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Abstract 

Hyperspectral image (HSI) processing is one of the key processes in 

satellite imaging applications. Hyperspectral imaging spectrometers 

collect huge volumes of data since the image is captured across 

different wavelength bands in the electromagnetic spectrum. As a 

result, compression of hyperspectral images is one of the active area in 

research community from many years. The research work proposes a 

new compressive sensing based approach for the compression of 

hyperspectral images called SHSIR (Sparsification of hyperspectral 

image and reconstruction). The algorithm computes the coefficients of 

fractional abundance map in matrix setup, which is used to reconstruct 

the hyperspectral image. To optimize the problem with non-smooth 

term existence along with large dimensionality, Bregman iterations 

method of multipliers is used, which converts the difficult optimization 

problem into simpler cyclic sequence problem. Experimental result 

demonstrates the supremacy of the proposed method over other existing 

techniques. 
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1. INTRODUCTION 

The HSI is a three-dimensional (3-D) image cube, which is a 

collection of many two-dimensional (2-D) images. The individual 

2-D image is captured at a precise wavelength region in the 

electromagnetic spectrum. HSI helps us to examine spectral 

information at every spatial-point in a scene, which helps in 

identification and classification of materials present in the scene 

[1]. Hence, hyperspectral imaging is used in many areas such as 

geology [2], astronomy [3], remote sensing [4] and medical 

imaging [5]. Even though hyperspectral images have many useful 

applications, Satellite hyperspectral image processing has some 

limitations like huge datasets, limited storage availability on 

board the satellite and limited bandwidth for communication of 

data to the ground station. 

Satellite imaging spectrometers [6] collect huge amount of 

data, for example if one considers a Megapixel (‘106 pixels’) 

camera, which captures some hundred spectral bands in different 

wavelength region in the electromagnetic spectrum with bit depth 

equal to 2 bytes. Then, storage and transmission requirement is in 

terms of gigabytes, which exceeds the available streaming 

capabilities to transmit the data to ground station. Therefore, the 

compression of satellite HSI is very much necessary before 

transmitting the image to ground station. Table.1 contains the list 

of some of the missions, which collects hyperspectral images 

across different wavelength regions. There is enormous literature 

[7] available on algorithms for compression of hyperspectral 

images. These algorithms are developed to exploit both spatial and 

spectral correlation in the hyperspectral images. The drawback of 

these conventional compression method based algorithms is, they 

consider all the samples in the image, perform transformation and 

then do the encoding. These algorithms are computationally 

expensive. Recent trend is to use compressive sensing approach 

for the compression, which greatly reduces the number of samples 

to be considered in an image for reconstruction. Compressive 

sensing makes use of very less number of samples there by greatly 

reducing the computational load at the encoder. Moreover, little or 

no processing is required at the encoder. The memory 

requirements are also greatly reduced. These characteristics are 

ideal for satellite image processing applications. 

Table.1. Different sensors used in commercial imaging 

spectrometers 

Sensor Organization Country 
Number 

of Bands 

Wavelength 

Range (μm) 

AVIRIS NASA 
United 

States 
224 0.4 - 2.5 

AISA 
Spectral 

Imaging Ltd. 
Finland 286 0.45 - 0.9 

CASI Itres Research Canada 288 0.43 - 0.87 

DAIS 2115 GER Corp 
United 

States 
211 0.4 - 12.0 

HYMAP 

Integrated 

Spectronics 

Pty Ltd 

Australia 128 0.4 - 2.45 

PROBE-1 
Earth Search 

Sciences Inc. 

United 

States 
128 0.4 - 2.45 

Apart from many advantages like lower memory requirements, 

low complexity at encoder side and lower bandwidth requirement 

for transmission, compressive sensing based algorithms are 

computationally very expensive at decoder side. This problem can 

be overlooked as we intend to compress the satellite HSI, where 

the above mentioned advantages are of greater importance. 

Compressive sensing is a technique which uses fewer number of 

samples to reconstruct the data. Compressive samples are taken in 

a unique fashion by taking inner products with the sensing matrix. 

The sensing matrix should satisfy some properties for successful 

reconstruction of the data, like full rank and restricted isometry 

property [8]. The matrix containing Gaussian i.i.d. entries is used 

as a sensing matrix which satisfies the above mentioned properties. 

The data is reconstructed from compressive samples using spectral 

unmixing and convex optimization techniques in the proposed 

algorithm. 

