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Abstract 

In this paper, the DBN pretraining procedure is not the only one that 

allows effective initialization of DNNs. An alternative unsupervised 

approach that performs equally well is to pretrain DNNs layer by layer 

by considering each pair of layers as a de-noising auto-encoder 

regularized by setting a random subset of the inputs to zero. Another 

alternative is to use contractive autoencoders for the same purpose by 

favoring models that is less sensitive to the input variations, i.e., 

penalizing the gradient of the activities of the hidden units with respect 

to the inputs. Further, a developed the Sparse Encoding Symmetric 

Machine (SESM), which has a very similar architecture to RBMs as 

building blocks of a DBN. In principle, SESM may also be used to 

effectively initialize the DNN training. Besides unsupervised 

pretraining, the supervised pretraining, or sometimes called 

discriminative pretraining, has also been shown to be effective and in 

cases where labeled training data are abundant performs better than 

the unsupervised pretraining techniques. The idea of the discriminative 

pretraining is to start from a one-hidden-layer MLP trained with the 

BP algorithm. Every time when we want to add a new hidden layer we 

replace the output layer with a randomly initialized new hidden and 

output layer and train the whole new MLP (or DNN) using the BP 

algorithm. Different from the unsupervised pretraining techniques, the 

discriminative pretraining technique requires labels. 

 

Keywords:  

Deep Networks, Data Reduction, Redundancy, High Dimensional 

Datasets 

1. INTRODUCTION 

Until recently, most machine learning and signal processing 

techniques had exploited shallow-structured architectures. These 

architectures typically contain at most one or two layers of 

nonlinear feature transformations. Examples of the shallow 

architectures are Gaussian mixture models (GMMs), linear or 

nonlinear dynamical systems, conditional random fields (CRFs), 

maximum entropy (MaxEnt) models, support vector machines 

(SVMs), logistic regression, kernel regression, multi-layer 

perceptrons (MLPs) with a single hidden layer, and extreme 

learning machines (ELMs). For instance, SVMs use a shallow 

linear pattern separation model with one or zero feature 

transformation layer when kernel trick is used or otherwise.  

Notable exceptions are the recent kernel methods that have 

been inspired by and integrated with deep learning [1]-[3]. 

Shallow architectures have been shown effective in solving many 

simple or well-constrained problems, but their limited modeling 

and representational power can cause difficulties when dealing 

with more complicated real-world applications involving natural 

signals such as human speech, natural sound and language, and 

natural image and visual scenes. 

Human information processing mechanisms (e.g., vision and 

audition), however, suggest the need of deep architectures for 

extracting complex structure and building internal representation 

from rich sensory inputs. For example, human speech production 

and perception systems are both equipped with clearly layered 

hierarchical structures in transforming the information from the 

waveform level to the linguistic level [4]. In a similar vein, human 

visual system is also hierarchical in nature, most in the perception 

side but interestingly also in the “generation” side [5].  It is natural 

to believe that the state-of-the-art can be advanced in processing 

these types of natural signals if efficient and effective deep 

learning algorithms can be developed. 

Historically, the concept of deep learning was originated from 

artificial neural network research. (Hence, one may occasionally 

hear the discussion of “new-generation neural networks”.) Feed-

forward neural networks or MLPs with many hidden layers, 

which are often referred to as deep neural networks (DNNs), are 

good examples of the models with a deep architecture. Back-

propagation (BP), popularized in 1980’s, has been a well-known 

algorithm for learning the parameters of these networks. 

Unfortunately, back-propagation alone did not work well in 

practice then for learning networks with more than a small 

number of hidden layers (see a review and analysis in [6]). 

The pervasive presence of local optima in the non-convex 

objective function of the deep networks is the main source of 

difficulties in the learning. Back-propagation is based on local 

gradient descent, and starts usually at some random initial points. 

