressed by the Eq.(9) [26].

 Xt+1 = Xt + step size ⊗ N(0,1) (9)

The Eq.(9) represents the Lévy random walk calculated by

Mantegna’s algorithm.

 Step size = 0.01*(u/|v|β) ⨂ (Xt-Xbest) (10)

The Eq.(10) represents calculation of the step size. Where,

0.01 is a factor that control step size of cuckoo walks. Xbest is the

best global solution, Xt is the current solution, step size is the

length of walk step, ⊗ is entry-wise product, u and v are normally

distributed stochastic variables generated from u ~ N(0, σ2) and v

~ N(0, 1), and σ2 is the variance given by the Eq.(11) [25],

In the Eq.(11) Γ is gamma function which is an extension of

the factorial function of positive number, and β is the variable

which controls distribution by 0 ≤ β ≤ 2.

The value of β equal to 1.5 is suggested in [21]. The Eq.(11)

represents the calculation of the variance 𝜎2 as,

()

1

2

1 sin
2

1 1
*2

2 2

 +

=
+ −

 (11)

The local random walk intended for exploitation or

intensification of the search space is based on the Eq.(12),

 Xt+1 = Xt+r⊗H(pa-r)⊗(Xj-Xk) (12)

In the Eq.(12), Xj and Xk are two different randomly selected

solutions, H(u) is a Heaviside function (H(u) = 1 if u> 0 and H(u)

= 0 if u< 0)), pa is the discovery probability of a cuckoo egg, by a

host bird which is ∈ [0,1] , r is a random number obtained from

uniform distribution in [0,1].

The CS algorithm finds the desired solutions very efficiently

for many global optimization problems as presented in the

literature and requires smaller number of control parameters. The

CS algorithm has a fine balance of exploitation and exploration

compared to other algorithms like TS, PSO, SA, GA, ACO, ABC

and DE.

3. PERFORMANCE ESTIMATION OF

EVOLUTIONARY ALGORITHMS

3.1 INTRODUCTION

It is very difficult to optimize all optimization problems with

single algorithm. And to resolve this problem, two or more

algorithms can be merged to get the global optimum solution for

a broad range of optimization problems [39].This section covers

the concept of a hybrid algorithm. Then, benchmark functions

which are generally used to test the performance of the

optimization algorithms and the parameter settings of each

algorithm are reviewed. At the end of this section, the

performance of different Evolutionary Algorithms such as the CS,

PSO, hybrid CSPSO and DE algorithms are compared by

comparing the set of commonly used benchmark functions.

SURESHBHAI L BHARVAD: META HEURISTIC OPTIMIZATION APPROACH FOR CMOS BASED ANALOG CIRCUIT DESIGN AND PERFORMANCE EVALUATION OF

EVOLUTIONARY ALGORITHMS

2832

3.2 HYBRID CSPSO ALGORITHM

A hybrid algorithm is a merger of two or more algorithms that

run together and complement each other to produce a profitable

synergy from their integration [45]. Generally, the result of

hybridization makes improvements in form of either accuracy or

computational speed [46]. The hybridization aims to combine the

advantages of each algorithm, while at the same time trying to

minimize any considerable drawbacks [39].

The PSO algorithm is one amongst the most competent

optimization algorithms. But the problem is it converges very fast,

therefore it has generally an early convergence in complex

problems [26].The CS algorithm is applied to solve a number of

complex problems and it outperforms other optimization

algorithms [38].The CS algorithm may converge slightly slower

but it has enhanced explorative skill. Consequently, there is some

trade-off between convergence and accuracy. These trade-off

leads to the solution diversity that an algorithm can produce in the

searching process as illustrated in Fig.6 [47].

Fig.6. Trade-off between accuracy and convergence [47]

The objective of hybridization is to inform each cuckoo about

their position and helps each cuckoo to move to a better position.

Fig.7. illustrates the Pseudo code for the CSPSO. In this

algorithm, each cuckoo updates its position and velocity

according to the PSO algorithm. The hybrid CSPSO algorithm’s

main step are demonstrated by the flow diagram shown in Fig.8.

The Hybrid CSPSO Algorithm

Input: Nest size (N), Problem dimension (D), Fraction of worst

nest (pa), No. of generations, Desired fitness function value, C1,

C2, Vmax, ω;

Output: Optimized solution;

Begin

Objective function f(x),x=(x1, x2, x3…xD);

Generate initial a population of N host nests xi(i=1,2,3, ….,N);

While (t<Max.generation) or (stop criteria);

 Get a cuckoo (say i) randomly by Lévy flights;

 Evaluate its quality/fitness Fi;

 Choose a nest among N (say j) randomly;

If(Fi > Fj) then

 Replace j by the new solution;

End If

 For each cuckoo update velocity and position according

to the PSO algorithm;

 Abandon a fraction (pa) of worse nests and build new

ones at new locations;

 Keep the best solutions;

 Rank the solutions and find the current best;

End while

End

Fig.8. Flowchart of the hybrid CSPSO algorithm [48]

3.3 BENCHMARK FUNCTION

Once the optimization algorithm is implemented, it is assessed

through different benchmark functions, which is one of the best

primary ways to evaluate and compare the performance of

implemented algorithm [49]. If an implemented algorithm

produces a satisfactory solution with the benchmark functions,

then it is proven to solve the global optimization problems in

majority of the cases. There are several different types of such test

functions available in the various literatures. The commonly used

functions have been selected to estimate the performance of the

CS and hybrid CSPSO algorithms. The benchmark functions used

for review work are listed with their equation, type, algorithms

also have been compared with the PSO and DE algorithms. The

ISSN: 2229-6956 (ONLINE) ICTACT JOURNAL ON SOFT COMPUTING, JANUARY 2022, VOLUME: 13, ISSUE: 02

2833

search space of x, the global optimum solution of the function

(x*), and the global minimum value of the function f(x*) in

Table.1 [50].

