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Abstract 

High dynamic range imaging aims at creating an image with a range 

of intensity variations larger than the range supported by a camera 

sensor. Most commonly used methods combine multiple exposure low 

dynamic range (LDR) images, to obtain the high dynamic range 

(HDR) image. Available methods typically neglect the noise term 

while finding appropriate weighting functions to estimate the camera 

response function as well as the radiance map. We look at the HDR 

imaging problem in a denoising frame work and aim at 

reconstructing a low noise radiance map from noisy low dynamic 

range images, which is tone mapped to get the LDR equivalent of the 

HDR image. We propose a maximum aposteriori probability (MAP) 

based reconstruction of the HDR image using Gibb’s prior to model 

the radiance map, with total variation (TV) as the prior to avoid 

unnecessary smoothing of the radiance field. To make the 

computation with TV prior efficient, we extend the majorize-minimize 

method of upper bounding the total variation by a quadratic function 

to our case which has a nonlinear term arising from the camera 

response function. A theoretical justification for doing radiance 

domain denoising as opposed to image domain denoising is also 

provided. 
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1. INTRODUCTION

The range of intensity variations that the human eye 

experiences during a day is usually very large, for example the 

light of the sun at noon is around 100 million times more than 

that of the starlight [15]. The human visual system copes with 

this large range by adapting to the prevailing conditions of 

illumination, and through this adaptation it can function over a 

range of 10 orders of magnitude. Within a scene the visual 

system functions over a range of 5 orders of magnitude. Display 

devices like CRT, LCD and the cameras are not capable of 

reproducing such a large luminance range. These devices are not 

capable of handling a range greater than 2 orders of magnitude, 

which leads to irretrievable loss of information in the scene. 

Using high dynamic range imaging techniques, an image with 

intensity variations commensurate with the original scene can be 

generated; even when the data is captured using dynamic range 

limited devices. 

Many of these high dynamic range (HDR) imaging 

techniques use low dynamic range (LDR) images which are 

captured at different exposure settings for creating the HDR 

image [1, 9, 18, 23, 25, 26, 28, 31]. These methods estimate the 

non-linear relationship between exposure and image intensity 

and hence the radiance map. This non-linear relation is named 

the camera response function (CRF). Given the CRF, the 

radiance map of the scene being imaged is calculated as a 

weighted average of the radiance map corresponding to each of 

the LDR images. 

A large class of the proposed methods differs only in the way 

the weighting function is selected [9, 18, 23, 25, 31] and they 

cannot appreciably handle noisy data. However noise in the data 

is inevitable, more so when the exposure time is small. Other 

methods [1, 26, 28] apply statistical methods for obtaining the 

inverse camera response as well as the radiance map. While 

these methods do address the issue of possible noise in the 

observations, the noise is handled mainly by selecting 

appropriate weights, to obtain the camera response function and 

hence the HDR image and they fail to denoise the HDR image 

appreciably. 

The method of Mann and Picard [23] obtains the camera 

response function from LDR images and uses the derivative of 

the camera response function as the weighting function for 

combining the images. Debevec and Malik [9] uses a hat 

function for weighting the pixels. Weighting functions based on 

signal to noise ratio and output standard deviation are considered 

in the work of Mitsunga et al. [25] and Tsin et al. [31]. Miguel et 

al. [18] propose a weighting function which takes into 

consideration the spatial and temporal noise. 

Among the statistical methods, Robertson et al. [28] use 

maximum likelihood approach to estimate the high dynamic 

range image; their formulation deals with the cases of known 

and unknown camera response functions. Pal et al. [26] propose 

a Bayesian network based probabilistic model for high dynamic 

range imaging. An alternate method for noise reduction is 

proposed by Aky et al. [1] in which a weighted averaging in 

radiance domain over a fixed number of frames is done to reduce 

the noise. Other methods used in literature include bilateral 

filtering [14]; wavelet based denoising of the LDR images 

before combining them to form the HDR image [20] and multi-

frame denoising when the camera is in motion [24]. 

