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Abstract

The proposed work aims in the restoration of images corrupted by
Gaussian noise, impulse noise. The new algorithm significantly
removes different noises and produce better image quality than
standard median filter (SMF), Centre weighted median filter (CWF)
and threshold decomposition filter (TDF).The proposed algorithm
(PA) is tested on different images corrupted by all two noises and is
found to produce better results in terms of the qualitative and
quantitative measures of the image for noise densities up to 30% noise
level for impulse noise, mean zero and 0.9% variance of Gaussian
noise. The filter works well for speckle noise up to 0.8% variance.
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1. INTRODUCTION

Images are often corrupted by noise, due to degradation
introduced at the input channels, transmission medium, sensor
and/or digitizer. Common types of degradation are blurring,
distortion, additive random noise such as Gaussian white noise
and salt-and-pepper impulse noise, signal-dependent noise such
as speckle, film grain noise and quantization noise [2]. In order
to restore back these images, a proper filter should be carefully
chosen. A good noise removal filter would remove the additive
noise distributions exactly, restoring the original image from the
noisy image completely. To do this, the filtering algorithm must
be specially designed to remove a particular noise distribution.
In reality, no matter how well a noise removal filter is designed,
the restored image always exhibits a certain degree of deviation
in its pixel values from the original image. Excessive deviation
often renders the restored image useless. In other words, the
restored image may be visually unacceptable if subjected to
human inspection [3]. The additive white Gaussian noise which
are caused by poor image acquisition or by transferring the
image data in noisy communication channels. Gaussian noise
removal can be effectively done by linear filtering methods.
Impulse noise is caused by malfunctioning pixels in camera
sensors, faulty memory locations in hardware, or transmission in
a noisy channel. Two common types of impulse noise are the
salt-and-pepper noise and the random-valued noise. For images
corrupted by salt-and pepper noise, the noisy pixels can take
only the maximum and the minimum values while in the case of
random-valued noise; they can take any random value in the
dynamic range. Speckle is a random, deterministic, interference
pattern in an image formed with coherent radiation of a medium
containing many sub-resolution scatterers. The texture of the
observed speckle pattern does not correspond to underlying
structure. The local brightness of the speckle pattern, however,
does reflect the local echogenicity of the underlying scatterers
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[3]. There are two basic approaches to image de-noising, spatial
filtering methods and transform domain filtering methods [4]. A
traditional way to remove noise from image data is to employ
spatial filters. Spatial filters can be classified into non-linear and
linear filters. Many non-linear filters fall into the category of
order statistic neighbor operators [5]. This means that the local
neighbors are sorted into ascending order and this list is
processed to give an estimate of the underlying image
brightness. The simplest order statistic operator is the median
[6], where the central value in the ordered list is used for the new
value of the brightness. The median is good at reducing impulse
noise However, A mean or average filter is the optimal linear
filter for Gaussian noise removal which tend to blur sharp edges,
destroy lines and other fine image details, and perform poorly in
the presence of signal-dependent noise. This paper is organized
as follows. Section II describes noise model. Section III gives a
brief review of related work on Image De-noising using
proposed algorithm. Section IV deals with Exhaustive
Experimental Results and Discussions and finally Concluding
Remarks are given in Section V.

2. NOISE MODEL

Let the true image x belong to a proper function space S(€)
on Q = [0, 1]2, and the observed digital image y be a vector in
Rmxm indexed by A ={1,2,.m}X{1,2,, m}. The image
degradation can be modeled as y = N(Hx), where H : S(Q)~>
Rmxm is a linear operator representing blurring, and N :
Rmxm 2 Rmxm models the noise. Usually, y = Hx + on where
on € Rmxm is an additive zero-mean Gaussian noise with
standard deviation o>= 0. Outliers are modeled as impulse noise.
For an overview, see [7].

