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Abstract 

Hyperspectral images (HSI) have a wide range of spectral information 

compared to conventional images. This rich spectral information leads 

to store more information about the image. Even though the 

hyperspectral images have multiple spectrum bands that makes narrow 

division of each spectral band in the image. This narrow band division 

reduces the spatial quality of HSI and hence it necessitates the 

improvement of the spatial quality of the hyperspectral image. One of 

the most emerging methods to improve or enhance the hyperspectral 

image quality is the HS-MS image fusion. Most of the existing image 

fusion methods neglects the nonlinear data associated with the image. 

To overcome this limitation, we proposed a nonlinear unmixing-based 

fusion model, namely Fully Constrained Nonlinear-CNMF (FCN-

CNMF) by consider the nonlinearity data associated with the image. 

To improve the performance of our nonlinear unmixing-based fusion 

method, we imposed certain constraints on both spectral and spatial 

data. The constraints include minimum volume simplex with spectral 

data and total variance and sparsity with spatial data to enhance the 

quality of the image. We applied all these constraints to both 

hyperspectral and multispectral images and then fused these data to 

obtain the final high-quality image. The fused image’s quality is 

measured using five standard quality measures on four benchmark 

datasets and found that the proposed method shows superiority over all 

baseline methods. 
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1. INTRODUCTION 

. Hyperspectral (HS) images are enriched with high spectral 

information than conventional images. This property makes the 

energy collected by hyperspectral sensors are divided into several 

narrow wavelength bands. However, this narrow partitioning 

reduces the amount of energy received by each band [1]. Due to 

these characteristics, many kinds of noise are easily influenced by 

the HS image which may cause a reduction in the spatial quality 

of the hyperspectral image. So, it is necessary to enhance the 

spatial quality of the HS image [2]. One popular method is the 

fusion between multispectral (MS) image and hyperspectral (HS) 

image. This fusion helps to reconstruct the hyperspectral image 

that possesses high spectral and spatial resolution. The existing 

literature also reveals that spectral unmixing (SU) based fusion is 

one of the main approaches for the enhancement of hyperspectral 

images [3]. 

In the SU-based HS-MS data fusion approach, the high-spatial 

data of MS image with high-spectral data of HS image are fused 

together [4]. The CNMF based fusion is a trending HS-MS fusion 

approach, but the nonlinearity factor is still a problem in the 

performance of the LMM based CNMF method [5]. The 

nonlinearity factors also called the outlier data, such as low 

illumination pixels that are avoided during the LMM process. 

These nonlinear outlier data may effects many important factors 

like object boundary, and image topography, play a prominent 

role in enhancing hyperspectral images [6]. These Ignored outlier 

data pay considerable attention during the reconstruction of 

hyperspectral image [7]. 

In this work, we proposed a fully constrained nonlinear - 

CNMF (FCN-CNMF) algorithm. The main contribution of this 

algorithm is enhance the visual quality of the reconstructed HSI 

image without any spatial or spectral degradation and also by 

considering the nonlinear data in the image. This algorithm fuses 

the endmember data from the hyperspectral image with 

abundance data from the multispectral image by including the 

outlier term.  Thus, produce a highly stable and robust fusion 

algorithm, namely FCN-CNMF. Finally, this fusion algorithm 

produces a high fidelity reconstructed hyperspectral image close 

to a high-resolution referenced image. This proposed FCN-

CNMF algorithm is experimented on various hyperspectral 

datasets [8] and compared with many existing algorithms to 

determine the quality of fusion results.  

The following sections are arranged as follows: In section 2 

includes the detailed literature review related to spectral 

unmixing-based fusion and identifies the proper research gap in 

unmixing-based fusion using a linear mixing model. The section 

3 formulated the proposed model, followed by the explanation of 

the FCN-CNMF algorithm is given in section 4. The section 5 

implements the proposed model and section 6 gives the 

experiments and performance analysis. Finally, section 7 

concludes this paper with future scope.  

2. LITERATURE REVIEW 

Existing literature reveals that spectral unmixing-based fusion 

is one of the promising approaches for enhancement of 

hyperspectral images. Yokoya et al. [9] introduced a CNMF 

method that works on the principle of Linear Mixing Model 

(LMM). CNMF uses a straightforward approach for unmixing and 

fusion processes and its mathematical formulation as well as the 

implementation are not complex compared to the existing fusion 

methods. Finally, this method optimizes the solution with 

minimum residual errors and reconstructs the high-fidelity 

hyperspectral images. The enhancement of the LR-HSI image 

using this CNMF unmixing-based fusion method is shown in 

Fig.1.  

