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Abstract 

Denoising algorithms are getting more attention in these days because 

they play a vital role in other applications of image processing. As 

details structures are the important information of Human Visual 

System, its preservation in denoised image is highly demanding one. A 

two-step denoising algorithm based on Patch based Edge Similarity 

Index and Joint Bilateral Filter algorithm proposed in this paper, 

preserves the edge structures and produce visually pleasant denoised 

image. Edge Similarity Index (ESI) proposed in the paper group 

patches according to their similarity in orientation and hence preserve 

the detail feature. The optimally grouped patches transferred to 

Principal Component Analysis (PCA) domain and the proposed noise 

suppression method eliminates the noisy component. Adaptive soft 

thresholding noise suppression method suppress the noise based on 

local noise estimation. Noise estimation in local level helps to estimate 

the noise accurately where noise affected differently in regions of a 

scene. Strong noises residuals may exist after first step, the denoised 

image in the first step further processed by a Joint Bilateral Filter for 

producing visually pleasant denoised image. Experimental results 

shown that proposed denoising algorithm achieves comparable detail 

preserving performance in terms of visual analysis and quantitative 

analysis over other state of art method. 
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1. INTRODUCTION 

The presence of noise deteriorates the visual quality of the 

images. Hence, image denoising is an essential pre-processing 

steps in image processing applications such as detection, 

classification, and recognition which requires high quality input 

images. As edges and textures are the important features of the 

image, the denoising algorithms which retains these details are the 

need of the hour. Additive White Gaussian Noise is the most 

common noise that deteriorate the observations. Gaussian Noise 

is an independent and identically distributed noise with zero mean 

and non-zero variance. The proposed denoising algorithm 

removes the Gaussian noise and produces artifact free, detail 

preserving denoised images. 

Based on the domain, denoising algorithms are categorized in 

two types: denoising algorithms in spatial domain and denoising 

algorithms in transformed domain. Classical filters like Bilinear 

filter [1], Anisotropic diffusion filter [2], and Kernel Regression 

filter [3] works in spatial domain for removing noise and 

proposing denoising images.  

The invention of non-local mean NLM approaches [4] and its 

improvement [5] brings a new strategy for removing the noise 

components. In NLM methods the similar patches are identified 

non-locally from image and weighted average performed by 

computing the Euclidean distance between center patch and 

similar patch. Distance measurement in NLM for identifying the 

similarity does not work well if noise level is high. Another line 

of research, BM3D, [6] also provides a basement for several 

denoising algorithms. It achieves superior results by applying a 

three-dimensional transform on a three-dimensional patch block. 

BM3D algorithm is time consuming even if it produces better 

result. The Dictionary-based [7] and patch-based techniques [8] 

are also exist in literature for denoising images. Even though these 

algorithms work well, they are not good at retaining details and 

avoiding artifacts simultaneously. 

Since it is easy to separate noisy pixels and noise free pixels 

in transformed domain, the transform domains like Discrete 

Cosine Transform, Wavelet Transform domain, and Principal 

Component Analysis (PCA) domains were widely used in 

literature for denoising the images.  As noise exists in high 

frequency coefficients in wavelet domain, the filtering of these 

components produces denoised image. In wavelet based 

denoising methods the noise has been removed by modifying or 

removing wavelet coefficient [9-10]. The success of the 

techniques lies in the accurate estimation of real images from 

noisy components. As fixed wavelet basis are unable to preserve 

local structures, Wavelet based denoising algorithm introduces 

many visual artifacts in denoised images. The DCT based noise 

removal algorithms [11] uses hard thresholding on DCT 

coefficients for removing noise. The limitations of denoising in 

these domains is the limitation in inadequate representation of 

spatial structures. 

 

Fig.1. Architecture of the Proposed Method 

Comparing to other transform domain, the PCA domain can 

represent structural features in efficient way. In image processing, 

PCA is widely used for dimensionality reduction and pattern 

recognition [12]. In PCA transformed dataset most important 

components are separated from least important components. 
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Hence, by retaining most important components, noise and trivial 

information can be easily removed in PCA domain. PCA based 

algorithm [13]-[15] provides a new era for denoising algorithms. 

