
VANSHIKA RASTOGI et. al.: AN ENHANCED CLIENT CENTRIC SOFTWARE DEVELOPMENT LIFE CYCLE MODEL WITH COST AND EFFORT ESTIMATION

190

AN ENHANCED CLIENT CENTRIC SOFTWARE DEVELOPMENT LIFE CYCLE

MODEL WITH COST AND EFFORT ESTIMATION

Vanshika Rastogi 1, G. Swetha2, E. Anantha Lakshmi3 and M. Pauline4
1,2,3Department of Information Science and Engineering, MVJ College of Engineering, India

E-mail: 1rastogi.vanshika21@gmail.com, 2swetha.lahari@gmail.com, 3ananthaeli@gmail.com
4Department of Computer Science and Engineering, MVJ College of Engineering, India

E-mail: pmariasundaram@yahoo.com

Abstract

In today’s world of software development, there exist many Software

Development Life Cycle (SDLC) Models. SDLC model gives a

theoretical guideline for the development of the software. Each model

has its own characteristics, limitations and working environment.

With rapid advances in communication and information technology,

organizations have to deliver high-quality software, solutions at low

Cost and satisfy the client needs. Employing proper SDLC model

allows the project managers to regulate entire development strategy of

the software. In the paper, author proposes a model for software

development that incorporates prototype and spiral model, defining an

output with each stage. The proposed model fulfills the client’s

requirement, providing high quality product with less Effort and Cost.

The proposed model allows client and developer to interact with each

other in order to understand and implement requirements in an

organized way. The proposed model considers one of the real time

applications (HR) as a case study, and evaluates the Effort and Cost

in terms of enhanced function point and lines of code. A Comparison

of Effort estimation and Cost estimation of various existing models

and the proposed model is done. The proposed model is Effort and

Cost effective. The proposed model is more towards client centric

SDLC model.

Keywords:

Software Development Life Cycle (SDLC), Client Satisfaction, Effort,

Function Point (FP), Kilo Lines of Code (KLOC,) Cost Estimation

1. INTRODUCTION

The authors propose Software Development Life Cycle

Model which aims at client satisfaction with an efficient Effort

and Cost estimation. The intent of a SDLC process is to help

produce a high quality product with less Effort and that is Cost-

effective. To develop a software product, industries deploy

SDLC model that suits their needs. The SDLC methodology

consists of the following stages: They are Analysis phase

(requirements and design), construction phase, testing phase,

release phase and maintenance (response) phase.

LOC is a software metric used to measure the size of a

computer program by counting the number of lines in the text of

the program's source code. SLOC is used to predict the amount

of Effort that will be required to develop a program, as well as to

estimate programming productivity or maintainability once the

software is produced. Function points [FP] are the unit of

measure to express the amount of business functionality

provided to the user by the software. FP is an indirect measure of

software size based on external and internal application

characteristics as well as application performance. FP is used for

estimation during the early stages of the project and later to

measure the actual size of the application delivered. FP can be

used to Estimate the Effort or Cost required to design, code and

test the software. FP is used to predict the errors that will be

encountered during testing and forecast the number of

components and/or the number of projected source lines in the

implemented system. In the first phase; a comparative study and

analysis is made on various existing SDLC models. In second

phase, proposed SDLC model is discussed with its working

principle. The third phase presents the Effort and Cost

estimation of the proposed work. A comparison of the Effort and

Cost for various existing models and the proposed the model is

done.

2. RELATED WORK

Software engineering is the study and application of

engineering to the design, development and maintenance of

software [1]. The discipline of software engineering was created

to address poor quality of software, get projects exceeding time

and budget under control and ensure that software is built

systematically, rigorously, measurably, on time, on budget and

within specification. This engineering discipline describes how

software should be developed [2]. In regard to the development

of software, there exists many models, that work into distinct

phases (or stages) containing activities with the intent of better

planning and management in order to develop the software [3].