It often gets trapped in poor local optima when the batch-mode 

BP algorithm is used, and the severity increases significantly as 

the depth of the networks increases. This difficulty is partially 

responsible for steering away most of the machine learning and 

signal processing research from neural networks to shallow 

models that have convex loss functions (e.g., SVMs, CRFs, and 

MaxEnt models), for which global optimum can be efficiently 

obtained at the cost of less modeling power. 

The optimization difficulty associated with the deep models 

was empirically alleviated using three techniques: a larger number 

of hidden units, better learning algorithms, and better parameter 

initialization techniques.  

Using hidden layers with many neurons in a DNN 

significantly improves the modeling power of the DNN and 

creates many closely optimal configurations. Even if parameter 

learning is trapped into a local optimum, the resulting DNN can 

still perform quite well since the chance of having a poor local 

optimum is lower than when a small number of neurons are used 

in the network. Using deep and wide neural networks, however, 

would cast great demand to the computational power during the 

training process and this is one of the reasons why it is not until 

recent years that researchers have started exploring both deep and 

wide neural networks in a serious manner.  

Better learning algorithms also contributed to the success of 

DNNs. For example, stochastic BP algorithms are in place of the 

batch-mode BP algorithms for training DNNs nowadays. This is 

partly because the stochastic gradient descend (SGD) algorithm is 
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the most efficient algorithm when training is carried out on a 

single machine and the training set is large. But more importantly 

the SGD algorithm can often jump out of the local optimum due 

to the noisy gradients estimated from a single or a small batch of 

samples. Other learning algorithms such as Hessian free [7] or 

Krylov subspace methods [8] have shown a similar ability.  

For the highly non-convex optimization problem of DNN 

learning, it is obvious that better parameter initialization 

techniques will lead to better models since optimization starts 

from these initial models. What is not obvious, however, is how 

to efficiently and effectively initialize DNN parameters until more 

recently [9]-[10].  

The DNN parameter initialization technique that attracted the 

most attention is the unsupervised pretraining technique proposed 

in [11]. In these papers a class of deep Bayesian probabilistic 

generative models, called deep belief network (DBN), was 

introduced. To learn the parameters in the DBN, a greedy, layer-

by-layer learning algorithm was developed by treating each pair 

of layers in the DBN as a Restricted Boltzmann Machine (RBM) 

(which we will discuss later). This allows for optimizing DBN 

parameters with computational complexity linear in the depth of 

the network.  

It was later found out that the DBN parameters can be directly 

used as the initial parameters of an MLP or DNN and result in a 

better MLP or DNN than those randomly initialized after the 

supervised BP training when the training set is small. As such, 

DNNs learned with unsupervised DBN pre-training followed by 

back-propagation fine-tuning is sometimes also called DBNs in 

the literature. More recently, researchers have been more careful 

in distinguishing DNNs from DBNs, and when DBN is used to 

initialize the parameters of a DNN, the resulting network is called 

DBN-DNN. 

The DBN pretraining procedure is not the only one that allows 

effective initialization of DNNs. An alternative unsupervised 

approach that performs equally well is to pretrain DNNs layer by 

layer by considering each pair of layers as a de-noising auto-

encoder regularized by setting a random subset of the inputs to 

zero. Another alternative is to use contractive autoencoders for the 

same purpose by favoring models that is less sensitive to the input 

variations, i.e., penalizing the gradient of the activities of the 

hidden units with respect to the inputs.  

Further, a developed the Sparse Encoding Symmetric 

Machine (SESM), which has a very similar architecture to RBMs 

as building blocks of a DBN. In principle, SESM may also be used 

to effectively initialize the DNN training. Besides unsupervised 

pretraining, the supervised pretraining, or sometimes called 

discriminative pretraining, has also been shown to be effective 

and in cases where labeled training data are abundant performs 

better than the unsupervised pretraining techniques.  