LPG-PCA algorithm [13] remove the noise component by 

grouping pixels and, noise has been removed through method 

linear minimum mean-square error (LMMSE) method in PCA 

domain. Adaptive PCA based denoising algorithm [15] employs 

the local features while removing noise. While applying PCA 

transformation directly to the image the noisy components 

mislead the denoising process and produces an artifact in denoised 

image. The proposed method eliminates this drawback by 

indexing the image patches according to the detailed information 

prior to PCA transformation. By giving more emphasis to features 

like edges and textures, proposed method produces details 

preserved denoised image. 

The proposed method removes noisy observations in two 

steps. In first step, the denoising performed in transform domain 

and in second step image again denoised in spatial domain for 

removing rest of the noise components. An Edge Similarity Index 

(ESI) is proposed for grouping optimal patches with similar 

orientation and arranged as stacked patch matrix. The advantage 

of categorizing patches based on detail feature is that edges are 

less affected by noise and hence, the similar patches can identify 

efficiently in the presence of noise. Since noise level is unknown, 

a local noise estimation is carried out for assessing the noise 

locally and proposed adaptive soft thresholding is applied for 

suppressing noise. The denoised image in the first step further 

processed by Joint Bilateral Filter (JBL) [16] for removing noise 

residuals existing after the first step and producing visually 

appealing denoised image. The experimental results shows the 

superiority of the proposed method over state of art methods. Both 

qualitative and quantitative analysis shows the comparable 

performance of the algorithm. 

The rest of the paper arranged as follows. The architecture of 

the proposed method discussed in the immediate section. The 

quantitative and qualitative analysis of the method discussed after 

the architecture of the method.  The paper concluded in the last 

section. 

 

(a)                                                        (b) 

Fig.2. Analysis of Patch Grouping and similarity in orientation 

(a) Illustration of patch selection (b) Orientation of pixels 

2. PROPOSED METHOD 

The proposed method removes noisy observation in two steps 

by incorporating PCA based noise suppression in transform 

domain and spatial domain based JBF. An ESI for patch grouping 

and a soft thresholding for noise suppression is proposed in this 

paper. The first step of the proposed algorithm works iteratively 

for each pixel of the image. For denoising a pixel, the pixel 

centered patch is identified and similar patches in its 

neighbourhood are grouped according to ESI. The similar patches 

are identified from the neighbourhood by the assumption that 

most similar patches will exists locally. The identification of 

optimal patches is the crucial steps of the algorithm. Inappropriate 

grouping of patches will lead to artifacts in denoised image and 

most of the indexing techniques exist in literature [13] is 

vulnerable to noise. The proposed ESI is an orientation-based 

index which group the patches with similar orientation. The 

optimal patches formed a stacked patch matrix and transformed 

in PCA domain where the noisy observations and noise free 

observation are easily distinguished. In PCA domain, the 

proposed adaptive soft thresholding method is applied for noise 

suppression.  The thresholding parameter for each stacked patch 

matrix is identified by estimating noise level of patch matrix. The 

distribution of noise in a scene is different for different regions, 

hence global estimation of noise level does not work well. In 

proposed method each stacked patch matrix processed separately 

according to the concentration of noise present in it. The 

experimental results show the advantage of adaptive method for 

noise suppression. Noise residuals may exist after first step if the 

presence of noise is high. Hence in proposed method the denoised 

image again processed in spatial domain by JBF. The JBF is the 

improvement of the Bilateral filter [17], which is the most 

commonly used denoising filter in literature. The Bilateral filter 

give more weightage to the pixels which have same intensity of 

centre pixel and both spatially and radiometrically near to it. The 

drawback of classic Bilateral filter is that it is accurate to estimate 

the stepping function in the presence of noise and results in salt 

noise residuals. The architecture of the proposed method is shown 

in Fig.1. The steps for selecting optimal patches are described in 

the following section. 