Common methodologies include waterfall, prototyping, iterative

and incremental development, spiral development, rapid

application development, extreme programming and agile

methodology [4]. Different SDLC models and their pros and

cons are presented in [5]. In paper [6], authors have analyzed

and compared SDLC models. Authors have proposed,

comparing models mathematically would be feasible [7]. A

model that merges basic phases of SDLC and release

management is proposed thus increasing the effectiveness of the

SDLC model, establishing which role has to do what and when

in various stages[8]. Client’s benefits in terms of Cost as well as

satisfaction also need to be considered. Large numbers of

software projects do not meet the client expectations in terms of

Functionality, Cost or delivery schedule. In [9] author proposes

a model, SDLC 2013, which works towards client satisfaction

process. The work in this paper proposes SDLC model 2015 to

overcome the short-comings; above all, it ensures that the client

is satisfied. The authors propose a SDLC model to develop a

product or software. The model starts with clients requirement

developed using prototype model, followed by the spiral model

development [10]. The combinations of the two different SDLC

models help to develop a software or product with clients’

involvement throughout the development, ensuring to satisfy the

client and also benefiting the organization. The paper evaluates

DOI: 10.21917/ijms.2015.0027

ISSN: 2395-1664 (ONLINE) ICTACT JOURNAL ON MANAGEMENT STUDIES, NOVEMBER 2015, VOLUME: 01, ISSUE: 04

191

the models efficiency using basic software metrics [11]. The

proposed models Effort and Cost are estimated using enhanced

function point and Cost estimation proposed in [12]. Function

point (FP) counting passes through an adjustment phase [14, 15].

This phase consists of scoring a group of general systems

characteristics (GSC) that rate the general functionality of the

application being counted, from the GSC, the value adjustment

factor VAF determined[16,17]. Enhanced function point can

then be calculated [18]. Analysis of Empirical Software Effort

Estimation Models is presented in [19]. Estimation using expert

judgment is better than models [20]. Existence of a consistently

applied process is important and a prerequisite for a successful

measurement program in case of different environments [21].

The calculated FP is then used to estimate the Cost [22, 23].

Intermediate COCOMO is used for Cost calculation. Cost

factors are chosen based on individual development

environment, which is crucial for the accuracy of Cost

estimation [18].

3. SYSTEM OVERVIEW

The proposed SDLC-2015 model is designed in a way that

allows the client to communicate with the developer to get

satisfied with the implementation of the requirements. The

proposed model aims at developing an efficient software product

that satisfies the client, with less Effort and Cost effective.

Requirement analysis phase is very crucial and important in any

software development life cycle. Improper analysis leads to

client dissatisfaction that may have effect on time, Effort and

Cost of the software.

The proposed model starts with a Client interacting with

Team A: Requirement Analysis/gathering team, then with Team

B: Technical Team. Client has to be involved in the software

development process to order to achieve client satisfaction. But

this should not affect the Schedule, Effort and Cost of the

organization as well as hinder the performance of the product. In

order to achieve this, our model helps client involvement in a

well-planned - ordered manner throughout the product

development. Initially, Client and team A will work together

understanding the requirements of the client. This is very

important and crucial in software product development. Here the

team analyses the requirement, with the help of developer, tester

as well as management member, they conclude if the product

can be implemented or not. During this phase, the Effort and

Cost will also be calculated, that helps client to be aware of the

Cost and schedule of the final product delivery.

Simultaneously, requirement team passes the requirement to

design team, who will search if any existing similar product

exists, to show it as a prototype with fewer or no modifications

made or if no similar software exists, Team A builds a new

prototype to match the client requirement and gives it to client

for evaluation. This makes the client to analyze how the product

might be and also to better understand his requirements. Once

the client agrees on the prototype, the requirements implemented

in the prototype will be freezed so as to reuse prototype. Now

the client is aware of the kind of product he will be delivered,

the Cost and the time it takes to deliver the product.

Management can also estimate the Effort and Cost required to

develop the product.