3.4 EXPERIMENTAL SETTINGS AND RESULTS

The CS, CSPSO, PSO, and DE algorithms are implemented in

the C programming language which is comparatively faster and

use the least memory. These algorithms are repeatedly executed

on the GNU Compiler Collection (GCC) to solve the required

value for each benchmark function.

The performance of all these Evolutionary Algorithms is

evaluated using multimodal as well as unimodal benchmark

functions with different problem dimensions (D). Author has

performed these experiments on a system having specification of:

Intel® core™ i5, 2.40 GHz processor, Internal RAM of 8 GB and

Operating System (OS) as an Ubuntu [51].

Every algorithm has its own parameters that affect its

performance in terms of processing time and result quality.

Depending on the nature of the optimization problem and search,

different algorithms have different values for their parameters. In

the DE algorithm, parameters CR, F and N are relatively tough to

set and some benchmark functions are very sensitive to

appropriate settings of these parameters [28].

For the PSO algorithm, more parameters need to be set where

in the CS algorithm have fewer parameters need to be set. For the

comparative study author has taken, the size of population (N) for

the DE algorithm, the number of particles (N) for the PSO

algorithm, the number of nests (N) for the CS algorithm, and the

number of nests (N) for the CSPSO algorithm have been

considered equal, the values of the remaining parameters for each

algorithm are also considered the same for all benchmark

functions [51]. However, depending on the nature of the

optimization problem or the objective function, solution quality

can be improved by changing the values of the algorithm’s

parameters.

The parameters for the different Evolutionary Algorithms are

set as follows: For the DE algorithm, F∈ [0,2] and the CR∈[0,1]

as suggested in [27]. If F<0.4 or F>1.0, then the DE algorithm is

rarely effective as mentioned in [27].

If the population converges prematurely, then F and/or N

should be increased. The larger value of CR increases the speed

of convergence. Ali and Tӧrn have obtained an optimal value for

CR = 0.5 empirically, halfway between the two parents [52]. This

approach ensures that each parent’s component has a 50% chance

of being selected to produce a new point. In this literature survey,

F = 0.8 and CR = 0.5 are selected for the DE algorithm as

suggested in [52].

The PSO algorithm comparatively has more tuning parameters

which greatly influence its performance. As mentioned in [29], a

recommended value for C1 and C2 is 2. Clerc has reported that C1

and C2 are important factors to ensure convergence of the PSO

algorithm in [54]. Trelea has tested the different set of parameters

for different standard benchmark functions for the PSO algorithm

[55]. From his empirical study, he suggested optimum value of

C1=C2= 1.49 gives a higher success rate for the PSO algorithm.

Shi and Eberhart have analysed the impact of ω and Vmax on the

performance of the PSO algorithm in [56]. The choice of Vmax =

xmax and linear variation of ω from 0.9 to 0.4 with iterations

provide good performance on the tested benchmark functions as

mentioned in [57].

Yang and Deb have tested CS algorithm for different

benchmark functions with different values of population size (N)

and pa. From their empirical study, suggested that N=15 to 40 and

pa= 0.25 are sufficient for most of the optimization problems. This

literature survey carried out for, N= 30 and pa= 0.25 as suggested

in [21].

For the hybrid CSPSO algorithm, Number of nests N = 30, pa

= 0.25, C1 = 1.49, C2 = 1.49, Vmax = 0.1*xmax, Vmin = 0.1*xmin, and

ω varies linearly from 0.9 to 0.4 with iterations are chosen.

The solution obtained by any Evolutionary Algorithm to solve

an objective function f(x) with the solution search space of a

variable [xj,min, xj,max]j=1,2,…,D is represented by a x=(x1, x2,…,xD).

Here, x_(j,min)is a minimum value of a variable xj and xj,max is a

maximum value of a variable xj. In the initialization phase, each

algorithm randomly generates a solution vector which is sampled

from the search space [xj,min, xj,max]. The initial values of the jth

attributes of the ith pattern have been generated as suggested in the

Eq.(13) [59].

 xi,j = xi,j,min+r *(xi,j,max-xi,j,min) i = 1,2,…,N (13)

In the Eq.(13), r represents uniformly distributed random

variable with the range (0,1). This randomly generated solution

vector r is given to a test function. Based on the results obtains

from the test function, the algorithm will update the value of the

solution vector. This iterative process continues until termination

criteria are not fulfilled. The termination criteria are either a

maximum number of iterations or a minimum value of the

function. These criteria are selected based on the complexity

problem and requirement of quality of solutions. The value of

tolerance for the variation of function is considered ≤ 1e-6. The

maximum number of iterations for the given benchmark function

testing are considered 30000.

Being a stochastic search process, a statistical study is required

to compare the consistency of the different Evolutionary

Algorithms and their quality of solutions. Each benchmark

function is solved by the CS, PSO, CSPSO and DE algorithms for

100 independent runs with different random seeds. The

performance of each algorithm is evaluated based on different

performance criteria such as a standard deviation of a function

value, success rate, simulation time, an average number of

function evaluations and an average number of iterations in the

experimental setup [51].

Standard deviation of a function value: The best value of a

function f(x) that each algorithm can find is recorded during each

run. The maximum, minimum, mean, and standard deviation of

the best function values are calculated. The minimum, maximum,

mean, and standard deviation of the best function values are

denoted as ‘Maxf’, ‘Minf’, ‘Meanf’, and ‘SDf’ respectively.