 

(a)                      (b)                           (c)                      (d)     

  

   (e)                      (f)                      (g)                       (h)     

Fig.3(a). Original image (b)Noisy image with noise level σ=45 

(c) Denoised image after the first step of the proposed 

(PSNR=27.18) (d) Denoised image after the second step of the 

proposed method (PSNR=29.18) (e) Enlargement of marked 

region of (a) (f) Enlargement of marked region of (b) (g) 

Enlargement of marked region of (c) (h) Enlargement of marked 

region of (d)  

2.1 ESI BASED PATCH GROUPING 

Let In be the noisy image contaminated by Gaussian Noise 

with zero mean and standard deviation σ. As noise is uncorrelated 

from pixel, the noisy pixel, y, of the image can be denoted as: 

 y=x+n (1) 

where x is the noise free pixel and n is the noise which follows the 

Gaussian distribution. For denoising the pixel, y, a set of 



ISSN: 0976-9102 (ONLINE)                                                                                       ICTACT JOURNAL ON IMAGE AND VIDEO PROCESSING, FEBRUARY 2022, VOLUME: 12, ISSUE: 03 

 

2663 

overlapping patches are identified from its neighbourhood. As 

shown in Fig.2(a), a Denoising patch centered on y, of size n×n is 

identified from a Fixed patch of size m×m, where n≤m, as 

described in [13]. In total (m-n+1)-number of overlapping optimal 

patches referred as Variable patch of size, n×n are selected from 

Fixed Patch. Among the Variable patches the patches which are 

more similar to Denoising patch are computed using the proposed 

ESI index. 

The most crucial part of the algorithm is to select the most 

optimal patches among set of Variable patches. election of all 

Variable patches for denoising process will lead to inaccurate 

estimation of covariance matrix in PCA domain and results in 

unfruitful denoising.  For selecting most optimal patches for 

denoising, several techniques exist in literature. The patches can 

be classified in two groups based on a clustering problem or block 

matching. The correlation between the patches is also used as 

similarity measure in literature. In proposed algorithm, an ESI 

which give more emphasise to details feature are proposed. The 

ESI measure the similarity in the detail of the patches for finding 

optimal variable patches. Since the detail will be affected less by 

the noise, similar patches can be identified accurately. ESI 

measures the similarity between patches in terms of its orientation 

instead of magnitude and, the ESI is higher if two patches have 

same orientation. The identified orientation for each pixel in the 

patches is shown in Fig.2(b). 

 

(a)            (b)            (c)            (d)             (e)             (f) 

 

(g)            (h)             (i)             (j)           (k) 

Fig.4 Test Images (a) Barbara (b) Boat (c) Bridge (d) 

Cameraman (e) Lena (f) Man (g) Texture1 (h) Texture2 (i) 

Texture3 (j) Texture4 (k) Texture5  

Let ry be the central column vector patch, which contain the pixel 

y, in the stacked patch matrix referred as reference column vector. 

The reference column vector consists of all the pixel in the 

Denoising patch. Let iy be the ith column vector patch where 

i={1,2,3,…,(m+n+1)2} be the other column vectors consists of the 

pixels of corresponding variable patches.  

The Edge Similarity Index of ith patch vector is defined as: 

 
t
r i

i
r i

y y
ESI

y y
=  (2) 

where t
ry be the transpose of ry . 

Let ry and iy defined as: 

 
1 2 2

2 2 2...
n

r r r ry y y y= + + +  (3) 

 
1 2 2

2 2 2...
n

i i i iy y y y= + + +  (4) 

where n2 is the total pixels in each patch vector. The patch vector 

iy selected as an optimal patch vector if:  

 ESIi<£             (5) 

where £ is the preset threshold and experimentally £ set as 25. 

Let p number of patch vectors selected as optimal patch vectors, 

then the dataset of optimal patch vector defined as: 

 0 1, ,..., pY y y y =    (6) 

Corresponding noiseless optimal patch vectors denoted as: 

 0 1, ,..., pX x x x =    (7) 

where p set as c.m and the for better representation of patch in 

PCA domain, the constant c assigned the value between 8 to 10 

by experiment. 

The selected optimal sample patch vectors, Y are transformed 

into PCA domain where noise is suppressed, and noiseless sample 

patch X is estimated. The estimated patch X can replace the noise 

patch Y and algorithm can be applied iteratively to next pixel. The 

proposed noise suppression method described in the following 

section. 