The product now goes to next phase, with Team B, where

client along with requirement team member, design team,

developers, testing team will be involved. The development here

follows spiral model. Requirement team chooses the requirement

to be implemented based on clients request, identifies, analyses

the risk and passes on this to design team. This team designs the

module/unit in compliance with existing prototype, pass this to

development team. Development team codes and passes for

further testing. On successful testing, this is then integrated with

prototype tested and handed to client for check. This process

repeats until the product is developed. Hence, the involvement of

client in each phase guarantees client satisfaction as well as

avoid the many changes from the client that might affect product

Effort and Cost by freezing the prototype. Thus our proposed

model SDLC-2015, calculates Effort and Cost, also a

comparative study of the Cost and Effort of various existing

models and the proposed models is done.

4. PHASES OF SDLC MODELS

Software Development Life Cycle (SDLC) is a descriptive

and diagrammatic representation of the software life cycle. It

represents all the activities required to make a software product.

It consists of Requirement Analysis phase, Design phase,

Coding phase, Testing phase and Maintenance phase.

4.1 REQUIREMENT ANALYSIS PHASE

Requirements analysis is critical to the success of a systems

or software project. The first step is to perform a thorough

analysis of the client’s current situation, careful to define the

situation as precisely as possible and obtain a clear

understanding of what the software product must do. During the

requirements phase the team must:

 Attempt to determine the real needs of the client

 Avoid blindly taking statements about the client’s wants

e.g. a wish list

 Recognize the client is not always conscious of all the

needs

 Overcome any lack of computer-literacy on the part of the

client i.e. bridge the technical divide between developer

and client

 Correctly interpret client’s requests even if not stated in the

best way possible

4.2 FEASIBILITY STUDY PHASE

This is the next phase of the development life cycle. It

Includes analysis of project requirements in terms of input data

and desired output, processing required to transform input into

output, cost-benefit analysis and schedule of the project. The

feasibility analysis also includes the technical feasibility of a

project in terms of available software tools, hardware and skilled

software professionals. At the end of this phase, a feasibility

report for the entire project is created that details the risks,

resources required, Estimate Effort, Cost and time required, legal

requirements if any etc. At the end, an updated Software

Requirement Specification [SRS] document is presented.

VANSHIKA RASTOGI et. al.: AN ENHANCED CLIENT CENTRIC SOFTWARE DEVELOPMENT LIFE CYCLE MODEL WITH COST AND EFFORT ESTIMATION

192

4.3 DESIGN PHASE

Design includes translation of the requirements specified in

the SRS into a logical structure that can be implemented in a

programming language. There are two design approaches the

traditional design approach and the object oriented design

approach.

The traditional design approach consists of two different

activities. First, a structured analysis of the requirement

specification is done. It involves preparing a detailed analysis of

the different functions to be supported by the system and the

identification of the data flow among the different functions.

This is followed by a structured design activity. The output of

the design phase is a design document that acts as an input for all

the subsequent SDLC phases.

Object oriented design is a technique in which various

objects that occur in the problem domain and the solution

domain are first identified and the different relationships that

exist among these objects are also identified.

4.4 CODING PHASE

Coding is the actual implementation of the design specified

in the design document into executable programming language

code. The output of the coding phase is the source code for the

software that acts as input to the testing and maintenance phase.

4.5 TESTING PHASE

Testing includes detection of errors in the software. The

testing process starts with a test plan that recognizes test-related

activities such as test case generation, testing criteria and

resource allocation for testing. The code is tested and mapped

against the design document created in the design phase. The

output of the testing phase is a test report containing errors that

occurred while testing the application or any deviations with

respect to the requirement document.

4.6 MAINTENANCE PHASE

Maintenance of the development product includes

implementation of changes that software might undergo over a

period of time or implementation of new requirements after the

software is deployed at the customer location. The maintenance

phase also includes handling the residual errors that may exist in

the software even after the testing phase.