Average number of iterations: The number of iterations is

also recorded in different runs when each algorithm finds the

targeted value of the function within the maximum number of

iterations. Then, the average number of iterations is calculated

based on the number of runs. It is denoted as ‘Iteravg’.

Average number of function evaluations: The number of

function evaluations is also recorded in different runs when each

algorithm finds the targeted value of the function within the

termination criteria. Then, the average number of function

SURESHBHAI L BHARVAD: META HEURISTIC OPTIMIZATION APPROACH FOR CMOS BASED ANALOG CIRCUIT DESIGN AND PERFORMANCE EVALUATION OF

EVOLUTIONARY ALGORITHMS

2834

evaluations is calculated based on the number of runs. It is

denoted as ‘FEavg’.

Success rate: The number of successful runs is recorded when

the function value reaches the targeted value within a maximum

number of iterations. It is denoted as ‘Srate’.

Simulation time: The total simulation time is recorded for all

runs of the function taken by each algorithm in the respective

experiment. It is denoted as ‘Tsim’.

The performance criteria of each EA for different benchmark

functions are tabulated in Table.2. In which, Beale f2(x), Drop-

Wave f3(x), Easom f4(x) and Schaffer f9(x) functions are 2-D

optimization problems and Ackley f1(x), Griewank f5(x), Lévy

f6(x), Rastrigin f7(x), Rosenbrock f8(x), and Sphere f10(x) functions

are 10-D optimization problems. In this table, the optimum values

of different criteria obtained by the EA are shown in bold letters.

Ackley, Griewank, Lévy, Rastrigin, Rosenbrock, and Sphere

functions are also solved using each EA independently with 20-D

as well as 30-D optimization problems. The performance criteria

of each EA for 20-D benchmark functions are tabulated in

Table.3.

For 20-D optimization problems, the size of population (N) for

the DE algorithm, the number of particles (N) for the PSO

algorithm, the number of nests (N) of the CS algorithm, and the

number of nests (N) for the CSPSO algorithm are changed to 40

in place of 30 which was set previously in the case of 10-D

benchmark functions presented in Table.2. Other parameters of

all algorithms are unaltered.

The performance criteria of each EA for 30-D benchmark

functions are tabulated in Table.4. For the 30-D optimization

problems, the value of N for each algorithm is changed to 60 in

place of 40 set previously in the case of 20-D benchmark

functions. Other parameters of all algorithms are unchanged [51].

From Table.2-Table.4., it can be concluded that the average

number of iterations (Iteravg) taken by the CS and CSPSO

algorithms to reach the targeted function value for most of the

benchmark functions are less compared to the PSO and DE

algorithms.The CS and CSPSO algorithms also acquire a lower

standard deviation of the function value (SDf) and achieve a

higher success rate (Srate) compared to the DE and PSO

algorithms for most of the test functions [51].

Table.1. Standard benchmark functions

Function Equation Type Search Space
Global Optimum

Solution (x*)
f(x*)

Ackley ()
()2

1 1

1 1
0.2 cos 2

1 20 20

D D

i i

i i

x x
D D

f x e e e

= =

−
= − − + +

Multi-

Modal
(-32, 32) (0, …., 0) 0

Beale () () () ()
2 22 2 3

2 0 0 1 0 0 1 0 0 11.5 2.25 2.625f x x x x x x x x x x= − + + − + + − +
Uni-

Modal
(-4.5, 4.5) (3, 0.5) 0

Drop-Wave ()
()
()

2 2

1 2

3 2 2

1 2

1 cos 12

0.5 2

x x
f x

x x

+ +
= −

+ +

Multi-

Modal
(-5.12, 5.12) (0, 0) -1

Easom () () () () ()()2 2

4 0 1 0 1cos cos expf x x x x x = − − − − −
Uni-

Modal
(-100, 100) (π, π) -1

Griewank () 2

5

1 1

1
cos 1

4000

DD
i

i

i i

x
f x x

i= =

= − +

Multi-

Modal
(-600, 600) (0, …., 0) 0

Lévy

() () () ()

() ()

1
22 2

6 1

1

2 2

sin 1 1 10sin 1

1 1 sin 2

D

i i

i

D D

f x

−

=

 = + − + +

 + − +

where
1

1
4

i
i

x

−
= +

Multi-

Modal
(-10, 10) (1, …., 1) 0

Rastrigin () ()2

7

1

10 10cos 2
D

i i

i

f x D x x
=

 = + − Multi-

Modal
(-5.12, 5.12) (0, …., 0) 0

Rosenbrock () () ()
2 22

8 1

1

100 1
D

i i i

i

f x x x x+

=

 = − − −
 Uni-

Modal
(-30, 30) (1, …., 1) 0

Schaffer ()
()
()

2 2

2

9 2
3 2 2

1 2

sin 0.5
0.5

1 10

ix x
f x

x x−

 − −

= +
 + +

Multi-

Modal
(-100, 100) (0, 0) 0

Sphere

() 2

10

1

D

i

i

f x x
=

= Uni-

Modal
(-100, 100) (0, …., 0) 0

ISSN: 2229-6956 (ONLINE) ICTACT JOURNAL ON SOFT COMPUTING, JANUARY 2022, VOLUME: 13, ISSUE: 02

2835

Table.2. Performance evaluation of different EAs with different benchmark functions

Algorithm Function D Minf Maxf Meanf SDf Iteravg FEavg Srate Tsim(s)

