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Abstract 

In this paper, a new fractional differentiation-based active contour 

model for robust image segmentation is presented. A new edge energy 

is introduced, in which the contour evolution is driven by the difference 

between the fractional derivatives directed along the inward and 

outward normal directions of the evolving contour. We provide the level 

set formulation of this novel energy and show that this energy is 

minimized when there is an accurate alignment of the zeroth level set 

of the evolving contour with the actual object boundary. The proposed 

model outperforms other state-of-the-art active contour methods in 

eliciting weak/fuzzy boundaries in real world images and provides 

robust segmentation even under influence of various types of noise as 

quantified by segmentation metrics. 
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1. INTRODUCTION 

Image segmentation is an important step in vision tasks as 

image analysis algorithms greatly depend on the quality of 

segmentation. Segmentation is the partitioning of an image into 

non-intersecting regions, where each region is delineated by a 

predicate that holds true over it and not on adjacent regions. 

However, in real world images, there is a lot of uncertainty in 

region/object boundaries. This is due to the natural setting of the 

image itself, the acquisition process or noise, which make 

segmentation a challenging task.  Segmentation approaches in the 

literature segregate image regions by formulating a suitable 

objective functional to identify boundaries and solving the 

optimization problem arising therefrom. 

Active contours employ the numerical formulation of a partial 

differential equation to achieve image segmentation. To begin 

with, an initial contour is introduced in the image, which evolves 

over time. The property that defines the segmentation end result 

is encoded in the cost functional. The active contour models 

exploit the information from the image in a variety of ways to 

define the energy functional.  

Kass and Witkin [1] introduced the first energy minimizing 

curves or snakes, which used a combination of internal and image 

forces alongside user specified constraints. However, their model 

had difficulty in handling the topological changes in the contour. 

Osher and Sethian [2] overcame this drawback by implicitly 

representing the contour as the zeroth level set of a higher 

dimensional function. 

Edge-based active contour methods like [3]-[6] use peaking in 

the image intensity variations as the stopping criteria. Edge-based 

methods are dependent on the initialization and availability of 

strong gradient information. This dependence on derivative 

operators makes these methods sensitive to noise and leads to 

imperfect segmentation in the scenarios where the boundary itself 

is weak. 

Region-based active contours like [7]-[10] use a statistical 

characterization of each region to evolve the contour.  Chan and 

Vese (CV) [8] proposed a level set implementation of the piece-

wise constant approximation of image regions. CV method is 

demonstrated to be effective on certain cases where edge-based 

methods are not applicable.  

Region-based methods are further classified as methods, 

which use global information, and those that exploit the local 

region information. In general, performance of such active 

contour models is limited by the assumptions that are made about 

the image regions - like the windows chosen to define image 

regions under consideration. 

Researchers have also adopted hybrid approach, in which the 

best of both the approaches is being combined successfully for 

effective active contour evolution. This helps in guiding the 

contour in the areas where the gradient information is insufficient. 

Lankton et al. [11] used the mean computed in the interior and 

exterior neighborhoods around each point along the evolving 

contour as a hybridization of the geodesic and region-based 

methods. Kim et al. [13] employed a new higher order statistics-

based edge energy to be used alongside the local region energy in 

the variational formulation to segment only the important local 

minima. In [6], external energy is coupled with a distance 

regularization term which eliminates the need for reinitialization. 

In [18], an “importance” parameter is computed based on the local 

edge features, which is used to weight the energy terms in the 

evolution equation. 

Our active contour model recognizes edge as a transition 

boundary between two regions. The long memory property of 

fractional derivatives, which allows them to “see” further than 

their integer order counterparts, is harnessed. In our method, 

therefore, the intensity variation among pixels is considered but 

alongside a reasonable amount of region information too is 

brought into consideration due to the use of fractional derivatives. 

This gives a broader evidence of region boundaries compared to 

the other state-of-the-art methods, and helps extract boundaries 

unavailable to standard edge-based methods. 