The idea of the discriminative pretraining is to start from a 

one-hidden-layer MLP trained with the BP algorithm. Every time 

when we want to add a new hidden layer we replace the output 

layer with a randomly initialized new hidden and output layer and 

train the whole new MLP (or DNN) using the BP algorithm. 

Different from the unsupervised pretraining techniques, the 

discriminative pretraining technique requires labels. 

 

2. MATERIAL AND METHODS 

The Deep learning refers to a rather wide class of machine 

learning techniques and architectures, with the hallmark of using 

many layers of non-linear information processing that are 

hierarchical in nature. Depending on how the architectures and 

techniques are intended for use, e.g., synthesis/generation or 

recognition/classification, one can broadly categorize most of the 

work in this area into three classes:  

• Generative deep architectures, which are intended to 

capture high-order correlation of the observed or visible data 

for pattern analysis or synthesis purposes, and/or 

characterize the joint statistical distributions of the visible 

data and their associated classes. In the latter case, the use of 

Bayes rule can turn this type of architecture into a 

discriminative one.  

• Discriminative deep architectures, which are intended to 

directly provide discriminative power for pattern 

classification purposes, often by characterizing the posterior 

distributions of classes conditioned on the visible data; and  

• Hybrid deep architectures, where the goal is 

discrimination which is assisted (often in a significant way) 

with the outcomes of generative architectures via better 

optimization or/and regularization, or where discriminative 

criteria are used to learn the parameters in any of the deep 

generative models. 

Deep autoencoder is a special type of DNN whose output has 

the same dimension as the input, and is used for learning efficient 

encoding or representation of the original data at hidden layers. 

Note that autoencoder is a nonlinear feature extraction method 

without using class labels. As such the feature extracted aims at 

conserving information instead of performing classification tasks, 

although sometimes these two goals are correlated.  

An autoencoder typically has an input layer which represents 

the original data or feature (e.g., pixels in image or spectra in 

speech), one or more hidden layers that represent the transformed 

feature, and an output layer which matches the input layer for 

reconstruction. When the number of hidden layers is greater than 

one, the autoencoder is considered to be deep. The dimension of 

the hidden layers can be either smaller (when the goal is feature 

compression) or larger (when the goal is mapping the feature to a 

higher-dimensional space) than the input dimension. 

An auto-encoder is often trained using one of the many 

backpropagation variants (e.g., conjugate gradient method, 

steepest descent, etc.). Though often reasonably effective, there 

are fundamental problems when using back-propagation to train 

networks with many hidden layers. Once the errors get back-

propagated to the first few layers, they become minuscule, and 

training becomes quite ineffective. Though more advanced 

backpropagation methods (e.g., the conjugate gradient method) 

help with this to some degree, it still results in very slow learning 

and poor solutions. As mentioned in the previous chapters this 

problem can be alleviated by using parameters initialized with 

some unsupervised pretraining technique such as the DBN 

pretraining algorithm. This strategy has been applied to construct 

a deep autoencoder to map images to short binary code for fast, 

content-based image retrieval, to encode documents (called 
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semantic hashing), and to encode spectrogram-like speech 

features which we review below. 

In this method, features are formed using the distance-based 

connectivity. These hierarchal classification techniques can be 

categorized as top-down and bottom-up models based on how the 

connections are made with split and merge to form the group of 

objects or features in a tree form. Top-down approach is also 

known as divisive method in which the original features are split 

recursively one move down to form the hierarchy based on their 

similarity with a linkage method. The bottom-up approach is also 

known as agglomerative method. In this method, each feature 

initiates in its own group and the pair of groups are merged toward 

upward direction to form the hierarchical cluster using the 

similarity measure and linkage function. The linkage function can 

form the hierarchical cluster using the distance measures [10]. 

The distance measures are used to find the similarity between the 

features based on their distance.  