The main objective of the proposed research is to propose a 

compressive sensing based methodology to compress and 

reconstruct the hyperspectral images. The paper demonstrates that 

reconstruction accuracy and noise robustness of the proposed 
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algorithm is greatly improved when compared to the state of art 

algorithms based on compressive sensing based techniques. 

The research work proposes a compressive sensing (CS) based 

algorithm called SHSIR to compress the HSI. The algorithm is 

developed by assuming linear mixing in hyperspectral images. 

Reconstruction is performed using Bregman iteration method of 

multipliers. 

2. LITERATURE SURVEY 

The necessary condition for any CS based method is sparsity 

or its compressibility. Many algorithms are proposed under the 

linear mixing [9] [10] model assumption. Here spectral signatures 

of pure materials are called end members, which represent the 

spectral vectors. Coefficients are the abundance fractions of pure 

materials. The natural images are generally composed of the 

monotonic objects such as vegetation fields and large buildings. 

That is why the neighbouring pixels in HSI also represents the 

similar material. To exploit these features, many algorithms which 

performs spatial total variation [11] [12] regularization along with 

unmixing [13] - [19] has been proposed. Chengbo Li et al. [20] 

uses augmented Lagrangian model to minimize the total variations 

of abundance fractions. Martin et al. [21] - [23] have developed a 

strategy called hyperspectral coded aperture to replace the HSI 

data with a single measurement matrix by computing the inner 

products between the spectral vectors and known vectors. Chang 

et al. [24] have redesigned N-FINDR algorithm to reduce the 

computational complexity and improve the accuracy of extracted 

endmembers. In [25] the process of unmixing is formulated as a 

linear regression problem. Guo et al. [26] have used L1 

minimization for unmixing the hyperspectral data. In [27] spectral 

demixing (SD) algorithm is proposed which is similar to 

Orthogonal matching pursuit, and SD is combined with dictionary 

learning approach for automatic calculation of endmembers. In 

[28] spectral unmixing is reformulated as sparse regression 

problem and a semi supervised optimization approach has been 

developed to solve the problem. In [29] the application of AMP 

(Approximate message passing) approach to structural affine rank 

minimization problems like CS hyperspectral imaging. AMP 

approach address the complex structures in hyperspectral images 

which are ignored by affine rank minimization methods. In [30] 

blind hyperspectral unmixing using Total variation regularization 

is proposed. The methods in [31] - [33] uses non- blind approach 

for hyperspectral unmixing. They assume to know the subspace 

beforehand, which is a noticeable disadvantage related with 

SpeCA [34], as the recent learns the subspace from the random 

projections. Compressive-Projection Principal Component 

Analysis (CPPCA) scheme is introduced in [35] and it is also later 

on developed in [36]-[38]. The CPPCA algorithm shifts the 

complexity of PCA from on-board encoder to the base station 

decoder. Low dimensional Random projections from sensor are 

sent to the decoder. Decoder finds both the coefficients of PCA 

transform and approximation to PCA transform basis. 

3. HYPERSPECTRAL DATA COMPRESSION 

AND RECONSTRUCTION 

Conventional compression methods first collect the whole 

dataset, then implements the compression techniques, but the CS 

method is different, it directly collects the compressed signal by 

calculating the inner products between original data and known 

vectors. This method is called “coded aperture”. There are several 

approaches to generate the compressed signal from original data. 

In order to simplify the reconstruction algorithm, the research 

work uses the following strategy to generate the compressed 

signal. First, the spatial and spectral domain are decoupled, then 

Gaussian independent vectors are used to calculate the inner 

products [39]. The Fig.1 shows the Hyperspectral data 

compression and decompression. In order to justify the 

reconstruction of original data from compressed measurement, we 

minimize the convex objective function that contains 2D total 

variation regularizer and the quadratic-data eccentric term. This 

objective function minimization is a difficult optimization 

problem due to the existence of non-smooth terms and its large-

dimensionality. To solve this problem, the Bregman Iteration 

method of multipliers [40] is adopted to convert a difficult 

optimization problem into a simpler cyclic sequence problem. 

 

Fig.1. Hyperspectral data compression and reconstruction 

Consider a 3D-hyperspectral image in matrix format given by 
b pX R

 
 , where αb denotes the number of spectral bands, αp = 

αr × αc denotes the number of pixels. αr and αc represents the 

number of rows and columns of hyperspectral image respectively. 