5. SDLC MODELS

There exist many SDLC models, which are followed to

develop a software product. One software development

methodology framework is not necessarily suitable for use by all

projects. Each of the available methodology frameworks are best

suited to specific kinds of projects, based on various technical,

organizational, project and team considerations. Typically an

approach or a combination of approaches is chosen by

management that benefits the organization or chosen by a

development team, based on the available recourses. Also,

organization chooses to use a particular model, based on various

client requirements, man power, Effort required, time and Cost.

5.1 WATERFALL MODEL

Water fall model is the most well know software

development life cycle model. The waterfall model is a

sequential design process. This model specifies what the system

is supposed to do (i.e. define the requirements) before building

the system (i.e. designing) and plans how components are going

to interact (i.e. designing) before building the component (i.e.

coding). In this model, one should move from one phase to next

phase only when its preceding phase is reviewed and verified.

Features:

 Simple and easy to manage.

 Sets requirements stability.

 Each phase has specific deliverables and a review process

 Phases are processed and completed one at a time, no

overlapping of phases.

 Used for smaller projects

 Works well when quality is more important than Cost or

schedule.

Drawbacks:

 Once the product enters to development stage, product is

developed based on the requirements recorded in the first

phase. Thus there is no formal way to make changes to the

project in the later stages, if there is any change in the

requirements or more information becomes available to the

project team.

 Risk is high and therefore high uncertainty.

 Delays in discovery of serious errors.

 Not a good model for complex projects.

5.2 PROTOTYPE MODEL

Prototype model can be used in the projects where the

requirements are unstable or have to be clarified. Useful to

provide short-lived demonstrations for the client to understand

requirements better. Also used for new product development,

whose requirements are new.

Features:

 It provides a better system to users, as the prototype, gives

a better understanding of the model, user is in need.

 Interaction with the prototype stimulates awareness of

additional needed functionality or any changes if needed.

 Errors can be detected much earlier

 It saves the time and Cost.

Drawbacks:

 Generally, prototypes are throw-away.

 Many changes in the prototype may hinder the

functionality, increase complexity, Cost, time and Effort.

 Tendency to abandon structured program development for

“code-and-fix” development

 Not suitable for large applications.

ISSN: 2395-1664 (ONLINE) ICTACT JOURNAL ON MANAGEMENT STUDIES, NOVEMBER 2015, VOLUME: 01, ISSUE: 04

193

5.3 SPIRAL MODEL

The spiral model is an evolutionary software process model

which is a combination of an iterative nature of prototyping and

controlled and systematic aspects of traditional waterfall model.

It is suitable for development of technically challenging software

products that are prone to several kinds of risks. It allows for

incremental releases/refinement of the product. The spiral model

is also called as “meta-model”, since it encompasses all other

lifecycle models.

Each phase in this model is split into four sectors. The first

quadrant identifies the objective of the phase and the alternative

solutions possible for the phase under consideration. During the

second quadrant, the alternative solutions are evaluated to select

the best solution possible. For the chosen solution, the potential

risks are identified and dealt with by developing an appropriate

prototype. Activities during the third quadrant consist of

developing and verifying the next level of the product. The

fourth quadrant activities concern reviewing results of the stages

traversed so far, with the customer and planning the next

iteration around the spiral.

Features:

 Good for large and mission critical projects

 High amount of risk analysis

 Software is produced early in the software life cycle.

 Uses rapid prototyping tools and produces prototypes

making it easy for client to understand product better.

 Critical and high-risk functions are given importance and

developed first

 Proper control over Cost, time if followed efficiently

Drawbacks:

 Costly and Cost and time estimation will be difficult.

 Model completely works on risk identification, its

projection, assessment and management and hence risk

analysis requires highly specific expertise.

 Project’s success is highly dependent on the risk analysis

phase.

 Doesn’t work well for smaller projects

5.4 SDLC 2013

SDLC 2013 is a model, developed to provide client

satisfaction. The client is involved throughout the development

process. The coordinator acts as mediator between the technical

team and the client. This model develops or produces the

existing prototype that matches client specification-known as

matching software, for understanding the requirements

efficiently from the client in order to estimate Cost, schedule and

Effort.