2. MATHEMATICAL BACKGROUND 

2.1 FRACTIONAL DIFFERENTIATION 

Fractional calculus is an extension of traditional calculus that 

has its origins in the question by Liouville. Several great 

mathematicians have hence worked on this topic and even to this 

date, the definition of fractional derivative is an active field of 

research [19], [20]. Fractional derivatives are interpolations of 

integer order derivatives and are recognized in the recent years for 

their ability to model long memory processes and are shown to be 
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robust against noise. One-sided fractional derivatives are a 1D 

implementation of the fractional derivative definition, and have 

gained prominence in signal processing along with their multi-

directional combinations [21]-[25]. We use the Grunwald- 

Letnikov (G-L) definition for our numerical calculations owing to 

computational convenience, and we use its truncated series 

representation for our digital image processing computations. In 

this section, we provide the definitions of the fractional order 

derivatives, which will be used in the subsequent sections.   

Let f(t) be a signal to be analyzed in a finite interval [a,b]. 
a

D
  

and 
b

D
 , the “left” and “right” one-sided G-L derivatives of order 

α, 0<α<1, are given by: 
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where b=t+N2h. 

2.2 ACTIVE CONTOUR METHODS 

In active contour literature, a Lipschitz function : Ω→ℝ 

denotes the level set function and {(x,y)=0, (x,y)∈Ω}, the zeroth 

level set, is used to track the evolving contour. 

We use the definition 
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From [8], to denote the Heaviside function. Hε() denotes the 

interior of the contour and its derivative δε, the Dirac delta 

function, defined as  
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The Eq.(4) denotes the immediate area around the contour. 

Here the parameter 𝜀 controls the smear of the Dirac function.  

The gradient flow of the Distance Regularized Level Set 

Evolution (DRLSE) method [6] is given as: 
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where μdp(|∇ϕ|) is the adaptive forward-and-backward diffusion 

rate, which is responsible for maintaining the signed distance 

property. 

As mentioned in the introduction, there are active contour 

methods which take into consideration the region information 

around the edges. We now discuss the related state-of-the-art in 

such active contour models. 

The localized region-based active contour (LAC) proposed by 

Lankton et al. [11], [12] is given as: 

 

     

       
2 2

,

y

x x

x B x y y
t

I y u I y v dy x


 

 




 



   


  (6) 

where κ





 


. 

This flow localizes the uniform modeling energy by [8], which 

reaches its stable minimum when the local interior and local 

exterior in the neighborhood B(x,y) about each point along the 

contour are modeled by the interior and exterior means.  

The region scalable fitting energy (RSF) proposed by Li et al. 

[26] is given by the gradient flow: 
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Here, the first term on the right is the data fitting term, which 

brings into consideration the local approximation of energies on 

both sides of the evolving contour. 

Energies with fractional derivative based piecewise constant 

Mumford-Shah fitting terms have been proposed in [14]-[17]. In 

[15], the fitting energy is constructed based on the difference 

image obtained by subtracting the fractional order gradient 

magnitude from the original image.  

3. PROPOSED MODEL 

There are several methods that utilize the concept of edge to 

arrive at a segmentation of the object. Firstly, all such methods 

are sensitive to initialization since such models seek out the 

nearest edge. Secondly, the presence of even small quantities of 

noise would upset their segmentation performance since edge-

based methods rely on the discriminating power of the first or 

second order derivatives. In this paper, we propose a novel edge-

based method which overcomes the second challenge. In 

scenarios with simple initializations, we demonstrate that using 

the fractional order derivatives to conceptualize the object 

boundary, the proposed edge-based method is able perform on par 

with the state-of-the-art region-based and hybrid active contour 

models in the presence of high noise! 