The X at column side corresponds to the column wise organisation 

of spectral vectors. The vector measurement by CS is Y ∈ Rk. The 

measured vector Y can be modelled as: 

 Y = β(X) + ϑ (1) 

where, β is a linear operator matrix, which calculates k inner 

values between k known vectors and vectors in X. The element ϑ 

corresponds to system noise and modelling errors. The main aim 

of CS is to reconstruct X from Y with k≪α, α=αb×αp. Recovering 

X is very difficult even in the absence of noise because β is 

undetermined. If vector x can be represented in some frame ϕ, i.e. 

x = ϕΘ where Θ is sparse vector and x ≔ vex(X). The optimization 

problem to recover X from Y can be now formulated as: 

 minΘ ‖Θ‖1 subject to: ‖Y-βϕΘ‖ ≤ ς (2) 

where, ς ≥ 0 is the scalar value linked to the noise statistics. Above 

optimization problem is synthesis based, since we have synthesis 

prior and we synthesize x = ϕΘ. In [41], L1 regularization using 

synthesis and analysis priors has been compared. Results indicate 

the superiority of analysis methods. Hence, we solve Eq.(2) using 

analysis based method. For that, we introduce an analysis operator 
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ψ. Transformed vector ψx is sparse. Therefore, Eq.(2) can be 

written as: 

 minx ‖ψx‖1 subject to: ‖Y-βx‖ ≤ ς (3) 

In the proposed method, CS is performed in the spectral 

domain. Different measurement matrices, containing Gaussian 

i.i.d. entries are used for each pixel. Let p denote the number of 

measurements to be performed at a particular pixel. Then, βi∈Rp×b. 

Therefore, measurement matrix β can be written in the block 

diagonal form as: 

 Β := Bdg (β1, β2,…,
p )  (4) 

where, βi computes the p projections of vector xi. Hence, we get 

p×αp measurements and a CR (compression ratio) of αb/p. 

Hyperspectral image consists of hundreds of bands which 

corresponds to reflectance of the same surface at different narrow 

regions of the electromagnetic spectrum. Hence, bands in the HSI 

are highly correlated. Reflectance spectrum at each pixel in an 

HSI is a mixture of several endmember spectra. Endmembers 

corresponds to the spectral signatures of a specific material. 

Fractions of each end members in the spectrum mixture at each 

pixel location in the HSI is called fractional abundance map. 

The Fig.2 illustrates the concept of linear mixing model for 

HSI. According to linear mixing model, the measured reflectance 

at a pixel in an HSI is a weighted average of reflectance of 

materials present in the pixel. Therefore, under the linear mixing 

model assumption, we can model X as: 

 X = F(T) (5) 

where, F is the mixing matrix, whose columns corresponds to 

spectral signatures of end members [42]. F ∈ b g
R
  with g≪αb. T 

is the fractional abundance map. Entries in T corresponds to 

fractional abundance coefficients associated with the end 

members at each pixel location. The estimation of mixing matrix 

from the ‘original data’ has been done using RMVSA (i.e. Robust 

minimum value simplex algorithm [43]). It is practical to accept 

that the estimation of mixing matrix F is done before the data 

compression. That is why, we are able to reconstruct the T 

coefficients in the ‘earth station’. During unmixing process, non-

negative constraint is imposed on T, i.e. T ≫ 0. 

 

Fig.2. Linear mixing model for HSI 

Considering x = vec(X), vec(X) = vec(FT)=(Iden⨂F)t where, 

t=vec(T). Iden denotes the identity matrix and F is the mixing 

matrix estimated from the original data. Then, we can write linear 

operator β on x as: 

 βx=β(Iden⨂F)t = Bdg(β1F,…
p F)t (6) 

Let, 

 W ≔ Bdg(β1F,…
p
F )t  (7) 

Similar to Eq.(3), we can formulate the convex optimization 

problem to recover the 𝑡 coefficients as follows: 

 minx‖ψt‖1 subject to: ‖Y-Wt‖ ≤ ς (8) 

Regularizer ‖ψt‖1 is the sum of total variations (VT) of g images 

of coefficients T. 

 ‖ψt‖1  : i

TV T   VT(t) (9) 

where, Ti is the ith image coefficient representation with respect to 

matrix F, therefore, ψ is a discrete gradient operation on Ti. 