2.2 IMAGE DENOISING IN PCA DOMAIN 

The advantage of denoising in PCA domain is that noise and 

signal are distinguished in such a way that the energy will become 

concentrated on small subset. The stacked patch matrix with 

optimal sample patches is transformed in PCA domain where 

noisy observations are suppressed using the proposed adaptive 

soft thresholding based on the local noise estimation. The global 

noise estimation failed to estimate the noise efficiently for each 

region as noise affected differently over regions of a scene. We 

modified the algorithm proposed in [14] and used for estimating 

noise at local level based on local statistics of the image. 

Let Y represent the m×n stacked patch matrix, and the 

relationship between noiseless counterpart X and noisy 

observation Y is defined as: 

 Y=X+U (8) 

where U represent the observations affected by the additive 

Gaussian noise and is uncorrelated from X.  

The m rows of stacked patch matrix, Y denoted as 

1 ,...,T T

mY Y Y =    where Yi, be the row vector which contains 𝑛 

samples of yi. Similarly noiseless observations X and noise 

counterpart U can be denoted as 1 ,...,T T

mX X X =    and  

1 ,...,T T

mU U U =   respectively. The dataset Y can be centralized as 

i i iY Y = −  where ( )
1

1 n

i i

j

Y j
n


=

=  . Since the mean value of 

additive noise is zero, the noisy observation dataset X can be 

centralized as i i iX Y = − . The PCA transformation matrix 
X

P  

can be computed by calculating the covariance matrix
X of X . 

Since X is unknown, 
X can be estimated from the covariance 

matrix
Y

 of Y as described in [13]. PCA base can be obtained 

from the Singular Value Decomposition (SVD) of 
Y

 and 

represented as: 
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 ( )
1 1T T T T T

Y
YY XX XU UX UU

n n
 = = + + +  (9) 

As X and U are uncorrelated the terms 
TXU and 

TUX become 

zero and can be eliminated. Then 
Y

 becomes: 

 ( )
1 T T

UY X
XX UU

n
 = + =  +  (10) 

Expressing
Y

 in terms of eigen vectors and eigen values 

denoted as: 

 
T

Y Y Y Y
 =    (11) 

The orthonormal PCA transformation matrix of Y can be set 

as: 

 
T

Y Y
P =   (12) 

Applying 
Y

P to dataset ,Y  we have: 

 ( )Y Y Y Y
Y P Y P X U P X P U X U= = + = + = +  (13) 

Most important component in Y represent the noiseless dataset 

X and least important component represent .U  As 𝜎2 is the 

standard deviation of the noisy matrix U , the noise level σ can 

be directly estimated from eigen values, λU of U . HereU is 

unknown and noisy observations are evenly distributed in .Y

According to [14], the eigen values of Y  and eigne values of X  

are same and hence , λU can be estimated from eigne vectors, 
Y

  

of .Y  Hence, noise level for the patch can be estimated from the 

eigne vectors of .Y The noise level for the stacked patch matrix 

can be computed using the following equations: 

 ( )
( )

( )
2 1

1

, ,

, ,

m

m

M

Y YU U
i

U M

YU U
i

U

E

U

  

 

  

− +

− +

=

=



= 

 +




 (14) 

 2

4

U U
 




− ++
=  (15) 

where γ=m/n and
mYU

 − =  and  

 
1

0

mYU U
if

U
otherwise

 − +  
= 


 (16) 

For computing 
U
 + , the difference Δi is calculated: 

 
2

2 2

1 2 2i i i  = −  (17) 

where 2

1i computed according to Eq.(14) and 2

2i according to 

Eq.(15) and 
U
 + assign the value of 

iY
 , 1≤i≤m and the value of

iY
 which minimize Eq.(17) set as .

U
 +  The noise level σ is 

computed by applying this value to
U
 + in Eq.(14). 

 Let gi,j be the noisy observations in Y . The spatially adaptive 

soft thresholding for this patch is defined as  

 

2

2

g
T




=  (18) 

where 2 2 2

,

1
max ,0

2 1
g i j

g

g
k

 
 

= − 
+ 
   

The estimated noise power σ2 needs to be subtracted from the 

noisy observations. The soft threshold for each Y is calculated and 

noise is supressed. The method performed for all pixels in the 

image and produces the denoised image 

2.3 DENOISING BY JOINT BILATERAL FILTER 

The denoised image from first step is further processed in 

spatial domain by JBF for removing noise residuals exist after 

first step. JBF. The presence of strong noise results errors in 

selection of optimal patches and results estimation bias in PCA 

transformation. Hence, performance of denoising algorithm has 

affected. A further processing of denoised result is required for 

producing a visually pleasing denoised image.  