Simoes et al. [10] introduced a method for hyperspectral 

image enhancement is termed as HySure. HySure method built a 

model that preserves the edges between the objects during the 

unmixing-based data fusion. This method uses a constraint called 

Vector Total Variation regularizer that preserves the edges and 
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promotes piecewise smoothness to the spatial quality of the 

image.  

 

Fig.1. Illustration of CNMF unmixing for HSI and MSI 

Lin et al. [11] introduced a CO-CNMF method. This method 

formulates the problem by incorporating sparsity and SSD 

regularizer. The SSD regularizer extract high-quality spectral data 

from the images and promotes sparsity by using l1-norm 

regularization. This regularizer helps to upgrade the performance 

of the existing CNMF method. However, some performance 

degradation may occur in this algorithm at high noise level.  

Yang et al. [12] introduced TVSR regularizations CNMF 

method called TVSR-CNMF. The TV regularizer is added to the 

abundance matrix to ensure the images spatial smoothness. 

Similarly, a signature-based regularizer is also added to the 

endmember matrix for extracting high-quality spectral data, thus 

helps to reconstruct good hyperspectral images.  

Borsoi et al. [13] introduced a FuVar algorithm that aims to 

deal with the spectral variability among the images. For 

introducing this spectral signature variability during fusion, a 

Generalized Linear Mixing Model (GLMM) is developed that 

uses a scaling factor for each spectral band of the hyperspectral 

image individually. In this method hyperspectral images are 

divided into several sub-image and identifies the spectral 

variability in the sub-images for each spectral band separately. 

Then applied a scaling factor based on spectral variability. 

Finally, combine each sub-images to obtain high quality fused 

image. However, this method creates difficulty in obtaining an 

optimized solution due to the complex spectral variability. 

Yang et al. [14] also introduced a sparsity, and proximal 

minimum-volume (pmv) regularized CNMF named as SPR-

CNMF. The pmv regularizer controls and minimizes the distance 

between selected endmembers and the center of mass to reduce 

the computational complexity. Therefore, SPR-CNF with simplex 

minimum volume concepts improves the fusion performance by 

controlling the loss of cubic structural information. 

From these reviews of the recent unmixing fusion models, it 

is identified that the CNMF method is based on a LMM which 

does not consider the nonlinearity factors of the pixels in the 

image. Therefore, in our proposed work, we modify the CNMF 

by adding an additive term for considering the nonlinear data such 

as low-resolution pixel that avoided during LMM process. Thus, 

improving the performance the fusion algorithms compared to the 

existing methods [15].  

3. PROBLEM FORMULATION 

Let h hL N

hY 
 and m mL N

mY 
  be an observed LR-HSI and 

HR-MSI with Lh, Lm bands and Nm, Nh pixels. Then fuse the band 

Lh from Yh and Nm pixels from Ym to yield the desired high spectral 

and spatial resolution hyperspectral image, h mL NZ  [16]. 

 Z = EA (1) 

Then, Yh and Ym can be represented as,  

 Ym≈DZ+Rm (2) 

 Yh≈ZB+Rh (3) 

where m hN NB   is used to blur the spatial quality of Z to obtain 

Yh. m hL LD  is used to spectral downsampling of Z to obtain 

Y_m. In general, the matrix Rm and Rh denotes a residual noise, 

are assumed as zero-mean Gaussian noises. But in this proposed 

method, the residual term Rm and Rh are considered as a 

nonnegative matrix to accounts for the nonlinear factors [17]. 

After unmixing process of both Yh and Ym using NMF, fuse the 

end member E and abundance A by using the CNMF algorithm. 

That means, CNMF work by combine two NMF algorithms as a 

product of E and A [19]. From the Eq.(1)-Eq.(3), the minimization 

functions of NMF unmixing for Yh and Ym are defined as,  

 
2

h h F
Y EA− and 

2

m m F
Y E A−  (4) 

where 
2

F
 denotes the Frobenius norm, which minimizes the cost 

function in hyperspectral unmixing [17]. Then, the objective 

function for CNMF can be defined as: 

 ( )
2 2

, . . , 0h h m mF F
CNMF E A Y EA Y E A s t E A= − + −   (5) 

The CNMF method is not a well-posed problem. A well-posed 

problem is one that exists a unique solution to a given set of 

selected data for providing a stable solution to the problems. A 

problem that does not satisfy these properties of well-posedness 

is called an ill-posed problem. The CNMF method does not exist 

a unique solution and stability to a given set of data. This ill-

posedness problem of CNMF can be solved by adding some 

constraints terms into spectral and spatial data [18]. 