3.1 FRACTIONAL DIFFERENTIATION BASED 

EDGE ENERGY DEFINITION 

Noise resilience of the difference of 1-D fractional derivative 

operators has been discussed in [21], [24]. Due to this desirable 

property, our method employs the one-sided fractional derivatives 

to capture additional region information near the edge. Each such 

1-D fractional derivative centered on the evolving contour and 

acting on the pixels in the neighborhood region captures the 

intensity profile information in that direction. If we consider only 

the immediate change in intensity right at the boundary, the 

formulation becomes extremely sensitive to noise. A fractional 

derivative on the contour gives the support of region information 

alongside the derivative-based intensity variation. Also, the 

presence of a non-local derivative brings in sensitivity to the 

objects in a distance. 

From the concept of “directional snake” introduced by Park et 

al. [27], many authors [28]-[30] considered the alignment with the 

image gradient helpful in evolving the level sets in the right 

direction in the presence of noise. Motivated by this, in each 

iteration, we compute the one-sided fractional derivatives in the 

image I(x,y) along the inward and outward normal directions of 

the evolving contour. That is, once an initial contour is introduced, 
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the level set formulation is employed to compute the normal to 

the curve, and this in turn is used to compute the fractional 

derivatives in both the normal directions. 

Let θ(x,y) be the gradient direction of the contour (x,y) at a 

location (x,y). One-sided fractional derivative definitions in and 

opposing this direction are given as: 
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where τ1 = jhcosθ and τ2 = jhsinθ. 

 

             Initial                             Evolving                       Final 

Fig.1. Fractional derivative along the normal directions of the 

zeroth contour 

Their difference, then, is used to drive the contour evolution 

in the energy minimization iterations. With the appropriate choice 

of parameters, the contour starts to align with the actual boundary 

of the object. The contour evolution process halts when the 

alignment is complete as shown in Fig.1. Thus, our model 

employs the difference of non-local fractional derivatives across 

the contour in the normal directions to detect the edges accurately, 

which is a unique hybrid active contour constitution.   

3.2 LEVEL SET FORMULATION OF THE 

PROPOSED MODEL 

We use level set method to track the evolving contour wherein 

the energy is formulated as follows: 

    E g   


   (10) 

where  

    1 1 180,g x y D D 
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(a) (b) 

  

(c)  (d) 

 

(e) 

Fig.2. (a) Original (b) Proposed (c) RSF (d) DRLSE (e) LAC 

  

(a) (b) 

  

(c)  (d) 

 

(e) 

Fig.3. (a) Original (b) Proposed (c) RSF (d) DRLSE (e) LAC 
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(a) (b) 

  

(c)  (d) 

 

(e) 

Fig.4. (a) Original (b) Proposed (c) RSF (d) DRLSE (e) LAC 

Table.1. Segmentation Accuracy 

Figure Dice Jaccard BF1 Precision Recall 

Fig.2 

Proposed 

Fig.2(b) 
96.48 93.21 85.71 84.55 86.92 

RSF 

Fig.2(c) 
67.33 50.76 23.02 14.1 62.62 

DRLSE 

Fig.2(d) 
95.14 90.73 80.86 75.59 86.92 

LAC 

Fig.2(e) 
91.52 84.36 45.54 41.48 50.47 

Fig.3 

Proposed 

Fig.3(b) 
96.42 93.09 96.12 96.15 96.08 

RSF 

Fig.3(c) 
31.33 18.57 13.83 7.52 85.29 

DRLSE 

Fig.3(d) 
92.78 86.53 57.89 58.95 56.86 

LAC 

Fig.3(e) 
95.12 90.69 75.57 69.83 82.35 

Fig.4 

Proposed 

Fig.4(b) 
94.45 89.48 83.98 83.52 83.44 

RSF 

Fig.4(c) 
12.45 6.64 5.65 2.91 95.56 

DRLSE 

Fig.4(d) 
90.01 81.84 64.84 64.13 65.56 

LAC 

Fig.4(e) 
70.62 54.59 24.43 14.31 83.33 

 

  

(a) (b) 

  

(c)  (d) 

Fig.5. Segmentation ground truths (a) Fig.2 (b) Fig.3 (c) Fig.4 

(d) Fig.6-Fig.9 

As in [3], the energy described here seeks segmentation of 

objects using a new definition of length. Weighting the Euclidean 

length element by g and considering the line integral, seeks out 

the object boundaries in the image. 