Features:

 Client gets better understanding about his requirements and

product going to be developed.

 Client gets the look and feel of the application.

 Matchmaker team reduces the work of re-building the

prototype.

 Flexibility for any change in the software to meet the client

requirement is made easy.

Drawbacks:

 Involvement of Client through-out the process, without

freezing at-least the minimum requirement, leads to often

changes.

 Often changes in the software might also disturb the

functionality of the prototype agreed by the client.

 Due to this, more Effort, re-work, time as well as Cost

might increase.

6. PROPOSED MODEL

In the proposed model, client interacts with Requirement

gathering/analysis team. This team comprises of members from

design team - a Lead Architect, Technical Lead from

development, Test Lead from testing also headed by a Team

Manager. The client interacts with Requirement

Analysis/gathering Team and discusses his/her requirements.

This team analyses the requirement, finds if any software with

similar requirements exists and gives it to the client as prototype

for the client to understand and get the insight of his/her product

would be. This also helps client to understand the requirements

and future needs. If there does not exist any matching software,

design team generates a design prototype, for the basic

functionality and a prototype is built for the client. Requirement

analysis and gathering team also does the Effort, Cost and

schedule estimation and planning. Upon client’s approval, the

product is carried for further development by technical team.

Technical Team consists of members from developing team,

software design members, say Architects, Testers as well as the

requirement analyzers. Technical team follows spiral model for

the development of the client’s product. This team takes up one

requirement at a time, analyses risk associated, prioritizes the

risk, looks for any alternatives if needed and then does a design

for the requirement which is later followed by developers to

build the product. Once the module is developed, it is handed to

testers, to map it with the client’s requirement and tested for

various inputs. This is then integrated with the prototype and

given to the client for further check. Care has to be taken so that

the initial prototype does not change, as well as the client’s

further requirement changes also will not change the agreed

prototype.

6.1 REQUIREMENT GATHERING/ANALYSIS

TEAM

This team comprises of people who have knowledge of each

and every phase of software development life cycle. The team

consists of people with knowledge of operating systems,

applications to be used, members from design, testing and

management teams. This team gathers the requirement from the

client does the feasibility study and accesses risk. After

finalizing the requirements, it is further passed for a quick

design. The design team first goes through the requirements and

then search for any existing software that matches with the

client’s requirement. If something similar already exists, that

will be given to the client for his evaluation through the

requirement analysis/gathering team. If there is no matching

VANSHIKA RASTOGI et. al.: AN ENHANCED CLIENT CENTRIC SOFTWARE DEVELOPMENT LIFE CYCLE MODEL WITH COST AND EFFORT ESTIMATION

194

product available, then a new prototype is built and given to

client for evaluation.

The prototype is always given along with a time slot for the

client to evaluate. If the client wants to have certain changes in

the requirements, they will be taken by the team and again the

prototype will be designed. Once the client is satisfied with the

prototype, then the agreed/implemented requirements will be

freezed i.e. no further changes can be made in the requirements.

6.2 TECHNICAL TEAM

This is a team of people who are fully expertise in the

various fields of software development. It consists of people

from requirement team, design, development and testing. It is

this team who is actually going to satisfy the client. Initially this

team of design will have a detailed discussion with the

requirement analysis team before starting up their work.

They first understand the requirements, access the risks,

analyze and then design the requirement, in accordance with

existing prototype, pass on to development team. Development

team builds the small units/modules and passes for testing for

further check. This module is then given to client for a check.

Upon agreeing, it is integrated with existing prototype. This

process is carried in a spiral manner. In each requirement

development, client along with technical members are involved.

Fig.1. Proposed SDLC 2015

7. EFFORT AND COST ESTIMATION

The Effort and Cost estimation of our proposed model is

evaluated. The proposed model considers the fuzzification of the

function points to calculate Effort. Fuzzification considers all the

six key quality attributes, they are Functionality, Reliability,

Usability, Efficiency, Maintainability and Portability and are

grouped into four fuzzy sets to estimate quality Effort and Cost.