4. FULLY CONSTRAINED NONLINEAR CNMF 

METHOD 

The standard LMM model does not consider the low contrast 

pixels in the image. But in the case of a real-time image, it is 

necessary to consider these low-resolution pixels to improve the 

image visual effect. So, in this model, we including an additional 

residual term as R with LMM, which accounts for all possible 

nonlinear effects in the image. This residual term R is measured 

as the deviation between the original and estimated data [15]. 

Therefore, the NMF unmixing for Yh and Ym, are defined as,  

 ( )
2

h h h F
Y EA R− +  (6) 

  

  
Yh E Ah   Lh 

Nh p 

NMF for hyperspectral data 

Ym Em A   Lm 

Nm 

NMF for multispectral data 

D B 

Z E A   

Fused Data 
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 ( )
2

m m m F
Y E A R− +  (7) 

Then the CNMF representation for Eq.(6) and Eq.(7) can be 

redefined as, 

 ( ) ( ) ( )
2 2

, , h h h m m mF F
CNMF E A R Y EA R Y E A R= − + + − +  (8) 

The parameter R controls the ill-posed problem of CNMF and 

thus produces high fidelity reconstructed image.  

In this model, we also enhance the quality of extracted data by 

adding all available constraints from the literature that affect both 

the geometrical and statistical data of the image. So, the nonlinear 

CNMF unmixing for Yh and Ym, in Eq.(8) is defined by imposing 

all essential constraints such as total variation, sparsity, and 

signature-based minimum volume. Therefore, to reconstruct the 

image, Z = EA, the objective function of the FCN-CNMF method 

will be as follows: 

 ( ) ( ) ( ) ( )min , , MV TV spaCNMF E A R E A A  +  +  +   

 . . , 0s t E A   (9) 

where CNMF(E,A,R) is unconstrained CNMF method, α>0 and 

β>0 and λ>0  are the parameters to control the  constraints and 

these constraints are calculated as: 

 ( )
2

2
1 1

p p

MV i j

i j i

E e e
= = +

 = −   (10) 

 ( )
,

0.5

,

, 1

p N

spa i j

i j

A a
=

 =   (11) 

 ( )
1 1

TV h vA H A H A = +  (12) 

where,  MV(E), is a minimum volume regularizer that reduce the 

volume of the simplex in hyperspectral imagery thus helps to 

estimate high-fidelity spectral signature. spa(A), reflects the 

sparsity that means the amount of zero or null values in abundance 
TV(A), solve the variation between the adjacent pixels and avoid 

all possible lumps in the spectral signature of the endmember to 

provide smoothness to the image [20]. 

5. IMPLEMENTATION 

The proposed FCN-CNMF algorithm is implemented by 

alternatively solving each term (E,A,R) from the LR-HSI and HR-

MSI with the constraints until a minimum optimization solution 

is obtained. At first, unmix the endmembers, abundance, and 

outlier data of LR-HSI are updated by the multiplication iteration 

model [20] as follows, 

 1

1

1 11 1
,...,

k h
h h

k k

h h h h

Y
R R o

E A R diag r r

+

−

 
 =
  +   

 (13)

 
( ) ( )

( ) ( )
( ) ( )1

T
k k

hk

h h TV h spa hT
k k

h

E Y R S Y
A A o A A

E E A S Y
 +

− + 
= +  + 

+ 
  (14) 

 
( )( )

( )
( )1

T
k k

h h hk

MVT
k k

h h

Y R A
E Eo E

EA A
+

−
= +   (15) 

Similarly, the multiplication iteration model is used to update 

the endmembers, abundance, and outlier data of HR-MSI as 

follows, 

 1

1

1 11 1
,...,

k m
m m

k k

m m m m

Y
R R o

E A R diag r r

+

−

 
 =
  +   

 (16) 

 
( ) ( )

( ) ( )
( ) ( )1

T
k k

m m mk

TV spaT
k k

m m

E Y R S Y
A A o A A

E E A S Y
 +

− + 
= +  + 

+ 
 (17) 

 
( )( )

( )
( )1

T
k k

m mk

m m MV mT
k k

m

Y R A
E E o E

EA A
+

−
= +   (18) 

where the number of iterations is denoted as k. At first unmix, the 

image Y into E, A and R. The algorithm starts with these initial 

value as (R0, A0, E0), then proceed in the order as (Rk, Ak, Ek) 

→(Rk+1, Ak, Ek)→(Rk+1, Ak+1, Ek)→ (Rk+1, Ak+1, Ek+1) so on. These 

steps are repeated until it meets the stopping condition and are 

represented as follows.  