Let Î be the denoised image from first step and si,j be the pixel 

at the location (i.j) in Î . The corresponding denoised pixel ,
ˆ

i jS  

defined as 

 

, , ,

,

, ,

, ,

,

L a b E a b a b

a b

i j i j

L a b E a b

a b

h h u

S
h h










= −




  (19) 

where ui,j be the noisy observation in location (i.j) the image I and 

ω is the window of size n×n and hL and hE are low pass filter and 

edge stopping function respectively. The edge stopping function 

defined as: 

 
, ,

, exp

ref ref

a b i j

E a b

E

s s
h



 − −
 =
  

 (20) 

where Sref is the denoised reference image and δE is the smoothing 

function. Let Low pass filter hLa,b defined as: 

 
( ) ( )

2 2

, 2
exp

2
L a b

E

a i b j
h



 − − + −
=  

  

 (21) 

and μ=[0,1] and

( ), , , ,

,

,

, ,

,

ref

L a b E a b a b a b

a b

i j

L a b E a b

a b

h h u s

h h










−

=




 

Experimental results shows that the best value for μ∈[0.6,0.8] 

and δE∈[3,12]. The Fig.3 illustrates the requirement of second 

stage for denoising. As shown in Fig.3(c) and Fig.3(d) the image 

quality and PSNR improved in the second step. 
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Table.1. PSNR (dB) results of the denoised images at different noise levels and by different schemes 

Method BM3D LPG-PCA WN-NM SLRD WT-RD Prop. BM3D LPG-PCA WN-NM SLRD WT-RD Prop. 

σ 15 45 

Barbara 31.82 32.14 32.89 32.81 32.89 33.01 26.19 25.98 27.55 27.27 27.23 28.50 

Boat 31.62 30.67 31.43 31.47 31.54 31.83 26.58 25.03 25.99 26.02 26.15 27.36 

Bridge 28.12 28.55 26.76 28.96 26.65 29.15 23.60 23.41 24.02 23.97 23.99 23.64 

Cameraman 31.38 31.99 31.99 32.01 32.02 32.06 26.14 26.75 26.80 26.99 26.82 31.74 

Lena 32.17 32.35 33.02 33.03 33.08 33.10 26.32 26.46 27.49 27.63 27.58 27.18 

Man 29.65 29.84 30.45 30.53 30.47 30.86 24.52 24.36 25.16 25.32 25.16 24.86 

Texture 1 25.60 26.03 26.18 26.22 26.19 26.90 18.65 19.02 19.42 19.45 19.46 17.61 

Texture 2 26.79 27.02 25.78 27.38 27.38 28.10 20.35 20.16 21.94 22.06 22.06 21.31 

Texture 3 32.43 32.36 33.20 32.88 33.29 31.23 25.95 26.08 29.00 29.33 28.81 29.18 

Texture 4 30.45 30.88 31.42 31.37 31.44 31.04 24.20 24.26 25.39 25.34 25.32 24.96 

Texture 5 29.33 29.32 30.18 30.26 30.16 30.20 24.09 24.04 24.75 24.46 24.64 25.23 

Average 29.94 30.10 30.30 30.63 30.46 30.68 24.24 24.14 25.23 25.26 25.20 25.60 

σ 75 90 

Barbara 23.55 23.22 24.35 24.88 24.81 25.02 22.67 22.28 23.54 24.00 24.06 24.26 

Boat 23.00 22.87 23.87 23.96 23.92 24.62 22.30 22.17 22.74 22.65 23.77 24.07 

Bridge 21.81 21.52 23.05 22.32 22.93 22.83 21.16 20.89 21.46 21.77 21.73 21.85 

Cameraman 23.58 24.25 24.51 24.78 24.69 24.91 22.65 23.37 23.33 24.02 24.08 24.18 