To obtain piecewise-smooth coefficients of image, we 

minimize VT(t). There is a suitable mode to write VT(t) in terms of 

the proposed algorithm, as follows: 

 VT(t) = I(Et) (10) 

where, I is the given frame and E ≔ 
tr

tr tr

h vE E   where, Eh and Ev 

corresponds to gαp × gαp matrices calculating the backward 

vertical and horizontal differences. Hence, the isotropic total 

variation regularizer can be defined as: 

            
2 2

, ,
1

g

h vi j i j
j

I Et E t E t


   (11) 

Isotropic total variation regularizer is chosen because it 

provides more flexibility regarding the type of discontinuities 

present in HS-data cubes. According to above mentioned 

considerations, we are now addressing the following optimization 

problem. 

  
2

2
min 0.5 subjected to 0t TY Wt V t t    (12) 

The concept of Bregman distance was first introduced in the 

literature by mathematician L. Bregman [44], where Bregman 

iterations are used in convex analysis. Later, the method of 

Bregman iterations are applied to various image processing 

applications by Stanley Osher et al. [45]. 

For a constrained minimization problem of the form, 

 minuC(u) such that Nu=s (13) 

where C(u) is a convex function. One can find the solution to the 

above problem by Bregman method as follows, Bregman distance 

is given by the formula: 

      , ,
Ld L L L L

CD u u C G C G d u u     (14) 

where, dL ∈ ∂C(uL). By the definition of subdifferentials, 

dL∈∂C(uL) means that, 

 C(v)-C(uL)- ,L Ld u u ≥ 0 ∀v (15) 

Bregman iterations: 

  
21 arg min , 0.5

LL d L

u Cu D u u Nu s     (16) 

 1 1L L T Ld d N Nu s     (17) 

4. SHSIR ALGORITHM 

The main aim of proposed SHSIR algorithm is to compute T̂  

the matrix setup. Afterwards, we conclude the original 

‘hyperspectral’ data by calculating ˆ ˆX FT .The main idea to 

solve the optimization problem in Eq.(12) is to assign new set of 
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variables periodically and later we use augmented Bregman-

iterations method of multipliers to solve the constrained 

optimization problem. Equivalent formulation of Eq.(12) is given 

by, 

    
2

2
min 0.5t R

Y Wt I Et t      (18) 

where,    
1

pg

iR R
i

t t



  



 is an indicator function. ti corresponds 

to ith element in t.  iR
l t  is zero if ti belongs to non-negative 

orthant, otherwise it is positive infinity. 

Objective function in Eq.(18) can be written the following 

equivalent form: 

    
1 2 3

2

, , , 1 2 32
min 0.5t G G G R

Y WG G I G     (19) 

subject to: G1 = t, G2 = t, G3 = Et. 

In compact form, Eq.(19) can be written as, 

 mint,G a(G) subject to: G = At (20) 

where, 

 
1 2 3: , ,

tr
tr tr trG G G G     (21) 

      
2

1 2 32 R
a G Y G G I G      (22) 

where, 

 A=[Iden,Iden,E]tr (23) 

To solve the constrained optimization problem Eq.(20), we 

use adaptive ADMM (Alternating Direction Method of 

Multipliers). ADMM decomposes the complex optimization 

problems into cyclic sequence of subproblems. The drawback of 

ADMM is, we need to manually choose the penalty parameter for 

the efficient performance of the algorithm. This problem is 

addressed by AADMM [46], which is completely automated. In 

our algorithm, we make a small modification to the AADMM by 

adding Bregman distance to the augmented Lagrangian. Thus, we 

solve for coefficients t by performing Bregman iterations. 

Therefore, by problem in Eq.(20) can be reformulated in terms of 

Bregman-adaptive ADMM iterations as follows: 

       
2

, , , ,
2

d L d L L
a a

L

B t G E a G D G G D t t At G E
 


        (24) 

where,  ,d L

aD G G and  ,d L

aD t t  are Bregman distances, given by: 

      , ,
Ld L L L

aD G G a G a G d G G     (25) 

      , ,
Ld L L L

aD t t a t a t d t t     (26) 

where L represents the iteration. Bregman distance is not a 

distance by actual means, it actually measures the closeness 

between G and GL, t and tL. 