y' =Hx+og ()]
y=NO") 2)
where N represents the impulse noise. There are two common
models for impulse noise: the salt-and-pepper noise and the
random-valued noise. If [dmin; dmax] denote the dynamic range
of y’, i.e., dmin <= y’ijj <= dmax for all (i), then they are
denoted by Salt-and-pepper noise: the gray level of y at pixel
location (i j) is
yij =dmin; with probability p;

dmax; with probaility g;

y’ij; with probability 1 - p - g;
Where s = p + g denotes the salt-and-pepper noise level [7].
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Fig.1. Insight of the proposed filter on mixed noises

3. PROPOSED WORK

In the existing threshold decomposition techniques, threshold
levels from 0-255 are used, based upon which the pixels in the
window are decomposed into strings of 1s and Os, depending on
whether the pixel intensity is greater than or lesser than the
threshold level. Then the majority function is found out at each
level which is recombined to produce the median value. The
pixel to be processed is then replaced by the median value.
Large number of threshold levels and bit comparisons are used
in determining the majority function at each level, which
increases the complexity of the process and the time taken for
processing. The complexity of the process can be described as
follows:

Stage 1: The stage involves the process of decomposing the
pixels into 1s are required and Os demands 256 one bit
comparisons for each pixel.

Stage 2: The process of computing the majority function
involves 9 one-bit comparisons at each threshold
level. So, 256X9 comparisons are required for a 3X3
window.

Stage 3: 255 one bit comparisons are required for the process of
recombining the 1’s, to obtain the median value.

3.1. PROPOSED ALGORITHM

The aim of the work is to apply the proposed filter over an image
corrupted by mixed noises (zero mean Gaussian and impulse
noise). Figure 1 denotes the aim of the work. To overcome this
problem, a new algorithm is proposed in which the pixel
intensity itself is considered as the threshold and decomposed
into its equivalent string of 1s, thereby reducing the number of
thresholds. The median is found eliminating the process of
finding out the majority function which in turn eliminates the
process of comparison. Proposed algorithm is given as follows:

STEP 1: A 2D window of size 3x3 is selected. Assume the pixel
to be processed is p(x,y).
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Fig.2. Methodology of the proposed algorithm

STEP 2: Every pixel of the window is decomposed into its
number equivalent strings of 1’s considering the pixel
intensity itself as the threshold. Here the
decomposition is done with the help of a counter
ROWI1, which eliminates the comparison involved in
decomposition process of the conventional and
existing  threshold decomposition techniques.
Simultaneously, the number of 1°s in each column is
counted with the help of a counter and its number
equivalent is stored in COL1 simultaneously.

STEP 3: The values of COL1 counter are decomposed into its
equivalent strings of 1’s and the number of 1’s at each
column is recombined to obtain the pixel intensities of
the window sorted in descending order with the help
of counter VAL. The fifth element of the VAL or the
number equivalent of the fifth column counter gives
the median of the window considered. After the
computation of median, the centre pixel of the
window is replaced by the evaluated median.
Subsequently, the window moves towards the right
for a new set of window values; this processing as
well as the updating procedure are repeated until the
end of the image element is reached. Fig 2 denotes the
methodology of proposed algorithm [1].

4. SIMULATION RESULTS

This Section experimentally analyzes the performance of
developed image denoising algorithm with various median
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filters, such as, standard median filter(inbuilt MATLAB
function) SMF, Center weighted median filter (CWF), Threshold
decomposition filter (TDF), for Gaussian, Speckle and Salt &
Pepper noise added on images such as Lena, Barbara, Baby, girl,
Pepper and Cameraman image. It is experimentally proved that
the proposed algorithm is as optimal for better denoising of
different noises. Filtering performance can be evaluated by
computing Peak Signal to Noise Ratio (PSNR)Image
enhancement factor(IEF) and time using (matlab inbuilt
functions) which are the estimates of the quality of a filtered
image compared with an original image. The PSNR is calculated
using the formulae.

2 2
PSNR = 10log1o 55
MSE
Zrij —X;
MSE = 4
M XN

Where, r - Original image, MxN - size of image, X - restored
image. The Image enhancement factor is calculated using the
formulae

2
IEF =Y = /7

2
ZXU -1
i

Where n - corrupted image, r - original image
image [1].