Cost and Effort estimation is required to design code and test the

software. It is also used to predict the number of errors, forecast

the number of lines of code to be projected, number of personnel

required to implement the system.

7.1 LINES OF CODE

LOC is presented as a measurement technique for

quantifying the size of a software product. LOC is more of a

measurement technique than a counting technique. There are

many ways of obtaining the LOC of a program without actually

counting program lines of code. The steps for calculating Lines

of codes are:

 Each Statement (executable or declarative) is counted as

one line.

 Comments are excluded from the count.

 For languages that use delimiters each delimiter

corresponds to one statement.

7.2 FUNCTION POINT

The function point metric (FP) proposed by Albrecht can be

used effectively to estimate the Cost or Effort required to design,

code and test the software, predict the number of errors that will

be encountered during testing and forecast the number of

components and/or the number of projected source lines in the

implemented system.

The basic steps to calculate Function Point metric:

 Count total is calculated using information domain and

weighing factors.

 The Value added factor is based on the responses to the 14

characteristics, each involving a scale from 0 to5.

 Function point is the product of Count Total and the Value

added factor.

Thus Function points (FP) provide a measure of the

functionality of a software product and can be calculated through

the equation:

 FP = count-total  [0.65 + 0.01  ∑ Fi]

where, count-total is the total of weighted input/output

characteristics and Fi is the summation of fourteen ranked

factors. Below are the proposed model’s factor values for the

HR application:

System Complexity

Data Communication 3

Distributed Data

Processing
2

Performance 3

Heavily used

configuration
2

CLIENT

Requirement

Analysis/gathering team

Client Satisfied Quick Design
Client Evaluation
(with time slot)

Build/existing

Prototype

Analysis

&

Planning

Design

&

Implementation

Testing

Deployment
Client

Team B:

Technical

Team

Team A:

Requirement

Analysis

ISSN: 2395-1664 (ONLINE) ICTACT JOURNAL ON MANAGEMENT STUDIES, NOVEMBER 2015, VOLUME: 01, ISSUE: 04

195

I/O Complexity

Transaction rate 2

On-line data entry 3

End User Efficiency 4

On-line update 3

Application Complexity

Complex Processing 2

Reusability 3

Installation Ease 2

Operational Ease 2

Multiple sites 3

Facilitate Change 4

Quality Complexity

Quality of requirements

(for our model)
0.5

 Estimated FP = Count Total  [0.65 + 0.01  ∑ (Fi)]

 FP Estimated for Existing (HR)

 = 88  [0.65 + 0.01 * 38] = 90.64 FP

FP for the proposed model =

 88  [0.65 + 0.01*8.67] = 64.83 FP

7.3 COST ESTIMATION USING INTERMEDIATE

COCOMO FOR HR APPLICATION

COCOMO (COnstructive Cost MOdel) is empirical Cost

estimation model that is self-sufficient in providing a somewhat

a clear picture in mathematical terms, regarding the software

being developed. The Intermediate COCOMO Equation is given

by

 E = a KLOC ^ b * EAF

where, a and b are the domain constants of the intermediate

COCOMO Model, these formula link the size of the system,

domain constants and Effort multipliers [EM] to find the Effort

to develop a software system.

 KSLOC = FP * Multiplication Language Factor

KSLOC (Using Albrecht method) = 90.64 * 29

= 2628.56/1000 = 2.6 KSLOC

KSLOC (For the proposed Model) = 64.83 * 29

= 1880.07/1000 = 1.8 KSLOC

 Effort = a * KSLOC ^ b * EAF.

As the HR application is a semidetached project, we consider

a = 3.0 and b = 1.12.

By selecting minimal ratings for product and computer

attributes and maximum ratings for Personal and Project

attributes. Effort multiplier is 0.072.

 Effort = 3.0 * 1.8 ^ 1.12 * 0.072 = 0.41 PM

8. EXPERIMENTAL SETUP AND RESULTS

In order to estimate the Effort and Cost of our proposed

work, authors have considered data for HR application.