 ( ) ( ) ( )1

, ,
min , ,k k k

m m TV spa
E A R

A CNMF E A R A A + = +  +   (19) 

 ( ) ( )1

, ,
min , ,k k k

h h MV
E A R

A CNMF E A R E+ = +   (20) 

This iterative equation helps to extract high fidelity end 

member E from LR-HSI, abundance matrix A from HR-MSI. 

Then fuse these data to produce Z as follows, 

 Z EA=  (21) 

The reconstructed image Z contain spectral and spatial 

information almost similar to the ground truth image. Algorithm 

1, gives the summary of the proposed FCN-CNMF algorithm. 

6. EXPERIMENTS AND PERFORMANCE 

ANALYSIS 

The proposed work is implemented in in Python (Spyder) 3.7 

platform and the performance of the unmixing-based fusion 

algorithm FCN-CNMF is evaluated using some standard quality 

measures on four different public datasets. On evaluation, it is 

found that our method produces high-fidelity reconstructed 

image. Finally, the superiority and strength of our method is 

evaluated by comparing the   experiment results with existing 

methods namely CNMF [9], HySure [10], CO-CNMF [11], 

TVSR-CNMF [12], and FuVar [13]. The results obtained in all 

these methods are compared with the proposed FCN-CNMF 

method and found that our FCN-CNMF method have better fusion 

output.  

6.1 DATASET 

We use four real datasets: Washington DC mall, Bostwana, 

Pavia University, Indian Pines with spectral band 191, 145, 103, 

and 192 with 400 to 2500 nm spectral range respectively. We crop 

all datasets with 240×240-pixel size to make algorithm faster [21].  

The Yh is created by blurring the spatial quality of the image Z 

with a blur factor ω = 4 in horizontal and vertical directions [22]. 

The Ym was produced corresponding to Landsat 7 TM bands with 
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7 spectral bands, where each spectral band covering particular 

range between 450 - 2350 nm regions, respectively [23]. 

Algorithm 1: FCN-CNMF algorithm 

Input: LR-HSI → Yh; HR-MSI → Ym  

Initialize: k=0 and (R0, A0, E0) 

Step 1: First, unmix Yh as Eq.(6) using NMF method  

Optimize E, Ah and Rh as in Eq.(13)-Eq.(15). 

Step 2: Subsequently, unmix Ym as Eq.(7) using NMF method 

Optimize Em, A and Rm as in Eq.(16), Eq.(17) and Eq.(18) 

Step 3: Repeat steps 1 and 2 until reached the stopping condition. 

Step 4: Reconstruct Z by observing E from LR-HSI and A from 

HR-MSI: Z = EA  

Output: The image Z with high spatial-spectral dimension.  

6.2 QUALITY METRICS 

  The measure the performance of FCN-CNMF algorithm is 

measured by using following quality metrics [8]. 

• Spectral Angle Mapper (SAM) identifies the spectral 

difference between the images as follows:  

 ( )
1

2 2

ˆ1ˆ, arccos
ˆ

Tn
j J

j j J

E E
SAM E E

n E E=

 
 =
 
 

  (13) 

• Signal-to-Reconstruction Error (SRE) measures the quality 

of the FCN-CNMF algorithm as follows: 

 

2

2
1

10 2

2
1

1 ˆ

10log
1 ˆ

n

i

i

n

i i

i

A
n

SRE

A A
n

=

=

 
 
 =
 

− 
 




 (14) 

• Root-Mean-Square Error (RMSE) value is measured as:  

 ( )
21ˆ ˆ,
F

h m

RMSE A A A A
n

= −    (15) 

• Peak Signal to Noise Ratio (PSNR) measures the quality of 

spatial data in lth band is defined as: 

 ( )
1

1ˆ,
h

l

lh

RMSE A A PSNR


 =

=   (16) 

where PSNRl measures the spatial quality in the lth spectral band 

is defined as: 

 
( )

2

10

max
10log

ˆ

l

l l l

A
PSNR

A A P

 
 =
 −
 

 (17) 

• Universal Image Quality Index (UIQI) measure the 

structural similarity between the images by calculated as:   

 ( ) 2 2 2 2

2 2
ˆ,

l l l l l l

l l l l l l

l l A A A A A A

A A A A A A

Q A A
    

     
=

+ +
 (18) 

 ( ) ( )
1

1ˆ ˆ, ,
h

l l l l

lh

UIQI A A Q A A


 =

=   (19) 

If the value of ( )ˆ,l lUIQI A A = 1, that means both images are 

similar [17]. 