Image denoising is one of the widely explored areas in image 

processing. There are several methods reported in the literature 

for denoising. We list a few here indicative of the different 

approaches. Wiener filter [33], is an optimum linear filter for 

denoising, but has the problem of over smoothing the image. 

Wavelet shrinkage based denoising methods depends on the fact 

that the magnitudes of wavelet coefficients are directly 

proportional to the irregularity of a given image. Denoising can 

be achieved by properly suppressing the irregularity of wavelet 

coefficients due to noise. The theoretical foundations and 

different approaches to wavelet shrinkage are reported in [6, 10, 

12, 13, 22]. 

Edge preserving denoising methods include Geman and 

Geman’s Bayesian image restoration [17], and total variation 

based denoising which was first introduced by Rudin and Osher 

[29, 30], based on which numerous works have been reported [3, 

7, 8, 11, 21, 32]. Another approach to denoising is via nonlinear 

diffusion, reported by Perona and Malik [27] in which diffusion 

coefficient giving edge selectivity was used. Recent works 
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include unsupervised information theoretic adaptive filtering [4] 

and the non-local means algorithm [5]. 

We propose a restoration framework for generating a less 

noisy HDR image from multiple exposures, noisy LDR images 

with known exposure times. The radiance map is reconstructed 

using Bayesian methods. The posterior probability density 

function for the radiance is obtained given the noisy 

observations having different but known exposure times. Since 

the observations are a nonlinear function of the radiance, finding 

the optimum radiance involves solving a set of nonlinear 

equations. In the work by Debevec et al. [9] even though a 

smoothness term is used while solving for the camera response 

function, it is seen that the generated radiance map is noisy. In 

our work, we take this noisy radiance map and do the denoising 

in the radiance domain to obtain a better quality image, leading 

to compositing as well as denoising. 

We first formulate a GMRF prior which is then replaced by a 

total variation based prior. Our formulation requires the 

knowledge of camera response function (CRF). Hence we 

estimate the CRF using the method of Debevec [9]. Work on 

similar lines where radiance domain formulation is done is 

reported for a single, low dynamic range image reconstruction in 

the work of Hunt [19], wherein the nonlinear relation between 

radiance and intensity is considered. In [19] the MAP estimate 

directly reconstructs the intensity from a single observation as 

opposed to our formulation which reconstructs the radiance map 

from multiple, noisy LDR images. 

It is observed that the GMRF prior leads to excessive 

smoothing, so we propose a TV based prior which would be 

equivalent to a Laplacian distribution. This yields better results 

where the edges are well preserved and noise is reduced 

considerably. We also propose an adaptation of the majorize-

minimize method of Figueiredo et al. [16] originally proposed 

for a linear case, to our nonlinear formulation, through iterative 

linearization for drastically speeding up the computation for the 

case of TV based prior. We also show theoretically that looking 

for a solution in the radiance domain as opposed to image 

domain is well justified. 

2. PROPOSED METHOD 

The image formation model used is 

 Yi = gi(R)+Ni    i = 1…k,  (1) 

where, Yi are the observed LDR images, each having a different 

but known exposure time, i denotes the exposure time. The 

function gi maps radiance (R) to intensity Yi corresponding to the 

i
th

 exposure. This function is obtained from the camera response 

function which maps intensity to exposure. Exposure is defined 

as the product of radiance and exposure time. As the camera 

response function varies with the camera settings, gi is different 

for different i. Ni is a sample of additive white Gaussian noise. 

Without loss of generality it is assumed that the noise variance is 

same for all exposures. 