Algorithm 1 (SHSIR) 

Initialization: set L=0 

Select: τ ≥ 0 

Parameter selection: 

  
 

 

0
0 (0) (0) (0) (0) (0) (0)

1 2 3 1 2 3 0
, , , , , , ,t G G G E E E




 

 

Parameter updates: Bregman iterations 

    1 ( ) ( ) ( ) ( ) ( ) ( )

1 2 3 1 2 3argmin , , , , , ,
L L L L L L L

tt B t G G G E E E

  

     
1

1 1 ( ) ( )

1 1 2 3argmin , , ,
L L L L

GG B t G G G
 
  

     
2

1 1 ( 1) ( )

2 1 2 3argmin , , ,
L L L L

GG B t G G G
    

     
3

1 1 ( 1) ( 1)

3 1 2 3argmin , , ,
L L L L

GG B t G G G
     

Update: 

        
 

 

1 1 1

1 1 1

L
L L t L

L
E E t G





  
     

        
 

 

1 1 1

2 2 2

L
L L t L

L
E E t G





  
     

        
 

 

1 1 1

3 3 3

L
L L t L

L
E E t G





  
     

    
 

  1 1 1L L Ltr

a a L
d d A At G

  
    

Update τL+1, L until some stopping criterion is satisfied. 

The steps involved in SHSIR algorithm is given in Algorithm 

1. It is the expansion of Eq.(24). In algorithm 1, the main aim of 

step 4 (parameter update) is to conclude the variable t value at 

each iteration. This kind of problem referred to a quadratic 

problem with block-circulant system matrix, so it is effectively 

resolved in the Fourier domain. 

5. EXPERIMENTAL RESULTS 

This section demonstrates the noise robustness and 

reconstruction ability of the proposed SHSIR algorithm. The 

proposed algorithm is compared with some existing hyperspectral 

compressive sensing methods (HCSM) and the simulation has 

been done using Matlab 2016b. Here the system configurations is 

8GB RAM, 1TB ROM, Intel i5 processor, 2GB NVidia Graphics 

card with the latest operating system of Windows 10. 

In this paper, two HSI datasets are selected as the experimental 

data for the reconstruction of image. They are URBAN [47] and 

PAVIAU [48]. The URBAN dataset has the dimensions 307 × 307 

× 210. It is a 210 bands hyperspectral cube, where each scene 

comprises of 307 × 307 pixels. For experimentation, we have 

cropped the image to 200 × 200 pixels dimension in each band. 

The PAVIAU dataset has the dimensions 610 × 340 × 103. It is a 

103 bands hyperspectral cube, where each scene comprises of 610 

× 340 pixels. In our experiment, image is cropped to have a 

dimension of 200 × 200 pixels in each band. The images are 

cropped to reduce the computational complexity and time. 

In this paper, three state of art HCS based compression 

techniques are considered for comparison. They are, Orthogonal 

matching pursuit (OMP [49]), Reweighted Laplace prior based 

HCS (RLPHCS [50]) and structured sparsity based hyperspectral 

blind Compressive sensing (SSHBCS [51]). OMP is a greedy 

sparse learning technique. RLPHCS is a structured-sparsity based 

sparse learning technique. Both OMP and RLPHCS uses off the 

shelf dictionaries to sparsify the HSI. SSHBCS is also a structure-

sparsity based sparse learning technique but unlike OMP and 

RLPHCS, SSHBCS performs sparse estimation from 
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measurements using the learned dictionary. All the above 

mentioned three state of art models are compared with the 

proposed model. 

To calculate the performance of reconstructed image through 

different methods, three parameters have been considered. They 

are Structural similarity index measure (SSIM [52]), Peak signal 

to noise ratio (PSNR [53]) and Spectral angle mapper (SAM [54]). 

These parameter measures helps to measure the performance 

difference between our proposed model and other state of the art 

techniques which has been considered for comparison. 

Specifically, PSNR measure indicates the average data similarity 

between original image reconstructed image. Hence higher PSNR 

indicates better reconstruction model. SAM measures the average 

spectral angle between original and reconstructed image at a 

particular pixel position. Hence smaller SAM values indicates 

better performance. 

The Sampling rate corresponds to the dimension’s proportions 

of the measurements with respect to the actual HSI. It ranges from 

0.1-0.5 in the experiments. The sampling rate is varied from 0.1 

to 0.5 to demonstrate the reconstruction capability of the 

algorithm at various sampling rates. Afterwards, an additive white 

Gaussian noise is added into the measured HSI with different 

sampling rate to mimic the noise corruption in hyperspectral 

compressive sensing (HCS). This gives rise to SNR of 20 dB in 

the measured HSI. 