DE

f1(x) 10

9.1e-7 1.7e-5 1.1e-6 2.0e-6 21419 642608 99 110.77

PSO 6.5e-7 19.93 3.9e-1 2.79 4234 127025 98 24.27

CS 6.9e-7 1.0e-6 9.1e-7 0.0 1318 79121 100 24.39

CSPSO 5.7e-7 1.0e-6 9.1e-7 0.0 1090 98202 100 36.70

DE

f2(x) 2

1.0e-6 2.0e-1 9.3e-3 2.4e-2 30000 900030 0 33.86

PSO 2.3e-8 7.6e-1 7.6e-3 7.5e-2 580 17400 99 0.83

CS 1.2e-8 9.9e-7 5.1e-7 0.0 152 9165 100 0.60

CSPSO 1.2e-8 9.9e-7 5.5e-7 0.0 83 7524 100 0.37

DE

f3(x) 2

1.7e-9 9.8e-7 3.1e-7 0.0 76 2319 100 0.08

PSO 0.0 1.0e-6 3.3e-7 0.0 43 1286 100 0.04

CS 3.1e-10 1.0e-6 3.0e-7 0.0 9 576 100 0.05

CSPSO 2.3e-11 1.0e-6 3.0e-7 0.0 7 669 100 0.04

DE

f4(x) 2

8.9e-6 1.3e-1 7.0e-3 1.5e-2 30000 900030 0 32.04

PSO 5.6e-9 1.0e-6 5.5e-7 0.0 583 17491 100 0.92

CS 2.0e-8 1.0e-6 5.2e-7 0.0 944 56701 100 5.74

CSPSO 1.9e-8 1.0e-6 5.2e-7 0.0 764 68759 100 5.78

DE

f5(x) 10

9.8e-7 5.2e-1 1.4e-1 1.3e-1 29892 896811 8 128

PSO 6.8e-7 8.4e-2 3.4e-2 1.7e-2 29514 885544 2 111

CS 6.5e-7 4.6e-2 1.9e-2 1.2e-2 27787 1667298 9 526

CSPSO 7.3e-7 4.7e-2 1.7e-3 1.1e-2 27047 2434260 12 219

DE

f6(x) 10

8.3e-5 3.1e-1 2.5e-2 4.3e-2 30000 900030 0 144.62

PSO 4.4e-5 3.99 7.8e-2 5.6e-1 898 26948 98 4.91

CS 3.9e-7 1.0e-6 8.0e-7 0.0 901 54145 100 18.73

CSPSO 2.5e-7 9.9e-1 1.9e-2 1.4e-1 1106 99580 98 29.66

DE

f7(x) 10

9.8e-7 7.65 4.9e-1 1.18 29968 899099 5 85.19

PSO 6.4e-7 29.92 1.94 5.74 18209 546283 47 70.84

CS 2.1e-7 4.97 6.5e-1 9.4e-1 18618 1117138 57 305

CSPSO 4.2e-7 3.98 6.3e-1 8.5e-1 18617 1675621 55 366

DE

f8(x) 10

7.51 933.81 321.59 188.21 30000 900030 0 62.14

PSO 1.0e-6 90002 10813 29242 29892 896789 1 107

CS 4.1e-7 1.0e-6 8.2e-7 0.0 1576 94638 100 23.01

CSPSO 2.5e-7 1.0e-6 8.0e-7 0.0 1330 119761 100 31.19

DE

f9(x) 2

8.7e-7 1.0e-6 9.6e-7 0.0 5236 157098 100 6.34

PSO 0.0 1.0e-6 4.5e-7 0.0 786 23595 100 0.83

CS 1.8e-9 1.0e-6 5.8e-7 0.0 1240 74484 100 5.72

CSPSO 7.8e-9 1.0e-6 5.5e-7 0.0 476 42949 100 2.67

DE

f10(x) 10

9.0e-7 1.0e-6 9.9e-7 0.0 4653 139635 100 8.78

PSO 3.2e-7 1.0e-6 8.7e-7 0.0 3102 93065 100 10.47

CS 2.8e-7 1.0e-6 8.2e-7 0.0 704 42248 100 10.30

CSPSO 3.7e-7 1.0e-6 8.2e-7 0.0 480 43329 100 7.85

SURESHBHAI L BHARVAD: META HEURISTIC OPTIMIZATION APPROACH FOR CMOS BASED ANALOG CIRCUIT DESIGN AND PERFORMANCE EVALUATION OF

EVOLUTIONARY ALGORITHMS

2836

Table.3. Performance evaluation of different EAs with 20-D benchmark functions

Algorithm Function Minf Maxf Meanf SDf Iteravg FEavg Srate Tsim(s)

DE

f1(x)

9.6e-5 4.01 1.1e-6 2.69 30000 1200040 0 308

PSO 8.4e-7 19.95 7.1e-1 3.49 6062 242468 96 85

CS 7.7e-7 1.16 2.3e-2 1.6e-1 3752 300242 98 191

CSPSO 7.8e-7 1.16 2.3e-2 1.6e-1 3116 373976 98 173

DE

f6(x)

9.6e-7 9.5-1 1.5e-1 2.9e-1 17152 686130 69 178

PSO 7.6e-7 22.54 2.7e-1 2.24 28243 1129730 7 309

CS 7.1e-7 1.2e-2 5.9e-4 2.2e-3 5362 429045 93 264

CSPSO 6.3e-7 7.3e-3 2.9e-4 1.5e-3 4103 492490 96 251

DE

f7(x)