We employ artificial time to obtain a dynamic system. The 

gradient descent flow evolution equation obtained for the energy 

functional Eq.(10) is given as: 
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Weighting with g directs the balloon term g    towards 

objects. Analogous to the discussion for the geodesic problem in 

[3],  g N  term leads the evolving contour into the valley of 

𝑔 and 𝑔𝜅 term decreases the total curvature.    , .
x y

g g   

functions like the surface diffusion term discussed in [31]. 
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  ,
x y

g g     is the area term. Our model does not need 

any re-initialization. 

We discretize the time dependent level set function in Eq.(12) 

using the techniques discussed in [32], [33]. Stability is achieved 

using an explicit total variation diminishing third-order Runge-

Kutta time discretization with the CFL constant 1. 

Let n  denote the level set solution obtained in the nth 

iteration, L denote the finite difference approximation of the right-

hand side of Eq.(12) and Δt denote the quantum of time stepping. 

The third-order total variation diminishing optimal Runge-Kutta 

method solution for the model in Eq.(12) is given as: 

 
   1 n nT tL    

 
      2 1 13 1 1

4 4 4

nT T tL T     (13) 

     2 21 1 2 2

3 3 3

n n T tL T       

In a clutter of objects, shorter memory length may be 

employed in the fractional derivative definition to avoid influence 

of neighboring objects at the same time retaining the nonlocal 

nature of the operators. The value of h(x,y) in the fractional 

derivative definition depends on the angle θ(x,y) – it is one-pixel 

unit in horizontal and vertical directions and 2  pixel units in 

any of the diagonal directions. 

3.3 SEGMENTATION EVALUATION 

We use Sorenson-Dice and Jaccard similarities to compare the 

segmented region to that in the ground truth. If P and G denote 

the prediction and the ground truth respectively, and |X| denotes 

the cardinality of the set X, the Sorenson-Dice similarity is given 

by: 

  
2*
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P G
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Similarly, the Jaccard dissimilarity coefficient is given by  
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P G P G
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In our case, the prediction P is obtained from the final 

convergence level set solution as 0final  which represents the 

predicted inside part of the object region. The ground truth G is 

obtained from the image datasets [35]-[37]. 

Also since proposed method is an edge-based method, the 

boundary precision is also computed and tabulated. This is done 

using the concepts of precision, recall and boundary F1 measure. 

Precision of the predicted segmentation is the ratio of the number 

of correctly predicted boundary points with that of the total 

number of predicted boundary points. Recall is the ratio of the 

number of ground truth boundary points that are close to the 

predicted boundary versus the total length of the ground truth 

boundary. The F1 score of the boundary is a statistical measure 

computed as follows: 
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Precision P G Recall P G
BF P G

Precision P G Recall P G



 

We use the MATLAB functions dice(P,G) and jaccard(P,G) 

and bfscore(P,G). Since the images taken are challenging in terms 

of the weak boundaries, difficult backgrounds and high noise, the 

tolerance value which decides the closeness of the predicted and 

ground truth boundaries is set at 2 pixels for all the methods.  

All the above region and boundary precision indices give the 

segmentation accuracy evaluation in the range [0,1]. These values 

are multiplied by 100 to provide a percentage value of achieved 

segmentation accuracy and given in Table.1 and Table.2.    

4. EXPERIMENTAL RESULTS AND 

DISCUSSION 

Now we demonstrate the boundary eliciting capability of the 

proposed method. We compare our results with the state-of-the-

art methods: RSF [26], DRLSE [6] and LAC [11]. RSF is a 

successful region-based method which uses a localizing kernel 

function in the fitting term to achieve good segmentation. DRLSE 

uses an edge-based term in distance regularized level set 

framework. LAC model utilizes the local statistics to evolve the 

zeroth level set. Uniformly in every row of images, first column 

shows the test image with initialization marked, the second to fifth 

columns show the results of the proposed method, RSF, DRLSE 

and LAC methods respectively.  