Lena 22.87 23.92 25.21 25.38 25.40 25.41 23.12 23.03 24.01 24.63 24.37 24.27 

Man 22.31 22.11 23.09 23.28 23.11 23.50 21.56 21.36 22.00 22.56 22.54 22.74 

Texture 1 16.36 16.34 16.06 17.07 17.08 16.44 15.63 15.56 15.93 16.32 16.34 16.14 

Texture 2 17.46 23.57 19.89 20.12 20.03 20.55 16.75 16.99 18.49 19.87 19.45 19.53 

Texture 3 23.29 23.32 26.66 26.41 26.39 26.89 22.69 22.92 24.43 24.24 24.27 24.87 

Texture 4 21.65 21.63 22.90 22.74 22.78 22.69 20.85 20.82 22.00 21.86 21.93 22.03 

Texture 5 22.90 22.91 22.80 22.67 22.45 23.35 22.58 22.68 22.45 22.38 22.44 21.78 

Average 21.71 22.33 22.94 23.06 23.05 23.29 21.09 21.10 21.85 22.21 22.27 22.34 

Table.2. EPI results of the denoised images at different noise levels and by different schemes. 

Method BM3D LPG-PCA WN-NM SLRD WT-RD Prop. BM3D LPG-PCA WN-NM SLRD WT-RD Prop. 

σ 15 45 

Barbara 0.88 0.90 0.91 0.92 0.81 0.97 0.66 0.71 0.73 0.79 0.60 0.75 

Boat 0.84 0.87 0.89 0.88 0.81 0.88 0.68 0.67 0.70 0.71 0.50 0.72 

Bridge 0.80 0.82 0.82 0.81 0.81 0.88 0.58 0.58 0.59 0.60 0.50 0.56 

Cameraman 0.95 0.90 0.92 0.92 0.52 0.95 0.76 0.77 0.79 0.80 0.35 0.76 

Lena 0.88 0.88 0.90 0.92 0.73 0.96 0.69 0.68 0.73 0.82 0.56 0.78 

Man 0.84 0.84 0.86 0.87 0.75 0.95 0.60 0.61 0.64 0.70 0.51 0.77 

Texture 1 0.91 0.92 0.92 0.96 0.96 0.92 0.67 0.70 0.69 0.82 0.82 0.84 

Texture 2 0.92 0.92 0.90 0.97 0.97 0.95 0.75 0.76 0.80 0.87 0.88 0.88 

Texture 3 0.93 0.92 0.94 0.95 0.93 0.99 0.67 0.74 0.85 0.89 0.83 0.88 

Texture 4 0.91 0.92 0.93 0.91 0.85 0.95 0.78 0.81 0.80 0.76 0.64 0.74 

Texture 5 0.87 0.87 0.88 0.88 0.87 0.90 0.73 0.75 0.76 0.51 0.45 0.79 

Average 0.88 0.89 0.90 0.91 0.82 0.94 0.69 0.71 0.74 0.75 0.60 0.77 

σ 75 90 

Barbara 0.51 0.58 0.62 0.70 0.49 0.65 0.45 0.54 0.59 0.67 0.46 0.60 
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Boat 0.49 0.54 0.59 0.63 0.36 0.65 0.44 0.50 0.53 0.59 0.30 0.61 

Bridge 0.44 0.47 0.49 0.49 0.37 0.47 0.39 0.44 0.49 0.45 0.33 0.47 

Cameraman 0.60 0.65 0.68 0.75 0.26 0.76 0.53 0.60 0.62 0.73 0.24 0.64 

Lena 0.57 0.56 0.61 0.75 0.47 0.64 0.52 0.51 0.55 0.72 0.41 0.63 

Man 0.43 0.48 0.52 0.60 0.39 0.60 0.37 0.43 0.45 0.56 0.35 0.59 

Texture 1 0.51 0.54 0.54 0.68 0.69 0.67 0.44 0.48 0.45 0.62 0.63 0.60 

Texture 2 0.54 0.63 0.72 0.78 0.79 0.82 0.45 0.56 0.66 0.70 0.75 0.78 

Texture 3 0.41 0.52 0.73 0.72 0.64 0.76 0.33 0.43 0.55 0.51 0.40 0.72 

Texture 4 0.70 0.75 0.77 0.62 0.47 0.60 0.66 0.73 0.75 0.56 0.42 0.60 

Texture 5 0.66 0.71 0.70 0.25 0.08 0.70 0.63 0.69 0.68 0.22 0.25 0.61 

Average 0.53 0.58 0.64 0.63 0.46 0.66 0.47 0.54 0.57 0.58 0.41 0.62 

 