6.6e-4 3.2e-1 6.6e-2 7.2e-2 30000 1200040 0 365

PSO 5.8e-7 10.12 1.46 2.55 11629 465160 71 166

CS 5.6e-7 1.98 2.9e-2 2.2e-1 2842 227442 98 158

CSPSO 7.3e-7 1.98 3.8e-1 5.6e-1 11184 1342172 66 813

DE

f8(x)

7.48 30.39 15.74 4.68 30000 1200040 0 218

PSO 2.99 63.82 17.80 16.45 30000 1200000 0 313

CS 8.2e-7 9.95 2.23 1.91 28772 2297857 14 1246

CSPSO 7.9e-7 11.94 2.88 2.01 29117 3494106 7 1492

DE

f9(x)

344.56 2982.78 1014 483 30000 1200040 0 190

PSO 9.9e-7 90008 14861 32811 29592 1183698 3 250

CS 5.7e-7 3.99 4.8e-1 1.30 7859 628766 88 293

CSPSO 5.5e-7 3.99 4.4e-1 1.25 7260 871286 89 459

DE

f10(x)

9.8e-7 1.0e-6 1.0e-6 0.0 9696 387884 100 42

PSO 6.1e-7 1.0e-6 9.2e-7 0.0 4445 177802 100 34

CS 7.3e-7 1.0e-6 9.3e-7 0.0 1676 134152 100 62

CSPSO 5.7e-7 1.0e-6 9.2e-7 0.0 1434 172220 100 69

Table.4. Performance evaluation of different EAs with 30-D benchmark functions

Algorithm Function Minf Maxf Meanf SDf Iteravg FEavg Srate Tsim(s)

DE

f1(x)

3.30 6.43 4.30 7.7e-1 30000 1800060 0 720

PSO 7.6e-7 19.96 4.41 7.01 12887 773255 71 434

CS 8.5e-7 1.16 4.9e-2 2.1e-1 6469 776356 95 644

CSPSO 8.4e-7 1.0e-6 9.7e-7 0.0 2807 505453 100 355

DE

f5(x)

9.7e-7 9.9-1 2.3e-1 3.8e-1 22611 1356756 74 547

PSO 6.9e-7 23.48 1.84 6.18 24057 1443456 24 590

CS 7.2e-7 1.0e-6 9.5e-7 0.0 3802 456373 100 420

CSPSO 7.3e-7 1.0e-6 9.4e-7 0.0 3272 589036 100 450

DE

f6(x)

1.3e-3 1.12 1.2e-1 2.3e-1 30000 1800060 0 811

PSO 8.5e-7 38.35 7.48 7.29 25273 1516390 19 780

CS 6.7e-7 1.0e-6 9.3e-7 0.0 3710 445273 100 441

CSPSO 6.7e-7 1.98 3.9e-1 5.8e-1 11835 2130421 65 1703

DE

f7(x)

10.62 30.71 19.23 4.47 30000 1800060 0 460

PSO 9.95 154.57 70.44 31.76 30000 1800000 0 764

CS 8.4e-7 9.95 3.57 2.12 29989 3598790 2 3166

CSPSO 8.8e-7 12.94 3.63 2.67 29952 5391439 2 4150

ISSN: 2229-6956 (ONLINE) ICTACT JOURNAL ON SOFT COMPUTING, JANUARY 2022, VOLUME: 13, ISSUE: 02

2837

DE

f8(x)

1281 7125 3466 1055 30000 1800060 0 371

PSO 4.3e-6 90072 20247 37064 30000 1800000 0 554

CS 6.5e-7 3.99 4.8e-1 1.30 11696 1403602 88 1011

CSPSO 6.8e-7 3.99 1.6 e-1 7.8e-1 9443 1699873 96 1059

DE

f10(x)

9.9e-7 1.0e-6 1.0e-6 0.0 15516 931017 100 134

PSO 7.1e-7 20000 800 3059 6934 416015 93 99

CS 7.9e-7 1.0e-6 9.4e-7 0.0 2584 310190 100 211

CSPSO 6.8e-7 1.0e-6 9.3e-7 0.0 2221 399921 100 208

Thus, The CS and CSPSO algorithms outperform for most of

the tested functions compared to the PSO and DE algorithms. The

PSO algorithm requires the least average number of iterations

(Iteravg), average function evaluations (FEavg), and simulation

time (Tsim) for Easom function compared to the CS and CSPSO

algorithms as listed in Table.2. The PSO algorithm also

outperforms the CS algorithm for Schaffer function as listed in

Table.2.

The convergence graphs of Beale, Drop-Wave, Easom, and

Schaffer functions with 2-D and Ackley, Lévy, Griewank,

Rastrigin, Rosenbrock, and Sphere functions with 30-D optimized

by the CS, PSO, hybrid CSPSO, and DE algorithms are shown in

Fig.9 to Fig.18. The convergence graph of the function shows the

average function value performance of all runs with respect to

iterations in the respective experiment. The vertical axis is the

average of the best function value obtained by the algorithm in

each iteration and the horizontal axis is the number of iterations.