The default parameters used for each of the methods are 

mentioned here.  

For RSF, Δt=0.1, λ1=λ2=1, ν=30, μ=1 and the scale parameter 

used for Gaussian kernel was 10. 

For DRLSE, Δt=1 and coefficient of area term α=-3. 

For LAC, λ=0.05 and radius=15 pixels.  

For the proposed algorithm, Δt=0.1. 

The experiment-specific parameters are mentioned 

immediately after the corresponding discussion.  

We use a simple rectangle signed distance function 

initialization in all the experiments. The model convergence of the 

proposed algorithm is on the lines of [34]. We test our algorithm 

on challenging images from [35]-[37]. Segmentation ground truth 

boundaries for the various test images are shown in Fig.5.  

These results are tabulated in Table 1 for Fig.2-Fig.4 and in 

Table.2 for Fig.6-Fig.9. Each row in the table records the results 

for a particular method in terms of region and boundary 

segmentation accuracy metrics for a particular figure.  

In our first experiment, we test the efficacy of our algorithm 

on a skin lesion image in Fig.2. A good part of the lesion boundary 

is hazy and has non-uniform illumination across the boundary. As 

can be seen from the experimental results, our algorithm is able to 

find the object boundary close to the ground truth even when there 

is no edge present. 

Proposed: α=0.54, β=0.81, λ1=3, λ2=3.   

RSF: σ=1. 

DRLSE: μ=0.08 and Gaussian kernel scale parameter σ=1. 

In our next experiment, the proposed active contour algorithm 

successfully encircles the object in the images with heavy 

background clutter. As can be seen from Fig.3, the background 

distractors adversely affect the working of many algorithms but 

the proposed method gives a steady segmentation result.   
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Proposed: α=0.36, β=0.81, λ1=3, λ2=3.   

RSF: σ=10. 

DRLSE: μ=0.06, σ=2. 

In test on Fig.4, we demonstrate the working of our algorithm 

on the image of a honey drop on a printed paper. The honey drop 

boundaries are vague and also the presence of text complicates the 

segmentation task. Most of the other methods are able to approach 

the boundary but our method outperforms others with a clear 

segmentation. 

Proposed: α=0.23, β=0.81, λ1=1, λ2=1. 

RSF: σ=1. 

DRLSE: μ=0.06, σ=3. 

Next we test our algorithm on the textured image of a flower 

in the background of leaves in Fig.6. Our algorithm is able to 

detect the object boundaries comparable to the state-of-the-art. 

Proposed: α=0.63, β=0.81, λ1=-5, λ2=-5. 

RSF: σ=10. 

DRLSE: μ=0.04, σ=2. 

We now demonstrate the effect of adding varieties of noise to 

Fig.5. The parameters of the proposed method are left unchanged 

showcasing the fact that proposed method’s parameters are stable 

even in presence of high noise of different types! 

  

(a) (b) 

  

(c)  (d) 

 

(e) 

Fig.6. (a) Original (b) Proposed (c) RSF (d) DRLSE (e) LAC 

  

(a) (b) 

  

(c)  (d) 

 

(e) 

Fig.7. (a) Original (b) Proposed (c) RSF (d) DRLSE (e) LAC 

  

(a) (b) 

  

(c)  (d) 
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(e) 

Fig.8. (a) Original (b) Proposed (c) RSF (d) DRLSE (e) LAC 

  

(a) (b) 

  

(c)  (d) 

 

(e) 

 Fig.9. (a) Original (b) Proposed (c) RSF (d) DRLSE (e) 

LAC 

Firstly, we add white Gaussian noise with 0.1 variance to the 

image. As can be seen from Fig.7, the image is garbled and the 

boundaries are barely visible.  

RSF: σ=10.  

DRLSE: μ=0.02, σ=2.5. 

We then apply multiplicative speckle noise of 0.1 variance as 

seen in Fig.8.  