The PSNR, IEF, and CPU computation time in seconds for
impulse noise, zero mean Gaussian noise and Speckle noise are
calculated for the PA and compared with SMF, CWF and TDF,
in Tables 1 to 3 for lena.gif. The important aspect of the PA is
that it uses a fixed 3X3 window for processing and thus leads to
smaller computation time amongst the existing threshold
decomposition filters or stack filters and centre weighted median
filter. MATLAB 7.0(R14) on a PC equipped with 2-GHz CPU
and 1GB of RAM memory has been employed for the evaluation
of computation time of all algorithms. It was found from tablel-
3 that the proposed algorithm has better performance in
removing impulse noise up to 30%.From table 5 and 6 it was
observed that the proposed algorithm has capability to eliminate
zero mean with 0.9% Gaussian noise and speckle noise up to
0.8%. Considering the discussions made before, Subsequent
Tables 4 to 6 represents the performance of the SMF, CWF,

X - restored
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TDF and PA for five different images by above said
compositions of noises respectively. Table 7 and 8 shows the
performance of the PA is better in terms of PSNR, IEF and
optimum time when compared with SMF, CWF, and TDF for
various types of images corrupted by all three types of noises in
proportion. Fig 3-11 illustrates the performance of the PA over
other filters for impulse noise, Gaussian noise and speckle noise.
In fig 12-13 PA has higher PSNR, IEF when tested on different
images which is corrupted by 30% impulse noise. In fig 15, 16
PA has slightly better PSNR, IEF over other filters that are used
for denoising zero mean variance 0.9% Gaussian noise tested on
various images. It was observed that for the images which have
gray levels varying more (details of an image) such as
cameraman.bmp, barbera.tif, girl.jpg the PA performance is
average when compared with other filters. For the images whose
gray levels is uniform(details of the image) such as baby.jpg,
pepper.bmp the performance of the PA is good when compared
with other filters. In fig 18 the PSNR performance of the PA is
in par with other filters for 0.8% speckle noise. From fig 19 we
understand such that depending upon the variation in grey levels
in an image the performance is good or average. IEF of the PA
good on par with other filters if the grey level changes are more
else the performance is average. Fig 21-22 gives the
performance of PA over different images corrupted by mixed
noises in some proportion has a good PSNR and IEF. Fig 24-27
shows pictorial representation obtained by employing various
filters. Fig 5, 8, 11, 14, 17, 20, 23 denotes the optimum
computational speed at which the PA works.
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Fig.3. Noise density versus PSNR for various filters for Lena
image corrupted by impulse noise

Table.1. PSNR, IEF, TIME for LENA.GIF (512 X 512) image corrupted by impulse noise at different noise densities

PSNR

IEF TIME

ND | SMF | TDF | CWF | PA | SMF

TDF

CWF | PA [SMF| TDF |CWF | PA

10% |34.927|32.775|35.234 | 35.934 {89.055

38.253

95.903|99.675|1.544(421.871|24.804|46.743

20% |30.305|27.841|28.136|31.713 [61.079

25.055

37.278|67.702(1.404|441.934|20.545|45.968

30% (23.992(23.369 |22.262 | 25.395 |21.415

19.642

14.428|23.638(1.342(457.816|21.107|48.544

40% |19.023]19.012|17.853|19.238 | 9.181

9.226

6.947 | 9.586 |1.373| 481.09 |28.548|49.024

50% |15.934

15.32 | 14.38 | 15.393|4.953

4.885

3.925 [ 4.956 (1.373|497.975|21.091(49.349
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60% | 12.36 | 12.42 | 11.748|12.357 | 2.958 | 2.986 | 2.572 | 2.946 (1.357|509.552|19.375(49.347
70% |10.085|10.019| 9.62 |10.042|2.036 |2.014 | 1.835 | 2.022 |1.326|519.921|24.321|50.525
80% | 8.159 | 8.103 | 7.973 | 8.143 | 1.496 | 1.483 | 1.429 | 1.492 |1.388|519.314/21.185|50.774
90% | 6.607 | 6.608 | 6.569 | 6.62 |1.182|1.181|1.167 | 1.183 |1.373|526.499(19.516| 51.45