Fig.9. Convergence graph of 30-D Ackley function for the CS,

PSO, CSPSO, and DE algorithms

Fig.10. Convergence graph of 2-D Beale function for the CS,

PSO, CSPSO, and DE algorithms

Fig.11. Convergence graph of 2-D Drop-Wave function for the

CS, PSO, CSPSO, and DE algorithms

SURESHBHAI L BHARVAD: META HEURISTIC OPTIMIZATION APPROACH FOR CMOS BASED ANALOG CIRCUIT DESIGN AND PERFORMANCE EVALUATION OF

EVOLUTIONARY ALGORITHMS

2838

Fig.12. Convergence graph of 2-D Easom function for the CS,

PSO, CSPSO, and DE algorithms

Fig.13. Convergence graph of 30-D Griewank function for the

CS, PSO, CSPSO, and DE algorithms

Fig.14. Convergence graph of 30-D Lévy function for the CS,

PSO, CSPSO, and DE algorithms

Fig.15. Convergence graph of 30-D Rastrigin function for the

CS, PSO, CSPSO, and DE algorithms

Fig.16. Convergence graph of 30-D Rosenbrock function for the

CS, PSO, CSPSO, and DE algorithms

Fig.17. Convergence graph of 2-D Schaffer function for the CS,

PSO, CSPSO, and DE algorithms

ISSN: 2229-6956 (ONLINE) ICTACT JOURNAL ON SOFT COMPUTING, JANUARY 2022, VOLUME: 13, ISSUE: 02

2839

Fig.18.Convergence graph of 30-D Sphere function for the CS,

PSO, CSPSO, and DE algorithms

3.5 SUMMARY

After reviewing the previously published literature for the

given optimized problem, special attention is paid to the

implementation of widely used and promising Evolutionary

Algorithms. In this review paper, the focus is set on the

performance evaluation of different metaheuristic Evolutionary

Algorithms using different unimodal and multimodal benchmark

functions. In this chapter, a hybrid algorithm of the CS and PSO

algorithms is also compared. The concept of the hybrid algorithm

of two or more algorithms plays a very prominent role to improve

the searching capabilities of an algorithm and convergence rate.

The more function evaluations per iteration which increase the

total convergence time limit performance of the hybrid algorithm.

4. CONCLUSIONS

In this paper, the DE, PSO, and CS algorithms are analyzed

and implemented using the C programming language. The

performance of each algorithm is evaluated using different ten

standard unimodal and multimodal benchmark functions. To

exploit the benefits of the CS and PSO algorithms, the hybrid

CSPSO algorithm is implemented and evaluated. The application

and impact of the CS and hybrid CSPSO algorithms are used to

optimize the basic building blocks of an analog CMOS IC such as

voltage divider, triple cascode current mirror, three-stage current

starved VCO, common-source amplifier, cascode amplifier, DA

with a current mirror load, two-stage op-amp, FOTA, and Miller

OTA. The convergence graphs of the various functions are

compared and performance estimation of all the evolutionary

algorithms is compared.

REFERENCES

[1] M.F.M. Barros, J.M.C. Guilherme and N.C.G. Horta,

“Analog Circuits and Systems Optimization based on

Evolutionary Computation Techniques”, Springer, 2010.

[2] S.L. Sabat, K.S. Kumar and S.K. Udgata, “Differential

Evolution and Swarm Intelligence Techniques for Analog

Circuit Synthesis”, Proceedings of World Congress on

Nature and Biologically Inspired Computing, pp. 469-474,

2009.

[3] B. Razavi, “Design of Analog CMOS Integrated Circuits”,

McGraw-Hill, 2013.

[4] G. Alpaydin, S. Balkir and G. Dundar, “An Evolutionary

Approach to Automatic Synthesis of High-Performance

Analog Integrated Circuits”, IEEE Transactions on

Evolutionary Computing, Vol. 7, No. 3, pp. 240-252, 2003.

[5] H.Y. Koh, C.H. Sequin and P.R. Gray, “OPASYN: A

Compiler for CMOS Operational Amplifiers”, IEEE

Transactions on Computer-Aided Design of Integrated

Circuits and Systems, Vol. 9, No. 2, pp. 113-125, 1990.

[6] P.M.R. Pereira, “Optimization based Design of LC Voltage

Controlled Oscillators”, PhD Dissertations, Department of

Electronics Engineering, Nova De Lisboa University, pp. 1-

198, 2013.

[7] B.D. Gajjar, “Automatic CMOS Analog Circuit Design

using Particle Swarm Optimization Algorithm”, Master

Thesis, Department of Electronics and Communication

Engineering, Gujarat University, pp. 1-90, 2011.

[8] R.A. Thakker, C. Sathe, A.B. Sachid, M. Shojaei Baghini,

V. Ramgopal Rao and M.B. Patil, “A Novel Table-Based

Approach for Design of FinFET Circuits”, IEEE

Transactions on Computer-Aided Design of Integrated

Circuits and Systems, Vol. 28, No. 7, pp. 1061-1070, 2009.

[9] Y. Massoud and T. Ragheb, “Automated Design Solutions

for Fully Integrated Narrow-Band Low Noise Amplifiers”,

Proceedings of International Workshop on System on Chip

for Real Time Applications Automated, pp. 109-114, 2006.

[10] H.Y. Koh, C.H. Sequin and P.R. Gray, “OPASYN: A

Compiler for CMOS Operational Amplifiers”, IEEE

Transactions on Computer-Aided Design of Integrated

Circuits and Systems, Vol. 9, No. 2, pp. 113-125, 1990.

[11] A. Savio, L. Colalongo, M. Quarantelli and Z.M. Kovacs

Vajna, “Automatic Scaling Procedures for Analog Design

Reuse”, IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, Vol. 53, No. 12, pp. 2539-

2547, 2006.

[12] W. Nye, D.C. Riley, A. Sangiovanni Vincentelli and A.L.

Tits, “Delight.Spice: An Optimization-Based System for the

Design of Integrated Circuits”, IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems,

Vol. 7, No. 4, pp. 501-519, 2002.

[13] S.S. Sapatnekar, V.B. Rao and P.M. Vaidya, “An Exact

Solution to the Transistor Sizing Problem for CMOS

Circuits using Convex Optimization”, IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems,

Vol. 12, No. 1, pp. 1621-1634, 1993.