RSF: σ=10.  

DRLSE: μ=0.01, σ=2.25. 

We also test the proposed algorithm by adding salt and pepper 

noise of density 0.1 to the test image as seen in Fig.9.  

RSF: σ=10.  

DRLSE: μ=0.08, σ=2, α=-7. 

Table.2. Segmentation Accuracy 

Figure Dice Jaccard BF1 Precision Recall 

Fig.6 

Proposed 

Fig.6(b) 
98.29 96.63 100 100 100 

RSF 

Fig.6(c) 
70.7 54.67 38.91 24.15 100 

DRLSE 

Fig.6(d) 
96.44 93.12 89.56 91.38 87.8 

LAC 

Fig.6(e) 
98.6 97.24 98.77 97.56 100 

Fig.7 

Proposed 

Fig.7(b) 
96.26 92.79 91.73 91.6 91.87 

RSF 

Fig.7(c) 
41.1 25.87 10.34 5.46 96.75 

DRLSE 

Fig.7(d) 
84.23 72.76 22.8 24.75 21.14 

LAC 

Fig.7(e) 
79.41 65.85 33.25 21.73 70.73 

Fig.8 

Proposed 

Fig.8(b) 
97.22 94.59 96.24 96.55 95.93 

RSF 

Fig.8(c) 
63.87 46.92 21.47 12.08 96.75 

DRLSE 

Fig.8(d) 
92.43 85.92 56.2 60 52.85 

LAC 

Fig.8(e) 
97.7 95.5 94.41 92.19 96.75 

Fig.9 

Proposed 

Fig.9(b) 
97.52 95.15 97.51 98.28 96.75 

RSF 

Fig.9(c) 
81.18 68.32 31.49 18.8 96.75 

DRLSE 

Fig.9(d) 
94.92 90.33 78.86 82.41 75.61 

LAC 

Fig.9(e) 
94.81 90.14 73.99 58.72 100 

The Fig.7 - Fig.9 demonstrate the efficacy of the proposed 

method in terms of highly accurate and robust segmentation in 

presence of noise operating under the same parameters chosen for 

the no-noise scenario as in Fig.6(b). 

5. CONCLUSION 

Contrary to the belief that edge-based models for object 

segmentation are poor performers in noisy environment, we have 
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demonstrated that fractional order derivative-based edge energy 

driven active contour is robust and outperforms the state-of-the-

art techniques. Our future work will delve into predicting optimal 

fractional order, speeding up the evolution computations vis-a-vis 

a variety of initializations.  

REFERENCES 

[1] M. Kass, A. Witkin and D. Terzopoulos, “Snakes: Active 

Contour Models”, International Journal of Computer 

Vision, Vol. 1, No. 4, pp. 321-331, 1988. 

[2] S. Osher and J.A. Sethian, “Fronts Propagating with 

Curvature-Dependent Speed: Algorithms based on 

Hamilton-Jacobi Formulations”, Journal of Computational 

Physics, Vol. 79, No. 1, pp. 12-49, 1988. 

[3] V. Caselles, R. Kimmel and G. Sapiro, “Geodesic Active 

Contours”, International Journal of Computer Vision, Vol. 

22, No. 1, pp. 61-79, 1997. 

[4] S. Kichenassamy, A. Kumar, P. Oliver, A. Tannenbaum and 

A. Yezzi, “Gradient Flows and Geometric Active Contour 

Models”, Proceedings of 5th International Conference on 

Computer Vision, pp. 810-815, 1995. 

[5] C. Li, C. Xu, C. Gui and M.D. Fox, “Level Set Evolution 

without Re-Initialization: A New Variational Formulation”, 

Proceedings of IEEE Conference on Computer Vision and 

Pattern Recognition, Vol. 1, pp. 430-436, 2005. 

[6] C. Li, C. Xu, C. Gui and M.D. Fox, “Distance Regularized 

Level Set Evolution and Its Application to Image 

Segmentation”, IEEE Transactions on Image Processing, 

Vol. 19, No. 12, pp. 3243-3254, 2010. 