Table.1. comparison of FP and KSLOC for various models

 Waterfall Prototype
Spiral

Model

SDLC

2013

Proposed

model

FP 89.76 88.88 86.24 73.04 64.83

KS

LOC
2.60 2.57 2.50 2.118 1.8

Effort

(Person

month)

0.63 0.62 0.60 0.49 0.41

Time

(month)
2.12 2.11 2.09 1.94 1.82

People

(count)
0.29 0.29 0.28 0.25 0.22

Fig.2. Calculation of FP using Fuzzification of FP

An application is written in C#.NET in order to evaluate the

proposed model. Function point is calculated using Albrecht’s

method for waterfall model, Prototype model, Spiral model,

SDLC 2013 and fuzzification of input values for the proposed

model. A comparative analysis is produced in the Table.1 above.

The Fig.2 shows the simulation results of the HR application

in order to estimate FP. The Fig.3(a) shows KSLOC estimate,

Fig.3(b) calculates the Effort estimate, Fig.3(c) shows

Developmental time calculation, Fig.3(d) estimates the people

required. The experimental setup calculates function point and

KSLOC using Albrecht’s method and fuzzification method for

various SDLC models. The results show that the proposed model

estimates Cost and Effort better (with An Enhanced Model to

Estimate Effort, Performance and Cost of the Software Projects

[16]) thus providing better Effort and Cost model than others.

VANSHIKA RASTOGI et. al.: AN ENHANCED CLIENT CENTRIC SOFTWARE DEVELOPMENT LIFE CYCLE MODEL WITH COST AND EFFORT ESTIMATION

196

(a) (b)

(c) (d)

Fig.3. (a) Calculation of KSLOC, (b) Calculation of Effort, (c)

Calculation of Developmental Time, (d) People Required

9. CONCLUSION AND FUTURE WORK

The paper can be summarized as the creation of a new SDLC

model - SDLC-2015 which is capable of developing the software

with lesser Effort, within time and budget.

The proposed work considers three primitive primary

software engineering metrics, i.e., LOC, FP, Developmental time

and PM to evaluate the models Effort and Cost. This model uses

fuzzy logic based approach, to estimate the Effort in the software

product development. Calculated FP from our work is used as

input to COCOMO Intermediate for the Cost estimation in terms

of KSLOC. This is very important for estimating the Effort

required, Cost, software performance, duration and schedule of

the project.

A comparative study for Effort and Cost estimation of the

existing model and our proposed model is done considering a

software project i.e., HR application as an example. Thus our

work proposes and analyses the Effort and Cost of various

models with respect to proposed model - SDLC 2015. In future

the work can be extended to estimate Cost using enhanced

methods. Performance of the proposed model can be evaluated

in future.

REFERENCES

[1] Phillip A. Laplante, “What Every Engineer Should Know

about Software Engineering”, Taylor & Francis Group,

2007.

[2] “Selecting a development approach”, Office of Information

Services, pp. 1-10, 2008. Available at

https://www.cms.gov/research-statistics-data-and-

systems/cms-information-

technology/xlc/downloads/selectingdevelopmentapproach.

pdf

[3] Irwin Brown, “Proceedings of the International

Conference on Information Management and Evaluation”,

University of Cape Town, South Africa: Academic

Publishers, 2010.

[4] Roger S. Pressman, “Software Engineering, a Practioners

Approach”, 6th Edition, McGraw Hill, 2007.

[5] Vanshika Rastogi, “Software Development Life Cycle

Models Comparison, Consequences”, International Journal

of Computer Science and Information Technology, Vol. 6,

No. 1, pp. 168-172, 2015.

[6] Seema and Sona Malhotra, “Analysis and Tabular

Comparison of Popular SDLC Models”, International

Journal of Advances in Computing and Information

Technology, Vol. 1, No. 3, pp. 277-286, 2012.