[14] M.M. Hershenson and S.P. Boyd, “Optimal Design of

CMOS Op-Amp via Geometric Programming”, IEEE

Transactions on Computer-Aided Design of Integrated

Circuits and Systems, Vol. 20, No. 1, pp. 1-21, 2001.

[15] F.A. Potra and S.J. Wright, “Interior-Point Methods”,

Journal of Computational and Applied Mathematics, Vol.

124, No. 1, pp. 281-302, 2000.

[16] R.A. Thakker, M.S. Baghini and M.B. Patil, “Low-Power

Low-Voltage Analog Circuit Design using Hierarchical

Particle Swarm Optimization”, Proceedings of International

Conference on VLSI Design, pp. 427-432, 2009.

SURESHBHAI L BHARVAD: META HEURISTIC OPTIMIZATION APPROACH FOR CMOS BASED ANALOG CIRCUIT DESIGN AND PERFORMANCE EVALUATION OF

EVOLUTIONARY ALGORITHMS

2840

[17] D.H. Wolpert and W.G. Macready, “No Free Lunch

Theorems for Search”, IEEE Transactions on Evolutionary

Computing, Vol. 1, No. 1, pp. 67-82, 1997.

[18] A.P. Vaze, “Analog Circuit Design using Genetic

Algorithm: Modified”, World Academy of Science,

Engineering and Technology, International Journal of

Electrical, Computer, Energetic, Electronic and

Communication Engineering, Vol. 2, No. 2, pp. 301-303,

2008.

[19] H. Gupta and B. Ghosh, “Analog Circuits Design using Ant

Colony Optimization”, International Journal of Electronics,

Computer and Communications Technologies, Vol. 2, No.

3, pp. 9-21, 2012.

[20] G. Zhu and S. Kwong, “Gbest-Guided Artificial Bee Colony

Algorithm for Numerical Function Optimization”, Applied

Mathematics and Computation, Vol. 217, No. 7, pp. 3166-

3173, 2010.

[21] X.S. Yang and S. Deb, “Cuckoo Search via Levy Flights”,

Proceedings of World Congress on Nature and Biologically

Inspired Computing, pp. 210–214, 2009.

[22] R.A. Vural and U.E. Ayten, “Optimized Analog Filter

Approximation Via Evolutionary Algorithms”, Proceedings

of International Conference on Intelligent Systems Design

and Applications, pp. 485-490, 2012.

[23] S.J. Patel and R.A. Thakkar, “Automatic Circuit Design and

Optimization using Modified PSO Algorithm”, Journal of

Engineering Science and Technology Review, Vol. 4, No. 1,

pp. 192-197, 2016.

[24] P.P. Prajapati and Mihir V. Shah, “Two Stage CMOS

Operational Amplifier Design using Particle Swarm

Optimization Algorithm”,Proceeding of IEEE UP Section

Conference on Electrical, Computer and Electronics, pp. 1-

6, 2015.

[25] H. Soneji and R.C. Sanghvi, “Toward the Improvement of

Cuckoo Search Algorithm”, World Congress on Information

and Communication Technologies, pp. 878-883, 2012.

[26] P. Civicioglu and E. Besdok, “A Conceptual Comparison of

the Cuckoo-Search, Particle Swarm Optimization,

Differential Evolution and Artificial Bee Colony

Algorithms”, Artificial Intelligence Review, Vol. 39, No. 4,

pp. 315-346, 2013.

[27] R. Storn and K. Price, “Differential Evolution - A Simple

and Efficient Heuristic for Global Optimization over

Continuous Spaces”, Journal of Global Optimization, Vol.

11, No. 4, pp. 341-359, 1997.

[28] V. Arunachalam, “Water Resources Research Report:

Optimization using Differential Evolution”, Technical

Report, University of Western Ontario, pp. 1-68, 2008.

[29] J. Kennedy and R.C. Eberhart, “Swarm Intelligence”,

Morgan Kaufmann Publishers, 2001.

[30] R.C. Butani, B.D. Gajjar and R.A. Thakker, “Performance

Evaluation of Particle Swarm Optimization (PSO) and

Artificial Bee Colony (ABC) Algorithm”, Proceedings of

International Conference on Advanced Computing,

Communication and Networks, pp. 108-112, 2011.

[31] V. Truong Vu, “A Comparison of Particle Swarm

Optimization and Differential Evolution”, Soft Computing,

Vol. 3, No. 3, pp. 13-30, 2012.

[32] E. Elbeltagi, T. Hegazy and D. Grierson, “Comparison

among Five Evolutionary-Based Optimization Algorithms”,

Advanced Engineering Informatics, Vol. 19, No. 1, pp. 43-

53, 2005.

[33] S. Janson and M. Middendorf, “A Hierarchical Particle

Swarm Optimizer”, IEEE Transactions on Systems, Man,

and Cybernetics, Part B (Cybernetics), Vol. 35, No. 6, pp.

1272-1280, 2005.

[34] A. Adnan and M.A. Razzaque, “A Comparative Study of

Particle Swarm Optimization and Cuckoo Search

Techniques through Problem-Specific Distance Function”,

Proceedings of International Conference of Information and

Communication Technology, pp. 88-92, 2013.

[35] X.S. Yang, “Harmony Search as a Metaheuristic

Algorithm”, Computational Intelligence, Vol. 191, pp. 1-14,

2009.

[36] E. Valian, S. Mohanna and S. Tavakoli, “Improved Cuckoo

search Algorithm for Global Optimization”, Communication

and Information Technology, Vol. 1, No. 1, pp. 31-44, 2011.