[7] R. Ronfard, “Region-Based Strategies for Active Contour 

Models”, International Journal of Computer Vision, Vol. 

13, pp. 229-251, 1994. 

[8] T.F. Chan and L.A. Vese, “Active Contours without Edges”, 

IEEE Transactions on Image Processing, Vol. 10, No. 2, pp. 

266-277, 2001. 

[9] A. Yezzi, A. Tsai and A. Willsky, “A Statistical Approach 

to Snakes for Bimodal and Trimodal Imagery”, Proceedings 

of International Conference on Computer Vision, Vol. 2, pp. 

898-903, 1999. 

[10] D. Cremers, M. Rousson and R. Deriche, “A Review of 

Statistical Approaches to Level Set Segmentation: 

Integrating Color, Texture, Motion, and Shape”, 

International Journal of Computer Vision, Vol. 72, No. 2, 

pp. 195-215, 2007. 

[11] S. Lankton and A. Tannenbaum, “Localizing Region-based 

Active Contours”, IEEE Transactions Image Processing, 

Vol. 17, No. 11, pp. 2029-2039, 2008. 

[12] S. Lankton, D. Nain, A. Yezzi and A. Tannenbaum, “Hybrid 

Geodesic Region-based Curve Evolutions for Image 

Segmentation”, Proceedings of SPIE, Vol. 6510, pp. 1-8, 

2007. 

[13] W. Kim and C. Kim, “Active Contours Driven by the Salient 

Edge Energy Model”, IEEE Transactions on Image 

Processing, Vol. 22, No. 4, pp. 1667-1673, 2013. 

[14] Zemin Ren, “Adaptive Active Contour Model Driven by 

Fractional Order Fitting Energy”, Signal Processing, Vol. 

117, pp. 138-150, 2015. 

[15] Bo Chen, Shan Huang, Zhengrong Liang, Wensheng Chen, 

Hanling Lin, Binbin Pan and Marc Pomeroy, “A Fractional 

Active Contour Model for Medical Image Segmentation”, 

Proceedings of IEEE Conference on Nuclear Science 

Symposium and Medical Imaging, pp. 1-6, 2017. 

[16] Ming Gu and Renfang Wang, “Fractional Differentiation-

Based Active Contour Model Driven by Local Intensity 

Fitting Energy”, Mathematical Problems in Engineering, 

Vol. 2016, pp. 1-16, 2016. 

[17] Bo Chen, Lihong C. Li, Huafeng Wang, Xinzhou Wei, Shan 

Huang, Wensheng Chen and Zhengrong Liang, “A New 

Fractional-Order Derivative-based Active Contour Model 

for Colon Wall Segmentation”, Proceedings of IEEE 

Conference on Medical Imaging, pp. 1-7, 2018. 

[18] A. Khadidos, V. Sanchez and C. Li, “Weighted Level Set 

Evolution Based on Local Edge Features for Medical Image 

Segmentation”, IEEE Transactions on Image Processing, 

Vol. 26, No. 4, pp. 1979-1991, 2017. 

[19] M.D. Ortigueira and J.A.T. Machado, “What is a Fractional 

Derivative?”, Journal of Computational Physics, Vol. 321, 

pp. 1255-1257, 2016. 

[20] R. Hilfer and Y. Luchko, “Desiderata for Fractional 

Derivatives and Integrals”, Mathematics, Vol. 7, No. 2, pp. 

1-14, 2019. 

[21] B. Mathieu, P. Melchior, A. Oustaloup and C.H. Ceyral, 

“Fractional Differentiation for Edge Detection”, Signal 

Processing, Vol. 83, No. 11, pp. 2421-2432, 2003. 

[22] Y. Pu and J. Zhou and X. Yuan, “Fractional Differential 

Mask: A Fractional Differential-Based Approach for 

Multiscale Texture Enhancement”, IEEE Transactions on 

Image Processing, Vol. 19, No. 2, pp. 491-511, 2010. 