Due to the presence of noise in the observations, the 

estimation of CRF and hence that of the radiance map suffers, 

leading to a tone mapped image which is still noisy. This is 

observed in Fig.2(a) which shows the high dynamic range image 

reconstructed using the method of Debevec [9]. Even though 

they use smoothness regularization, the reconstructed HDR 

image still shows noise. In our approach, we aim to reduce this 

noise by finding the radiance value which maximizes the 

posterior distribution of radiance, given the observations Yi, 
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where, Y is defined as Y = [Y1 …..YK]. For a given radiance R 

and gi which is already estimated, it is observed from Eq.(1) that 

Yi are independent Gaussian random variables with mean gi(R). 

This gives, 
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Since the scene satisfies the smoothness properties of an 

image, it can be modeled as a Gaussian Markov random field. 

Since the Gibbs random field and Markov random field are 

equivalent, the probability density of the radiance field is written 

using the Gibb’s equivalent distribution as [2], 
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with  a regularization constant and 
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where, l indexes the pixels in the image and Nl represents the 4-

neighborhood of l, rl is the radiance value at the l
th

 pixel 

location, and Z is a normalization constant known as the 

partition function. Let R̂ be the radiance that maximizes Eq.(2), 

i.e., 

 |
ˆ arg max ( | ).R Y

R
R f R Y  (6) 
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where,  is the regularization factor. Eq.(7) is a variational 

problem and is solved iteratively as, 
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 is the radiance 

of the point in the scene corresponding to the (k, l)
th

 pixel in the 

image, t is the iteration number and ' (.)ig is the derivative of 

gi(.). This computation requires the knowledge of gi(.) which is 

obtained as explained next. 

2.1 ESTIMATING THE MAPPING BETWEEN 

RADIANCE AND INTENSITY 

The function g(R) used in Eq.(1) maps the scene radiance to 

the image intensity. We estimate this function using the method 

of Debevec et al. [9], in which the nonlinear function that relates 

the logarithm of exposure to intensity is obtained. From this g is 

calculated using the exposure time. Debevec’s method gives the 

log exposure only at certain discrete intensity values, a closed 

form expression for g is obtained using curve fitting. The nature 

of the function obtained through curve fitting is, 

 g(R) = a ln(1 + R/b).  (9) 
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where, R is the radiance and a, b are constants obtained through 

curve fitting (see Fig.1). 

2.2 TOTAL VARIATION AS A REGULARIZER 

Results of Eq.(8) showed that though the noise is reduced 

there is substantial smoothing. We propose a TV based prior in 

order to preserve the edges. The prior is proportional to exp(-TV 

(R)) where TV(R) is the total variation of the radiance map. We 

also adapt the method of Figueiredo et al. [16] for our nonlinear 

formulation for faster computation. In [16] the total variation is 

upper bounded by a quadratic function and the resulting 

quadratic cost function is solved using conjugate gradient 

method. The total variation of the radiance R (TV (R)) is defined 

as, 
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where, 
h
i  and 

v
i  corresponds to the horizontal and vertical 

first order differences. 
h
i R = ri - rj and 

v
i R = ri -rk where rj and 

rk are the neighbors to left and above, respectively of ri, the 

radiance at location i. For the model of Eq.(1), the cost function 

which is the negative logarithm of aposteriori probability 

density, with a total variation based prior is, 
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Since solving this is computationally very demanding, we 

use the quadratic approximation for TV as proposed in [16], 
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R are the vectors of all 

horizontal and vertical first order differences. Ʌ
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where, diag(L) means a diagonal matrix with elements of L as 

the diagonal and W
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 is a vector whose i
th

 element is 
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K(R
(t)

) is a constant independent of R, and hence is not 

considered in the overall cost function. The overall cost function 

(C(R)) is obtained by substituting Eq.(12) in Eq.(11) and 

neglecting the terms that do not affect the optimization. This 

gives, 
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The method proposed by [16] is for a linear system, since 

Eq.(15) contains the nonlinear term g(R), we linearize this at R
(t)

, 

the solution at iteration t, as follows, 

 g(R) = g(R
(t)

) + Δg(R
(t)

)(R - R(t)
),  (16) 

where, Δg(.) is an MN × MN diagonal matrix whose diagonal 

entries are g(R)/ri, i = 1....MN evaluated at R = R
(t)

. 