[37] Pankaj P. Prajapati, Swati A. Sharma and Mihir V. Shah,

“Design of CMOS Operational Amplifier using Differential

Evolutionary Algorithm”, Proceedings of International

Conference on VLSI Design, pp. 108-111, 2016.

[38] I. Fister, D. Fister and I. Fister, “A Comprehensive Review

of Cuckoo Search: Variants and Hybrids”, International

Journal of Mathematical Modelling and Numerical

Optimisation, Vol. 4, No. 4, pp. 387-409, 2013.

[39] S. Roy, “Cuckoo Search Algorithm using Levy Flight : A

Review”, International Journal of Modern Education and

Computer Science, Vol. 5, No. 12, pp. 10-15, 2013.

[40] X. Yang, T. O. Ting and M. Karamanoglu, “Random Walks,

Levy Flights, Markov Chains and Metaheuristic

Optimization”, Springer, 2013.

[41] X. Yang and S. Deb, “Cuckoo Search : State-of-the-Art and

Opportunities”, Proceedings of International Conference on

Soft Computing and Machine Intelligence, pp. 55-59, 2017.

[42] R.N. Mantegna, “Fast, Accurate Algorithm for Numerical

Simulation of Levy Stable Stochastic Processes”, Physical

Review, Vol. 49, No. 5, pp. 4677-4683, 1994.

[43] Pankaj P. Prajapati and Mihir V. Shah, “Optimization of

CMOS Current Mirror Load-Based Differential Amplifier

using Hybrid Cuckoo Search and Particle Swarm

Optimization Algorithm”, Journal of Artificial Intelligence

Research and Advances, Vol. 5, No. 3, pp. 71-78, 2019.

[44] M.A. Mushahhid Majeed and S.R. Patri, “A Hybrid of WOA

and mGWO Algorithms for Global Optimization and

Analog Circuit Design Automation”, International Journal

for Computation and Mathematics in Electrical and

Electronic Engineering, Vol. 38, No. 1, pp. 452-476, 2018.

[45] F.J. Rodriguez, C. Garcia Martinez and M. Lozano, “Hybrid

Metaheuristics based on Evolutionary Algorithms and

Simulated Annealing : Taxonomy, Comparison, and

Synergy Test”, IEEE Transactions on Evolutionary

Computing, Vol. 16, No. 6, pp. 787-800, 2012.

[46] A. Ghodrati and S. Lotfi, “A Hybrid CS/PSO Algorithm for

Global Optimization”, Proceedings of International

Conference on Intelligent Information and Database

Systems, pp. 89-98, 2012.

[47] X. Yang, “Recent Advances in Swarm Intelligence and

Evolutionary Computation”, Springer, 2015.

[48] P.P. Prajapati and M.V. Shah, “Performance Estimation of

Differential Evolution, Particle Swarm Optimization and

ISSN: 2229-6956 (ONLINE) ICTACT JOURNAL ON SOFT COMPUTING, JANUARY 2022, VOLUME: 13, ISSUE: 02

2841

Cuckoo Search Algorithms”, International Journal on

Intelligent Systems and Applications, Vol. 6, pp. 59-67,

2018.

[49] M. Molga and C. Smutnicki, “Test Functions for

Optimization Needs”, Proceedings of International

Conference on Computer and Information Science, pp. 1-43,

2005.

[50] M. Jamil and X.S. Yang, “A Literature Survey of

Benchmark Functions for Global Optimization Problems”,

International Journal of Mathematical Modelling and

Numerical Optimisation, Vol. 4, No. 2, pp. 150-194, 2013.

[51] P.P. Prajapati and M.V. Shah, “Computer Aided CMOS

Based Analog Circuit Design”, Ph.D. Dissertations,

Department of Electrical and Electronics Engineering,

Gujarat Technological University, pp. 1-123, 2019.

[52] M.M. Ali and A. Torn, “Population Set-Based Global

Optimization Algorithms: Some Modifications and

Numerical Studies”, Computers and Operations Research,

Vol. 31, No. 10, pp. 1703-1725, 2004.

[53] Pankaj P. Prajapati and Mihir V. Shah, “Automatic Circuit

Design of CMOS Miller OTA using Cuckoo Search

Algorithm”, International Journal of Applied Metaheuristic

Computing, Vol. 23, No. 1, pp. 1-13, 2018.

[54] M. Clerc, “The Swarm and the Queen: Towards a

Deterministic and Adaptive Particle Swarm Optimization”,

Proceedings of Congress on Evolutionary Computation,

Vol. 3, pp. 1951-1957, 1999.

[55] I.C. Trelea, “The Particle Swarm Optimization Algorithm :

Convergence Analysis and Parameter Selection”,

Information Processing Letters, Vol. 85, No. 6, pp. 317-325,

2003.

[56] Y. Shi and R.C. Eberhart, “Parameter Selection in Particle

Swarm Optimization”, Springer, 1998.

[57] C. Eberhart and Y. Shi, “Comparing Inertia Weights and

Constriction Factors in Particle Swarm Optimization”,

Proceedings of the Congress on Evolutionary Computation,

pp. 84-88, 2000.

[58] Pankaj P. Prajapati and Mihir V. Shah, “Automatic Sizing of

CMOS based Analog Circuits using Cuckoo Search

Algorithm”, International Journal of Intelligent Systems

Technologies and Applications, Vol. 23, No. 1, pp. 1-14,

2018.

[59] A. Leon-Garcia, “Probability, Statistics, and Random

Processes for Electrical Engineering”, Pearson Prentice

Hall, 2008.