[23] S. Khanna and V. Chandrasekaran, “Fractional Derivative 

Filter for Image Contrast Enhancement with Order 

Prediction”, Proceedings of IET Conference on Image 

Processing, pp. 1-6, 2012. 

[24] J. Wang, Y. Ye and X. Gao, “Fractional 90 Phase-Shift 

Filtering based on the Double-Sided Grunwald-Letnikov 

Differintegrator”, IET Signal Processing, Vol. 9, No. 4, pp. 

328-334, 2015. 

[25] J. Li, N. Sang and C. Gao, “Local Fractional Order 

Derivative Vector Quantization Pattern for Face 

Recognition”, Proceedings of IEEE Conference on 

Computer Vision, pp. 1-13, 2017. 

[26] C. Li, C. Kao, J. C. Gore and Z. Ding, “Minimization of 

Region-Scalable Fitting Energy for Image Segmentation”, 

IEEE Transactions on Image Processing, Vol. 17, No. 10, 

pp. 1940-1949, 2008. 

[27] H. Park, T. Schoepflin and Y. Kim, “Active Contour Model 

with Gradient Directional Information: Directional Snake”, 

IEEE Transactions on Circuits and Systems for Video 

Technology, Vol. 11, No. 2, pp. 252-256, 2001. 

[28] R. Kimmel, “Fast Edge Integration”, Proceedings of IEEE 

Conference on Geometric Level Set Methods in Imaging, 

Vision, and Graphics, pp. 59-77, 2003. 

[29] A. Belaid, D. Boukerroui, Y. Maingourd and J. Lerallut, 

“Phase-Based Level Set Segmentation of Ultrasound 

Images”, IEEE Transactions on Information Technology in 

Biomedicine, Vol. 15, No. 1, pp. 138-147, 2011. 

[30] V. Estellers, D. Zosso, X. Bresson and J. Thiran, “Harmonic 

Active Contours”, IEEE Transactions on Image Processing, 

Vol. 23, No. 1, pp. 69-82, 2014. 



SRIKANTH KHANNA AND V CHANDRASEKARAN: FRACTIONAL DIFFERENTIATION-BASED EDGE ENERGY DRIVEN ACTIVE CONTOURS FOR ROBUST IMAGE 

SEGMENTATION 

2501 

[31] P. Smereka, “Semi-Implicit Level Set Methods for 

Curvature and Surface Diffusion Motion”, Journal of 

Scientific Computing, Vol. 19, pp. 439-456, 2003. 

[32] J. A. Sethian, “Approximation Schemes for Level Set 

Methods”, Cambridge Press, 1996. 

[33] S. Osher and R. Fedkiw, “Level Set Methods and Dynamic 

Implicit Surfaces”, Springer, 2003. 

[34] Kunal N. Chaudhury and K.R. Ramakrishnan, “Stability and 

Convergence of the Level Set Method in Computer Vision”, 

Pattern Recognition Letters, Vol. 28, pp. 884-893, 2007. 

[35] T. Mendona, P.M. Ferreira, J. Marques, A.R.S. Marcal and 

J. Rozeira, “PH - A Dermoscopic Image Database for 

Research and Benchmarking”, Proceedings of IEEE 

International Conference on Engineering in Medicine and 

Biology Society, pp. 1-7, 2013. 

[36] Ming Ming Cheng, Niloy J. Mitra, Xiaolei Huang, Philip H. 

S. Torr and Shi-Min Hu, “Global Contrast based Salient 

Region Detection”, IEEE Transactions in Pattern Analysis 

and Machine Intelligence, Vol. 37, No. 3, pp. 569-582, 

2015. 

[37] Sharon Alpert, Meirav Galun, Ronen Basri and Achi Brandt, 

“Image Segmentation by Probabilistic Bottom-Up 

Aggregation and Cue Integration”, Proceedings of IEEE 

Conference on Computer Vision and Pattern Recognition, 

pp. 1-12, 2007.

 