 

 

Fig.5(a).  Boat image, (aa) Image corrupted by Gaussian noise, 

σ=15, (ba) Image corrupted by Gaussian noise, σ=45, (ca) Image 

corrupted by Gaussian noise, σ=75, (ab-cb) Image restored using 

BM3D from (aa-ca), (ac-cc) Image restored using LPG-PCA 

from (aa-ca), (ad-cd) Image restored using the WNNM from (aa-

ca), (ae-ce) Image restored using the SLRD from (aa-ca) (af-cf) 

Image restored using the WTRD  from (aa-ca) (ag-cg) Image 

restored using the Proposed method from (aa-ca) 

 

 

Fig.6(a).  Man image, (aa) Image corrupted by Gaussian noise, 

σ=15, (ba) Image corrupted by Gaussian noise, σ=45, (ca) Image 

corrupted by Gaussian noise, σ=75, (ab-cb) Image restored using 

BM3D from (aa-ca), (ac-cc) Image restored using LPG-PCA 

from (aa-ca), (ad-cd) Image restored using the WNNM from (aa-

ca), (ae-ce) Image restored using the SLRD from (aa-ca) (af-cf) 

Image restored using the WTRD  from (aa-ca) (ag-cg) Image 

restored using the Proposed method from (aa-ca) 

 

Fig.7(a).  Texture1 image, (aa) Image corrupted by Gaussian 

noise, σ=15, (ba) Image corrupted by Gaussian noise, σ=45, (ca) 

Image corrupted by Gaussian noise, σ=75, (ab-cb) Image 

restored using BM3D from (aa-ca), (ac-cc) Image restored using 

LPG-PCA from (aa-ca), (ad-cd) Image restored using the 

WNNM from (aa-ca), (ae-ce) Image restored using the SLRD 

from (aa-ca) (af-cf) Image restored using the WTRD  from (aa-

ca) (ag-cg) Image restored using the Proposed method from (aa-

ca) 

3. RESULTS AND DISCUSSION 

This section compares the denoising performance of proposed 

algorithm with state-of-the-art denoising algorithms. Fig.4 shows 

the test images for analyzing the algorithms and consist of 

standard images and texture images [18]. The proposed algorithm 

evaluated with the benchmark images at various Gaussian levels 

ranging from 15 to 90 as done in other papers. The recently 

developed algorithm BM3D [6], LPG-PCA [13], SLRD [19], 

WNNM [20], and WTRD [21], are used for comparing 

performance of the proposed algorithm.  

The experimental results of four images at various noise levels 

are shown in Fig.5–Fig.7 for visual analysis. For quantitative 

analysis, Peak Signal-to-Noise Ratio (PSNR) and Edge 

preservation index (EPI) [22] are used as performance measures. 

The PSNR and EPI values are calculated for all benchmark 

images at various noise levels for proposed method and existing 

algorithms. By comparing visual analysis and quantitative 

analysis the proposed method outperforms all existing denoising 

algorithms. 
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In the implementation level of proposed method, a noise free 

pixel is obtained by average value of all optimal Variable patches 

in its Fixed patch. The size of variable patch set as 5 and Fixed 

patch as 40 by experiment. Default parameters in author’s paper 

is used for the state-of-the-art algorithms for getting the best result 

for comparison. The gaussian white noise at various levels 15, 45, 

75 and 90 are added to the benchmark images and denoising 

performance of the methods are compared using the source code 

obtained from author website. The algorithms compared over 10 

benchmark images which consists of 5 standard images and 5 

texture images [18]. For visual analysis partial results are included 

in the paper due to shortage of space. The result of quantitative 

analysis of 10 image for all noise level are include in the paper.  