Table.2. PSNR, IEF, TIME for LENA.GIF (512 X 512) image corrupted by zero mean gaussian noise at different noise densities
PSNR IEF TIME

VAR | SMF | TDF |CWF | PA | SMF | TDF [CWF| PA |SMF| TDF | CWF | PA

0.001 | 34.08 |29.384|34.092(34.126| 2.656 | 1.078 |2.575| 2.597 |1.444|227.29 |34.092 | 40.863
0.002 |32.403 | 28.807 |32.211|32.438| 3.462 | 1.806 |3.315| 3.49 |1.458]|233.09 |32.211 |41.049
0.003 |31.213 28.307 {30.909|31.229| 3.963 | 2.328 |3.699| 3.983 |1.513|239.424|30.909 | 40.216
0.004 |30.276| 27.841 {29.931|30.341| 4.232 | 2.745 |3.927| 4.314 |1.414|245.428|29.931 | 40.184
0.005 |29.557 | 27.406 |129.163|29.577| 4.487 | 3.038 |4.102| 4.494 |1.583|252.896|29.163 | 40.352
0.006 |28.926 | 27.051 |28.473|28.972| 4.622 | 3.319 | 4.2 | 4.692 |2.014(256.614|28.473 | 41.337
0.007 |28.361| 26.653 |27.921|28.405| 4.739 | 3.508 |4.274| 4.768 | 1.38 |265.054|27.921 | 40.49
0.008 |27.919 | 26.386 |27.434|27.923| 4.854 | 3.682 |4.382| 4.881 |1.387(265.209(27.434 | 40.573
0.009 |27.434 | 26.064 |26.982(27.544| 4.906 | 3.849 |4.398| 4.993 |1.379(275.593|26.982 | 40.415

Table.3. PSNR, IEF, TIME for LENA.GIF (512 X 512) image corrupted by speckle noise at different noise densities

PSNR IEF TIME

VAR | SMF TDF CWF PA SMF TDF CWF PA SMF TDF CWF PA

0.001 | 36.488 | 29.912 | 36.986 | 36.507 | 0.741 0.218 0.838 0.744 | 1.355 | 216.164 | 18.224 | 39.99

0.002 | 35.612 | 29.749 | 35.936 | 35.681 | 1.212 0.409 1.304 1.224 | 1.364 | 218.575 | 14.692 | 39.92

0.003 | 34.922 | 29.579 | 35.088 | 34.973 | 1.548 0.582 1.609 1.565 | 1.334 | 219.502 | 16.421 | 39.758

0.004 | 34.309 | 29.411 | 34.379 | 34.394 | 1.796 0.734 1.819 1.827 1.375 | 229.621 | 12.792 | 40.243

0.005 | 33.844 | 29.283 | 33.797 | 34.217 | 2.007 0.875 1.992 2.007 | 1.327 | 225.588 | 14.246 | 39.717

0.006 | 33.348 | 29.114 | 33.299 | 33.362 | 2.152 0.998 2.128 2.166 | 1.356 | 228.329 | 12.888 | 39.722

0.007 | 32.917 | 28.957 | 32.822 | 32.955 2.27 1.109 2219 2.286 | 1.332 | 233.477 | 13.516 | 39.796

0.008 | 32.541 | 28.806 | 32.413 | 32.599 | 2.283 1.219 2.31 2.41 1.384 | 229.223 13.9 39.719

0.009 | 36.488 | 29.912 | 36.986 | 36.507 | 0.741 0.218 0.838 0.744 | 1.355 | 216.164 | 18.224 | 39.99

Table.4. PSNR, IEF, TIME for different images corrupted by impulse noise at 30% noise density