The algorithm is also verified for reconstruction under 

different levels of noise with constant sampling rate of 0.4 In the 

experiments SNR value ranges from 5dB to 40dB to analyse the 

performance of the algorithm under different levels of noise. 

5.1 RECONSTRUCTION AT DIFFERENT 

SAMPLING RATES AND NOISE LEVEL 

The Table.2 shows the PSNR at different sampling rates for 

the URBAN dataset, similarly Table.4 shows the PSNR at 

different sampling rates for the PAVIAU dataset. In both cases, 

sampling rate (SR) varies between 0.1-0.5 at an interval of 0.05 

with an additive Gaussian noise of 20dB. 

In Table.2, at 0.1 SR the proposed SHSIR model is having 

30.75 PSNR value, which is 10.9% more than the SSHBCS, 

12.2% more than RLPHCS and 36.59% more than the OMP 

approach. At 0.5 SR, the SHSIR model is having 43 PSNR value 

that is 25.23%, 29.35% and 35.16% more compared to the 

SSHBCS, RLPHCS and OMP model. The average PSNR value 

of SHSIR algorithm is 37.4 (SR 0.1 to 0.5), which is 17.9%, 

21.6% and 26.54% more than the existing model of SSHBCS, 

RLPHCS and OMP. 

Similarly, in Table.4, the average PSNR value of SHSIR 

algorithm is 50.33 (SR 0.1 to 0.5), which is 36.8%, 39.4% and 

44.11% more than the existing model of SSHBCS, RLPHCS and 

OMP. 

Table.2. PSNR at different sampling rates with 20dB noise 

(URBAN dataset) 

Sampling 

Rate 
0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 

OMP [20] 19.5 25 
28.6

7 
29.8 29.6 29.3 29 28.6 27.9 

RLPHCS 

[21] 
27 

28.6

4 

28.6

6 
29.2 29.5 30 30.2 30.4 30.4 

SSHBCS 

[22] 
27.4 

29.5

6 

29.9

8 
30.8 

30.8

4 
31.5 31.8 32.3 

32.1

5 

SHSIR 30.75 
32.1

6 
34 

35.8

5 
37.8 

39.2

9 

41.2

5 

42.5

8 

43.0

3 

Table.3. SAM at different sampling rates with 20dB noise 

(URBAN dataset) 

Sampling 

Rate 
0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 

OMP [20] 18.75 13.9 10.8 9.7 10.5 10.62 11 11.38 12.2 

RLPHCS 

[21] 
11.2 10.32 10.51 9.96 9.8 9.44 9.21 8.8 8.95 

SSHBCS 

[22] 
9.7 8.4 8.35 7.3 7.49 7 7.1 6.4 6.8 

SHSIR 11 8.56 6.7 5.15 4.23 3.44 2.6 2.21 2.07 

Table.4. PSNR at different sampling rates 20dB noise (PAVIAU 

dataset) 

Sampling 

Rate 
0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 

OMP [20] 22.14 25.3 30.75 30 
29.3

7 

29.5

2 

29.3

8 

28.6

2 

28.1

1 

RLPHCS 

[21] 
27.6 

28.8

1 
30.76 

30.7

4 
31 

31.1

9 

31.4

5 

31.4

4 

31.4

6 

SSHBCS 

[22] 
27.8 

29.5

6 
32.23 32.2 

32.4

5 

32.8

5 

33.0

8 
33 

33.1

4 

SHSIR 43.95 
46.5

4 
48.11 

49.7

9 
50.6 

52.0

9 

52.9

3 

53.9

3 

55.0

7 

Table.5. SAM at different sampling rates with 20dB noise 

(PAVIAU dataset) 

Sampling 

Rate 
0.1 0.15 0.2 

0.2

5 
0.3 0.35 0.4 0.45 0.5 

OMP [20] 
17.6

2 

12.5

1 

8.1

1 
9.7 

10.

5 

10.6

2 
11 

11.3

8 

12.