Using Eq.(16) in Eq.(15) and equating the derivative of the 

cost function to zero, we get 
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where, Gi = gi(R)|R = R
t
 and A

i
 = Δgi(R)|R = R

t
 . We solve 

Eq.(17) directly using the conjugate gradient method to obtain 

the radiance value at iteration t + 1. There is an outer loop which 

is indicated by t, and an inner loop which is the conjugate 

gradient step. 

The optimum radiance is obtained by solving Eq.(17) 

iteratively. Once the radiance is obtained, it is tone mapped to 

get the LDR equivalent of the HDR image. 

3. JUSTIFICATION FOR USING RADIANCE 

DOMAIN 

Here we justify the reason for doing a simultaneous radiance 

domain fusion and denoising as opposed to image domain 

denoising. Conventional denoising methods estimate the 

intensity that maximizes the aposteriori probability of the image 

intensity given the noisy observation. We show that the optimum 

intensity is not same as the intensity obtained by tone mapping 

the optimum radiance estimate. We do the analysis considering 

only a single observation, for simplicity and we assume the prior 

obtained by modeling the image as a GMRF. The extension to 

TV prior is straight forward as is shown in Claim 2. 

The model used while estimating intensity is same as that 

given in Eq.(1) with g(R) replaced by X, for a single observation. 

While estimating the optimum intensity, the intensity is assumed 

to be a GMRF, which is the same assumption used in Eq.(7) 

while estimating the radiance. Since the nature of prior function 

is the same for the intensity as well as radiance formulations, the 

corresponding cost functions can be written as in Eq.(18) and 

Eq.(19), respectively. They differ only in the data term d(X). In 

both the equations r(.) is same as U(.) of Eq.(4) 

 C1(X) = d(X) + 1r(X).  (18) 

 C2(R) = d(g(R)) + 2r(R).  (19) 

Let X̂ be the intensity that minimizes Eq.(18) and '
GR  the 

corresponding radiance, i.e. ' 1 ˆ( )GR g X , and let ˆ
GR  be the 

radiance that minimizes Eq.(19). 

Claim 1: ˆ ˆ( )GX g R = g(R^G) 

Proof: We will prove the claim by contradiction. Assume that 

 ˆ ˆ( ),GX g R  (20) 

where, X̂ is defined as, 

 1
ˆ arg min ( ).

X
X C X   (21) 

i.e.,   1
ˆ ˆ( ) ( ) 0,rd X X     (22) 
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where, ˆ( )d X is the gradient of d(X) at X = X̂ . If '
GR

minimizes C2(R), then '
2 ( ) 0GC R  , where 2 ( )C R is the 

gradient of C2(R). From Eq.(19), 2 ( )C R is, 

 2 2( ) ( ),g d rC R D D R      (23) 

where, Dg is a diagonal matrix with the diagonal 
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Since Dd is essentially the derivative of the function d(.), 

 ( ).dD d X   (24) 

With ' 1 ˆ( )GR g X , the gradient of C2(R) at 
'RG becomes, 
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Let '
GR = ˆ

GR , i.e. '
GR minimizes, C2(R), then '

2 ( ) 0GC R  . 

Using this and Eq.(26) in Eq.(25) 
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For the case where r(.) is the smoothness function derived 

from Gibbs equivalent distribution Eq.(4), gradient of r(X) is of 

the form AX, where A is a matrix whose entries depend on the 

neighborhood relation used. Using this in Eq.(27) 
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The relation between X̂ and '
GR as suggested by Eq.(29) is 

not same as 'ˆ ( )GX g R . Considering the i
th

 row of Eq.(29) 
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i i k
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where, k are constants and Ni is the set of neighbours of i. This 

leads to a contradiction since, 'ˆ ( )i ix g r by definition and g(.) is 

a concave function. In our experiments g(RG) = a ln(1 + RG/b), 

and Eq.(30) is not of this form. Hence the assumption that '
GR  

minimizes C2(R) is not correct, i.e., ' ˆ
G GR R , which proves the 

claim. 