PSNR IEF TIME
IMAGES
SMF | TDF | CWF | PA | SMF | TDF |CWF| PA |SMF| TDF |CWF | PA
BABY.JPG(292X425)|22.172|23.076{21.591 |123.973{16.694|23.199 (14.524| 24.995 | 1.335| 98.674 | 11.75 |24.736
CAMZRS?%??)'BMP 20.698 (19.826|20.352|21.418|11.022| 8.875 (10.135|12.821|0.995[116.883| 7.178 | 11.66
BA(?E%(R;;?S‘IF 21.038 (21.327|20.041|21.147{10.917(10.075| 8.722 | 11.239| 1.38 [457.713| 14.24 | 62.22
PI??;;&?XP 10.588 22.864|21.651 |23.667| 2.22 |13.634|13.133|20.539 | 1.777 | 461.69 (14.136|63.651
GIRL.JPG
(600X900) 10.232|23.65 | 21.753|23.613{11.907|17.817|21.753|23.614 | 1.918 | 87.308 [21.753| 23.65
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Table.5. PSNR, IEF, TIME for different images corrupted by zero mean Gaussian noise for variance 0.9

PSNR IEF TIME
IMAGES
SMF | TDF |CWF | PA |SMF|TDF |CWF| PA |SMF| TDF | CWF | PA
BABY.JPG 27.744|27.821| 27.34 |27.917|4.952{3.964|4.489|5.111|1.354| 91.194 | 19.62 |27.116
(202X425) . . . . . . . . . . . .
CAMERAMAN.BMP

(256X256) 24.361121.778)25.651124.427 2.246(1.266| 2.15 |2.292|0.017| 82.554 [25.199 |11.245
BARBERA.TIF

(512X512) 23.246)4.642 123.316123.287 1.875|0.988[1.89211.892|1.472|614.141| 14.045 |60.599
PEPPER.BMP

(512X512) 20.657125.566/26.669)27.065 1.128]2.148(4.04314.472|1.656|136.334| 14.281 |62.035

GIRL.JPG

(600X900) 20.839|26.973|32.285|27.366(2.116{2.778 | 1.939 [4.584 | 1.782 |211.644| 69.512|79.246

Table.6. PSNR, IEF, and TIME for different images corrupted by speckle noise for variance 0.8%

PSNR IEF TIME
IMAGES
SMF | TDF | CWF | PA | SMF | TDF | CWF | PA | SMF | TDF | CWF | PA
BABY.JPG
oxins) 2853 | 28446 | 28.153 | 28623 | 2.784 | 2.504 | 3.007 | 3.021 | 1346 | 88.697 | 8813 | 25.755
CAMERAMAN.BMP | 5 031 | 25345 | 26308 | 26979 | 0864 | 04 | 0943 | 0874 | 0969 | 40015 | 115 | 1761
(256X256)
BA(SREE(%‘SIF 24523 | 24969 | 24842 | 24563 | 052 | 042 | 0558 | 0522 | 1.157 | 166.657 | 23.062 | 69.656
P‘?gff%]fxp 30407 | 27271 | 30342 | 30396 | 2345 | 0.664 | 2316 | 2341 | 1.593 | 164.657 | 24719 | 70515
GIRLJPG
©00%900) 20.147 | 31.125 | 32607 | 32.689 | 1.082 | 1859 | 0.153 | 1.893 | 2.095 | 166.673 | 24.453 | 78.261

Table.7. PSNR, IEF, TIME for LENA.GIF, GIRL.JPG and BABY.JPG images corrupted by 20% impulse noise plus zero mean 0.9%
variance Gaussian noise

LENA.GIF(512X512) GIRL.JPG(600X900) BABY.JPG(292X425)
PSNR IEF TIME | PSNR IEF TIME | PSNR IEF TIME
SMF | 24.599 | 16.596 4.14 12.14 | 9.238 5.056 | 24.145 | 17.386 3.699
CWF | 22.631 10.569 | 39.798 | 22.51 | 11.413 | 60.134 | 22.676 | 12.6072 21.484
TDF | 23946 | 14.854 | 242.255 | 24.42 | 13.971 | 419.09 | 24.92 18.48 211.781

PA 24704 | 17.015 | 113.295 | 24.643 | 18.591 | 183.885 | 25.074 | 20.999 66.235

Table.8. PSNR, IEF, TIME for BARBARA.TIF, PEPPER.BMP, CAMERAMAN.BMP images corrupted by 20% impulse noise plus
zero mean 0.9% variance Gaussian noise