[7] Vishwas Massey and K.J. Satao, “Comparing Various

SDLC models and the New Proposed Model on the basis of

Available Methodology”, International Journal of

Advanced Research in Computer Science and Software

Engineering, Vol. 2, No. 4, pp. 170-177, 2012.

[8] Vishwas Massey and K.J. Satao, “Evolving a New SDLC

model incorporated with Release Management”,

International Journal of Engineering and Advanced

Technology, Vol. 1, No. 4, pp. 25-31, 2012.

[9] Naresh Kumar, A.S. Zadgaonkar and Abhinav Shukla,

“Evolving a New Software Development Life Cycle Model

SDLC-2013 with client satisfaction”, International Journal

of Soft Computing and Engineering, Vol. 3, No. 1, pp. 216-

221, 2013.

[10] Barry W. Boehm, “A Spiral Model of Software

Development and Enhancement”, Vol. 21, No. 5, pp. 61-

72, 1988.

[11] D.S. Kushwaha and A.K. Misra, “Cognitive Software

Development Process and Associated Metrics - A

Framework”, Proceedings of 5th International Conference

on Cognitive Informatics, pp. 255-260, 2006.

[12] M. Pauline, P. Aruna and B. Shadaksharappa, “An

Enhanced Model to Estimate Effort, Performance and Cost

of the Software Projects”, ICTACT Journal of Soft

Computing, Vol. 3, No. 3, pp. 524-533, 2013.

[13] M.J. Basavaraj and K.C. Shet, “Software Estimation using

Function Point Analysis Difficulties and Research

Challenges”, Innovations and Advanced Techniques in

Computer and Information Sciences and Engineering, pp.

111-116, 2007.

[14] D. Longstreet, “Function Points Step by Step”, Longstreet

Consulting Inc., 1999.

[15] C.J. Lokan, “An Empirical Analysis of Function Point

Adjustment Factors”, Information and Software

Technology, Vol. 42, No. 9, pp. 649-659, 2000.

[16] Amr Kamel, Galal H. Galal-Edeen and Hanan Moussa,

“Lessons Learned from Building an Effort Estimation

Model for Software Projects”, International Journal of

Software Engineering, Vol. 3, No. 2, pp. 71-86, 2010.

[17] Valerie Marthaler, “Function Point Counting Practices

Manual Release 4.1.1”, International Function Point User’s

Group, 2000. Available at

http://perun.pmf.uns.ac.rs/old/repository/research/se/functi

onpoints.pdf

ISSN: 2395-1664 (ONLINE) ICTACT JOURNAL ON MANAGEMENT STUDIES, NOVEMBER 2015, VOLUME: 01, ISSUE: 04

197

[18] M. Pauline, P. Aruna and B. Shadaksharappa, “Fuzzy-

Based Approach Using Enhanced Function Point to

Evaluate the Performance of Software Project”, The IUP

Journal of Computer Sciences, Vol. 6, No. 2, pp. 20-33,

2012.

[19] Saleem Basha and P. Dhavachelvan, “Analysis of

Empirical Software Effort Estimation Models”,

International Journal of Computer Science and

Information Security, Vol. 7, No. 3, pp. 68-77, 2010.

[20] Magne Jorgensen, “Practical Guidelines for Expert-

Judgment-Based Software Effort Estimation”, IEEE

Software, Vol. 22, No. 3, pp. 57-63, 2005.

[21] Frank Niessink and Hans van Vliet, “Two Case Studies in

Measuring Software Maintenance Effort”, Proceedings of

International Conference on Software Maintenance, pp.76-

85, 1998.

[22] Samuel Lee, Lance Titchkosky and Seth Bowen, “Software

Cost Estimation”, Department of Computer Science,

University of Calgary, Available at

http://www.computing.dcu.ie/~renaat/ca421/report.html.

[23] M. Pauline, P. Aruna and B. Shadaksharappa, “A Cost

Model for Estimation of the Software Developed”,

Proceedings of International Conference on

Communication, Computation, Control and

Nanotechnology, pp. 762-764, 2010.