3. EXPERIMENTAL SETUP 

The experiments are conducted using MATLAB12b with the 

system configuration of Intel® Core™ 2 CPU T5300 @ 1.73 GHz 

processor, 4 GB memory (RAM) and 32-bit Windows vista Home 

Premium Operating system. The performance of the classification 

methods is tested on various high-dimensional datasets listed in 

Table.1. Further, the performance of the classification methods 

DD, GD and HD is tested in terms average intra-cluster 

redundancy rate and runtime. 

The experiment is conducted with the following procedure: 

Initially, the dataset is given to the classification method with the 

number of features to be formed DL. Then the K numbers of 

features are formed. The corresponding runtime is noted and the 

intra-cluster redundancy rate is calculated for all K numbers of 

features for each dataset. The average intra-cluster redundancy 

rate is calculated by averaging intra-cluster redundancy rates from 

K numbers of features. For this experiment, the average intra-

cluster redundancy rate and runtime are obtained by varying the 

number of features K from 2 to 10. 

Table.1. Dataset 

Dataset Features Instances Classes 

ORL10Pa 10,304 100 10 

PIX10Pa 10,000 100 10 

PIE10Pa 2420 210 10 

AR10Pa 2400 130 10 

SRBCTb 2308 83 4 

ORL_32 × 32c 1024 400 40 

Yale_64 × 64c 4096 165 15 

COIL20c 1024 1440 20 

DBWorld e-mailsd 4702 64 2 

Table.2. Runtime 

Datasets 

Runtime 

Generative 

Deep 

Discriminative 

Deep 

Hybrid 

Deep 

200 0.522 12.63 1.1 

300 1.874 40.15 4.9 

400 10.502 77.90 7.0 

500 5.556 107.34 17.4 

600 3.775 169.68 19.6 

700 7.816 209.71 29.1 

800 6.889 258.05 28.5 

900 5.775 185.37 15.7 

1000 24.168 136.45 16.5 

Table.2. Average Error Rate 

Datasets 

Average error rate 

Generative 

Deep 

Discriminative 

Deep 

Hybrid 

Deep 

200 0.28 0.30 0.32 

300 0.29 0.35 0.38 

400 0.33 0.35 0.31 

500 0.35 0.34 0.34 

600 0.37 0.37 0.32 

700 0.41 0.38 0.32 

800 0.42 0.38 0.36 

900 0.44 0.39 0.33 

1000 0.46 0.41 0.45 

Further, it is observed that the HD takes more time to form 

features due to the inherent computational complexity and it 

exhibits poor performance in terms of overall intra-cluster 

redundancy rate compared to GD and KC. Further, HD induces 

buffer overflow when the number of features is more (high-

dimensional data) due to high space complexity. Therefore, HD is 

not a suitable choice for redundancy analysis in high-dimensional 

space. GD cluster has more computational complexity than DD 

and its overall performance in terms of intra-cluster redundancy 

rate is better than HC. Nevertheless, its performance is poor when 

compared to KC. DD classification technique performs better in 

redundancy analysis since it produces overall higher intra-cluster 

redundancy rate and takes less computational time compared to 

GD and HC. Therefore, it is concluded that DD classification 

technique can be the best choice for redundancy analysis for the 

high-dimension data. 

4. CONCLUSION 

This paper presented an empirical study on various 

classification techniques for redundancy analysis in feature 

selection for high-dimensional data classification. The 

performance of these classification approaches, is evaluated in 

terms of runtime and average intra-cluster redundancy rate. From 

the results, it is observed that the Hybrid deep classification is 

suitable for redundancy analysis in feature selection since it yields 

higher intra-cluster redundancy rate and takes less runtime for the 

high-dimensional space. Moreover, this work may be extended 

with different types of classification techniques and various 

statistical measures may be adopted for performance evaluation. 
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Furthermore, this redundancy analysis method can be combined 

with any one of the relevancy analysis methods for selecting the 

significant features from the high-dimensional data to achieve 

higher accuracy for the classification tasks for various 

applications. 
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