2 

RLPHCS [21] 9.7 8.9 7.8 
7.8

2 

7.4

5 
7.3 7 7.05 6.9 

SSHBCS [22] 8.8 7.3 5.7 
5.8

2 

5.7

1 
5.47 5.3 5.4 

5.2

2 

SHSIR 1.82 1.34 
1.1

4 

0.9

4 

0.8

5 
0.72 

0.6

5 
0.58 

0.5

1 

The Table.3 shows the SAM values at different sampling rates 

for the URBAN dataset, similarly Table.5 shows the SAM values 

at different sampling rates for the PAVIAU dataset. In Table.3, at 

0.1 SR the SAM value of SHSIR is 11.05 that is 12.2% more than 

the SSHBCS, 1.3% and 41% less than the RLPHCS and OMP 

respectively. We can clearly observe that SSHBCS performs 

better at 0.1 and 0.15 SR, other than that, our proposed model 

performs considerably well from 0.2 to 0.5 SR value. The average 

SAM value of SHSIR algorithm for URBAN data set is 5.12 (SR 
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0.1 to 0.5), which is 32.79%, 47.7% and 57.6% less than the 

existing model of SSHBCS, RLPHCS and OMP. 

Similarly, in Table.5, at 0.1 SR, the proposed SHSIR model is 

having 1.8 SAM value, which is 79% less than the SSHBCS, 81% 

less than RLPHCS and 89.6% less than the OMP approach. The 

average SAM value of SHSIR algorithm for PAVIAU data set is 

0.95 (SR 0.1 to 0.5), which is 84.3%, 87.7% and 91.7% less than 

the existing model of SSHBCS, RLPHCS and OMP. 

The Fig.3(a) shows the SAM versus noise level bars for the 

URBAN dataset, similarly Fig.3(b) shows the SAM versus noise 

level bars for the PAVIAU dataset. In both cases sampling rate is 

kept constant i.e. 0.4. The Gaussian noise added is varied from 5 

dB to 40dB to analyze the performance of algorithm at different 

noise levels. The average SAM value of SHSIR algorithm for 

URBAN data set is 2.62 (SNR 5dB to 40dB), which is almost 

three times, four times, seven times less than the existing model 

of SSHBCS, RLPHCS and OMP. 

 

(a) 

 

(b) 

Fig.3. SAM vs. noise level bars (a) URBAN dataset, (b) 

PAVIAU dataset 

Similarly, in Fig.3(b), the average SAM value of SHSIR 

algorithm for PAVIAU data set is 0.6547 (SNR 5dB to 40dB), 

which is thirteen times less than SSHBCS and RLPHCS model, 

and almost 20 times less than average SAM value in OMP model. 

The Fig.4(a) shows the MSE (Mean Square Error) with respect 

to the different bands in the URBAN dataset. When the 

measurement SNR is 20 dB and the sampling rate is 0.2, the error 

in reconstruction using SHSIR algorithm is more close to zero, 

which can be seen in Fig.4(a) and the average value of MSE from 

0 to 128 band is 0.0021, the maximum variation is seen in 90th and 

100th band. Similarly, Fig.4(b) shows the MSE with respect to the 

different bands in the URBAN dataset at 0.4 sampling rate. Here 

also the error rate is closer to zero that can be seen in Fig.4(b), the 

maximum variation is seen in 78th and 88th band and, the average 

value of MSE is 0.0021. 

 

(a) 

 

(b) 

Fig.4. MSE at different band numbers (a) URBAN dataset (0.2 

Sampling rate), (b) URBAN dataset (0.4 Sampling rate) 

6. CONCLUSION 

The research work proposes a new framework for the 

compression of hyperspectral data acquired in compressive 

sensing fashion. The proposed SHSIR algorithm takes benefit of 

the two main hyperspectral data properties, such as the high 

spatial correlation between abundance fractions and less number 

of end members, required to represent the data. The main 

constraint of SHSIR algorithm is computation time since we are 

dealing with huge hyperspectral datasets. We overlook the 

computation time for the reconstruction, as it happens in the 

ground station where resources are available in abundance. The 

improvement in the performance is obtained because we have 

incorporated RMVSA algorithm for endmember extraction, 
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which increases the accuracy in endmember extraction. Another 

main reason for better performance of our algorithm is, we have 

used Bregman solver to solve the optimization problem, which 

advances the reconstruction accuracy of the original HSI data set. 

The proposed algorithm is compared with state of art CS based 

compression algorithms. Experimental results demonstrate the 

supremacy of the proposed technique over other state of art 

techniques. 
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