6.3 PERFORMANCE ANALYSIS OF FCN-CNMF 

FUSION ALGORITHM 

The FCN-CNMF algorithm aims to improve both spectral and 

spatial data by incorporating the nonlinear factor also in the 

hyperspectral image. So, this proposed algorithm enhances the 

spatial quality of LR-HSI images.  
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Fig.2. Representation of the ground truth, HR-MSI, LR-HSI, and 

our FCN-CNMF algorithm images of four datasets 

Finally, the proposed FCN-CNMF algorithm fuses these 

extracted data without any data distortion. The Fig.2 shows output 

of the FCN-CNMF methods on four different datasets along with 

its HR-MSI, LR-HSI image. The Fig.2 shows that the FCN-

CNMF algorithm gives a better visual effect by enhancing the 

quality of the images on the above four datasets. The Fig.3 shows 

the performance of all fusion methods. 
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(b) PSNR 

Fig.3. Performance representation of all comparison algorithms 

Table.1. Quality measures of FCN-CNMF with other algorithm 

on four Datasets   

D
a

ta
se

t 

Method CNMF HySure 
CO-

CNMF 

TVSR-

CNMF 
FuVar 

FCN-

CNMF 

W
as

h
in

g
to

n
 

D
C

 M
al

l 

SAM 1.01 0.99 0.74 0.74 0.76 0.65 

RMSE 8.57 7.50 7.41 7.43 0.01 0.005 

SRE 15.26 15.46 15.64 15.66 16.17 18.58 

PSNR 76.23 76.02 75.35 76.01 75.33 80.31 

UIQI 0.81 0.89 0.82 0.90 0.91 0.95 

B
o

ts
w

an
a
 

SAM 0.58 0.67 0.53 0.82 0.50 0.40 

RMSE 5.16 5.18 4.57 4.58 4.58 3.15 

SRE 20.33 20.11 20.76 20.56 21.47 22.47 

PSNR 82.11 84.09 85.23 89.32 91.01 110.14 

UIQI 0.78 0.84 0.67 0.79 0.89 0.96 

P
av

ia
 

U
n

iv
er

si
ty

 

SAM 0.47 0.34 0.39 0.31 0.30 0.27 

RMSE 1.01 1.21 0.95 1.02 1.08 0.91 

SRE 16.83 17.05 17.39 18.03 18.01 19.83 

PSNR 70.84 72.67 71.23 73.30 73.40 75.35 

UIQI 0.83 0.81 0.93 0.92 0.94 0.96 

In
d

ia
n

 P
in

es
 SAM 0.005 0.038 0.002 0.004 0.003 0.001 

RMSE 0.021 0.024 0.070 0.07 0.12 0.01 

SRE 13.18 12.98 12.77 14.76 14.48 15.70 

PSNR 76.61 75.11 76.71 77.04 77.85 78.80 

UIQI 0.91 0.89 0.94 0.92 0.95 0.97 

Finally, the performance of this FCN-CNMF algorithm is 

evaluated against the various baseline algorithms using standard 

quality measures and the results obtained by these methods on 

four different datasets are shown in Table.1. This result indicates 

that the FCN-CNMF algorithm is superior to all other baseline 

fusion methods. The lower SAM and higher PSNR value indicate 

that the good spectral and spatial quality of reconstructed image. 

Similarly, the higher value of SRE, UIQI and low value of RMSE 

shows the better performance of the fusion algorithm during the 

reconstruction process.  

7. CONCLUSION 

In this paper, proposed an FCN-CNMF to enhance the LR-

HSI by considering the outlier data in the image known as 

nonlinearity. As a result, this proposed algorithm produces a high-

fidelity reconstructed image similar to the referenced image and 

lowers the algorithm complexity and computational time 

compared to other fusion algorithms. From this comparison, our 

FCN-CNMF method shows better performance compared to all 

other baseline methods. In future work, further improve the 

accuracy of unmixing performance by introducing more 

constraints into endmembers and the abundance of the 

hyperspectral images. 
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