BARBARA.TIF(512X512) | PEPPER. BMP(512X512) | CAMERAMAN.BMP(256X256)
PSNR IEF TIME | PSNR | IEF TIME PSNR IEF TIME
SMF | 21.593 | 8.399 3.378 12.515 | 1.812 3.378 22.023 9.693 4.169
CWF | 21.134 | 7.509 | 29.632 | 22.289 | 10.213 | 29.632 21.514 8.754 36.738
TDF | 21.962 | 7.547 | 286.573 | 23.46 | 10.437 | 286.573 22.173 7.005 311.423
PA 21.987 | 8.565 | 150.454 | 24.244 | 16.011 | 150.454 22.274 10.59 155.469
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Fig.4. Noise density versus IEF for various filters for Lena
image corrupted by impulse noise
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Fig.5. Noise density versus TIME for various filters for Lena
image corrupted by impulse noise
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Fig.8. Variance versus TIME for various filters for Lena image
corrupted by Gaussian noise
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Fig.11. Variance versus TIME for various filters for Lena image Fig.14. TIME for various filters applied over different images
corrupted by Speckle noise corrupted by 30% impulse noise
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corrupted by 30% impulse noise corrupted by zero mean and 0.9% variance Gaussian noise
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Fig.16. IEF for various filters applied over different images
corrupted by zero mean and 0.9% variance Gaussian noise
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Fig.17. TIME for various filters applied over different images
corrupted by zero mean and 0.9% variance Gaussian noise
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Fig.18. PSNR for various filters applied over different images
corrupted by 0.8% variance Speckle noise
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Fig.19. IEF for various filters applied over different images
corrupted by 0.8% variance Speckle noise
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Fig.20. TIME for various filters applied over different images
corrupted by 0.8% variance Speckle noise
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Fig.21. PSNR for various filters applied over different images
corrupted by 20% impulse noise, 0.9%variance Gaussian noise
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Fig.23. TIME for various filters applied over different images
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(a) (®) (©) ()] (e) ®

Fig.24. Cameraman.bmp, Barbara.tif, lena.gif (a) original image (b) impulse noise affected from by 30% (c) images restored by SMF (d)
images restored from by TDF (e) images restored by CWF (f) images restored by proposed algorithm

(a) (b) (©) ()] (e) ®

Fig.25. Cameraman.bmp, Barbara.tif, lena.gif (a) original image (b) Zero mean and 0.9% variance Gaussian noise (c) images restored
by SMF (d) images restored from by TDF (e) images restored by CWF (f) images restored by proposed algorithm
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(a)

Fig.26. Cameraman.bmp, Barbara.tif, lena.gif (a) original image (b) 0.8% variance Speckle noise (c) images restored by SMF (d)
images restored from by TDF (e) images restored by CWF (f) images restored by proposed algorithm

Fig.27. Barbara.tif, pepper.bmp, lena.gif, Cameraman.bmp, baby.jpg, girl.jpg (a) original image (b) Impulse noise 20% plus zero mean
0.9% variance Gaussian noise (c) images restored by SMF (d) images restored from by CWF (e) images restored by TDF (f) images
restored by proposed algorithm
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5. CONCLUSION

From the exhaustive experiments, conducted for different
noise types for different images for different median filters, we
conclude that, the highest PSNR (dB) and IEF is not obtained for
PA for different images and for different noise type. However,
on overall basis, i.e., in an average sense, PA gives good
performance for low density impulse noise up to 20%, zero
mean 0.9% variance Gaussian noise removal. When compared to
their class of decomposition filters such as TDF in specific, the
PA exhibits better performance for Salt & Pepper noise removal
up to 30% and reduces smaller proportion of zero mean 0.9%
variance Gaussian noise. The proposed filter also exhibits good
noise removal up to 0.8% speckle noise. In our method, time
complexity of Threshold Decomposition is removed by
considering the pixel intensity itself as threshold. Hence, the
proposed method shows good performance with fewer
complexities. The Proposed algorithm has good average
computation time such that it’s twice faster in comparison to
TDF and exhibits optimum computation speed when compared
with other filters.
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