3.1 VISUAL ANALYSIS 

The visual pleasantness of denoised image of the proposed 

algorithm over other competing algorithms are illustrated in Fig.5 

to Fig.7. The noise contamination at low, moderate and high level 

on ‘boat’ image shown in Fig.5(aa) - Fig.5(ca) respectively. The 

enlarged portions of the image shown the denoising performance 

of algorithms in edges and flat regions. The visual inspection 

reveals the outstanding performance of the proposed method over 

the comparing methods. For the noise level σ=15, the name board 

in the boat, as shown in Fig.5(ag), is completely recovered by the 

proposed method than other method.  

Although BM3D algorithm retains the sharp structures as 

demonstrated in Fig.5(ab)- Fig.5(cb), it fails to restore the smooth 

regions. The denoised images of the method LPG-PCA, WNNM, 

SLRD and WTRD shown in Fig.5(ac)-Fig.5(cc), Fig.5(ad)-

Fig.5(cd), Fig.5(ae)-Fig.5(ce), and Fig.5(af)-Fig.5(cf), respective-

ly demonstrate that flat areas are blurred and name plate of boat 

is not restored completely. In Fig.6 the cropped regions of man 

image are displayed for more visibility of the denoising 

performance of the algorithms. The denoised image of the 

methods LPG-PCA, WNNM, SLRD and WTRD in Fig.6(ac)- 

Fig.6(cc), Fig.6(ad)-Fig.6(cd), Fig.6(ae)-Fig.6(ce), and Fig.6(af)- 

Fig.6(cf) respectively, shows that artifacts are generated over the 

forehead of the man image and, the sharp regions are blurred. 

Although BM3D performs well in comparing to other methods, 

the proposed method produces more visually pleasant denoised 

image as shown in Fig.6(ag)-Fig.6(cg) for all noise levels. For 

higher levels of noise, the performance of the proposed methods 

was comparable result over other state of art algorithms. 

The Fig.7 is the texture image used for comparing the texture 

restoring capability of the denoising algorithm. The marked 

portions of the images shown in Fig.7(a) has zoomed for 

comparison of competing methods with proposed method. For 

moderate noise level, σ=45, as illustrated in Fig.7(bb)-Fig.7(bg), 

the competing method blurs the texture and distort their 

structures. In high noise level, the better performance of proposed 

method is shown in Fig.8(cg) over other methods as illustrated in 

Fig.7(cb)-Fig.7(cf). The visual analysis reveals the outstanding 

performance of the proposed method at different noise levels. 

3.2 QUANTITATIVE ANALYSIS 

The superiority of proposed method over other methods are 

shown in the value of PSNR and EPI of benchmark images. The 

PSNR value of all images at different noise levels are reported in 

Table.1. Although SLRD have the mean PSNR value of 30.63, 

25.26 and 23.06 for noise level 15, 45 and 75 respectively, the 

proposed method achieves the first position. The edge preserving 

capability of the proposed method is compared with other 

algorithm by analysing EPI values. While comparing values of 

EPI, the EPI values of proposed method is better than all other 

algorithms as shown in Table.2. Even though, both WNMM and 

SLRD performs well for preserving edges, both fails to produce a 

visually appealing result and artifacts are generated.  

4. CONCLUSIONS 

A two-step denoising algorithm has been proposed in order to 

solve the drawbacks of the existing methods. The advantage of 

both transform domain and spatial domain filtering are utilized in 

proposed algorithm for removing noise components. In the first 

step the optimal patches for denoising are identified using 

proposed Edge Similarity Index (ESI) and transferred to PCA 

domain where noise estimation and noise suppression is 

performed. The local noise estimation helps to estimate the noise 

accurately and proposed adaptive soft thresholding separates the 

noisy observations from noisy observations. The noise component 

present after first step is denoised by the Joint Bilateral Filter in 

spatial domain. The proposed method shown its better 

performance in visual analysis and quantitative analysis. The 

superiority of the method over other state of art method is shown 

in the value of Peak Signal-to-Noise Ratio (PSNR) and Edge 

preservation index (EPI). In future, this work can be improved by 

finding more adaptive indexing for identifying optimal patches 

and thus, improve the detail preserving capability of the 

algorithm. 
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