A proof on similar lines can be given when TV based prior is 

used. With the quadratic upper bound for TV, the cost functions 

given in Eq.(18) and Eq.(19) get modified as, 

  
2 ( )

3( ) ,
tT T

XC X X Y X D DX     (31) 

and 

 
2 ( )

4 ( ) ( ) ,
tT T

RC R g R Y R D DR      (32) 

respectively, where the terms are defined as in Eq.(12), with the 

difference that 
( )t
X is obtained by replacing  in Eq.(14) by 1 

and the radiance values r are replaced by the intensity values x 

and 
( )t
R is similar to Eq.(14) with  replaced by 2 .Let X̂ be 

the intensity that minimizes Eq.(31) and '
TR the corresponding 

radiance, i.e. ' 1 ˆ( )TR g X , and let ˆ
TR be the radiance that 

minimizes Eq.(32). 

Claim 2: ˆ ˆ( )TX g R . 

Proof: We will again prove the claim by contradiction, and the 

method is similar to the previous proof. From Eq.(31), X̂ is 

obtained as, 

  
1

( )ˆ .
tT

XX I D D Y


    (33) 

It may be noted that Eq.(33) has to be solved iteratively and 

is valid with 
( )t
X evaluated at some particular X value. Taking 

the derivative of Eq.(32) w.r.t. R, gives 
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g g RC R D g R D Y D DR      (34) 

where, Dg is defined as in Eq.(23). Let, ' ˆ
T TR R , i.e., '

TR

minimizes Eq.(34), then '
4 ( ) 0TC R  , i.e. 

 
( )' ' ' '| ( ) | 0.
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g T T g T TRD R R g R D R R Y D DR       (35) 

Using ' 1 ˆ( )TR g X and Eq.(33) in Eq.(35) gives, 
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which leads to, 
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From Eq.(37) it is seen that the relation between '
TR and X̂ is 

not of the form 'ˆ ( )TX g R , where g(.) is of the form Eq.(9) 

which leads to a contradiction. Hence the assumption that '
TR

minimizes C4(R) is not correct, i.e., ' ˆ
T TR R , which proves the 

claim. 

4. RESULTS AND DISCUSSIONS 

The first step is to obtain the inverse camera response 

function from the noisy observations, this function relates the 

intensity to log exposure. From this, by knowing the exposure 

time, the function that relates radiance to intensity (g(.)) is 

obtained. This function has to be estimated for each of the 

exposure settings. Since only the noisy observations are 

available, we estimate g(.) in two different ways: 1)using the 

noisy data and 2)denoise the LDR images and then estimate the 

function. The results of both for a noise variance (2
) of 20 are 

shown in Fig.1. Since both methods give almost the same 

estimate for the function, we choose to estimate the function 

from noisy data directly which needs less computation. A closed 

form expression for g(.) is obtained through curve fitting using 

Eq.(9). 
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Fig.1. Plot of intensity vs. radiance obtained from noisy and 

denoised LDR images, noise variance = 20 

The expression of gi(.) thus obtained is used in Eq.(7) and 

Eq.(19) and the optimum radiance is obtained. The number of 

iterations and regularization parameter were chosen empirically 

to obtain the best visual quality. The initial condition for the 

iteration is taken as the average radiance obtained from each of 

the noisy LDR images. The HDR image obtained from 

Debevec’s method [9] and the two proposed methods are given 

in Fig.2 for an image corrupted by noise of variance 30. All the 

images were generated using the same tone mapping function. It 

is seen from Fig.2(a) that there is a noticeable noise level in the 

HDR image obtained using Debevec’s method, especially where 

the image is dark as is noticed on the chair. It is also noticed that 

though noisy, the fine details are preserved in Debevec’s 

method, for example the text visible on the books is readable in 

the first image. For the GMRF prior (Fig.2(b)) , the smoothing is 

high which gives the image a blurred appearance, the text on the 

books is no longer visible, the edges of the window and the 

window blinds are eroded and other fine details are also blurred, 

though the noise level has decreased considerably. Analyzing the 

result of TV regularization (Fig.2(c)) it is seen that this method 

gives a sharper image, which is expected since the total variation 

preserves edges. The text is clearly visible, fine details are well 

preserved and the noise is also reduced considerably. 

The second data set (Fig.3) shows an image corrupted by 

noise of variance 15. It is seen from Fig.3(a) (Debevec’s 

method) that noise is visible on the leaves, which are bright, and 

also on the top right corner of the image. Using a GMRF prior 

reduces the noise but as seen from Fig.3(b), there is smoothing 

which is observed on the rock, and also on the lizard’s body 

where the patches are blurred. This blurring can be observed if 

the image is zoomed (see Fig.4). From the result of TV 

regularization shown in Fig.3(c) it is seen that noise is removed 

considerably and that the edges are also preserved, which gives a 

sharp low noise image. 

We also provide a third data set which shows an image 

corrupted by a noise of variance 20 (Fig.5). In Fig.5(a) which 

shows the result of Debevec’s method, noise is observed on the 

wall, table top and on the windows. Using GMRF prior reduces 

the noise as seen in Fig.5(b), but there is considerable smoothing 

which can be observed on the objects on the shelf, the tree seen 

through the window and also on the objects on the table behind 

the chair. The result of TV regularization (Fig.5(c)), shows that 

noise is reduced to a large extent and the edges are also well 

preserved. 

5. CONCLUSIONS 

In this paper, we have proposed a radiance domain 

compositing and denoising method for high dynamic range 

imaging, using GMRF and TV based priors. From the results 

discussed above it is seen that our method which uses TV based 

prior gives a less noisy but sharp image, which is of higher 

quality than the image generated by Debevec’s method. In the 

case of TV based prior, we have adapted the majorize-minimize 

method of Figueiredo et al. [16] for our nonlinear formulation, 

which leads to faster convergence. The results were obtained 

with 3 outer loop iterations and a conjugate gradient loop of less 

than 20 iterations, with appropriately chosen regularization 

parameter. The algorithm was implemented in MATLAB 

running on an Intel core 2 quad CPU, at 2.66 GHz with 4GB 

RAM. The running time for direct TV and our implementation 

was 136s and 72s respectively for the second data set (image of 

size 1632 × 2464), indicating speed up by a factor of two. 

 
(a) 

 
(b) 
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 (c) 

Fig.2. Tone mapped HDR images from noisy (variance 30) LDR 

images using: (a). Debevec’s method (b). GMRF prior (c). TV 

prior (Data Courtesy: MATLAB Image Processing Toolbox) 

 
(a) 

 
(b) 

 
(c) 

Fig.3. Tone mapped HDR images from noisy (variance 15) LDR 

images using: (a). Debevec’s method (b). GMRF prior (c). TV 

prior (Data Courtesy: Erik Reinhard, University of Bristol) 

 
(a) 

 
(b) 

Fig.4. Zoomed portion of Fig.3, (a). GMRF prior (b). TV prior 

(Data Courtesy: Erik Reinhard, University of Bristol) 
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(a) 

 
(b) 

 
(c) 

Fig.5. Tone mapped HDR images from noisy (variance 20) LDR 

images using: (a). Debevec’s method (b). GMRF prior (c). TV 

prior (Data Courtesy: Tom Mertens, Hasselt University) 
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