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Abstract 

Target tracking in WSN has attracted a great attention duo to its 

growing application potential in different fields. One of the main 

problems for target tracking in WSN is to maximize network lifetime by 

reducing energy consumption as well as guaranteeing the target 

tracking quality at a certain level. Among different target tracking 

schemes, hybrid clustering resolves the boundary problem and 

guarantee the target tracking quality because the static cluster and the 

on-demand dynamic cluster take turns each other to track the target in 

hybrid clustering scheme. However, huge amount of energy can be 

consumed due to the frequent formation and dismiss of redundant 

dynamic clusters when the target zigzags between a static cluster and a 

dynamic cluster or when the movement of target makes overlapped 

dynamic clusters to be formed continuously. In order to resolve this 

kind of problems, in this paper, a hybrid clustering algorithm combined 

with prediction method is proposed so that energy consumption due to 

the overforming of dynamic clusters could be reduced and the target 

tracking quality could be guaranteed simultaneously. Furthermore, a 

scheme to adjust the size of predicted clusters and the length of target 

interval time, according to prediction error and target speed, is applied 

to guarantee the target tracking quality of the prediction-based 

clustering algorithm. The results of extensive simulation experiment 

show that the proposed scheme can guarantee the target tracking 

quality and extend network lifetime significantly although a huge 

amount of energy is consumed due to overforming and overdismissing 

dynamic clusters. 
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1. INTRODUCTION 

A target tracking is one of the important applications of 

wireless sensor networks. Wireless sensor networks are used as a 

basis of many practical target tracking applications such as 

tracking and monitoring of military targets, natural disaster 

reliefs, tracking and observation of wild animals, biomedical 

healthcare and observation, tracking human beings in congested 

and limited areas, tracking transportation vehicles like cars in 

highways etc. [1], [2]. Generally, the main aim of the moving 

target tracking is to detect the existence of target and to estimate 

its locations during the moving into the monitoring area and to 

relay the information of target to the base station immediately [3].  

In target tracking in WSNs, essential characteristics of WSNs 

must be considered; such as limited processing ability and 

memory capacity, short communication range of sensors, limited 

resource of energy, low data transmission rate and etc. Such 

characteristics of WSNs make it difficult to design and realize 

moving target tracking algorithm using WSNs. Especially, in 

multi-target tracking, large overhead for communications can be 

occurred due to much more packets switching between the 

neighboring sensors and multi-hop communication, thus, moving 

target tracking task might not be performed without interruption. 

Target tracking algorithms using WSNs proposed so far can 

be classified into 5 categories such as tree-based algorithm, 

cluster-based algorithm, prediction-based algorithm, mobicast 

message-based algorithm and hybrid clustering algorithm [1], [3]. 

If these algorithms are combined with prediction strategy, their 

performance will be improved [1]. In prediction-based 

algorithms, the next location of moving target is predicted based 

on the measured values of target location up to now, and in every 

prediction period, only sensors near the prediction location are 

activated, while the other sensors are in sleep mode to save 

energy. 

Because only some sensors near the tracks of moving target 

are activated in these algorithms, the larger the prediction error 

which means the difference between the predicted location and 

actual location, makes the incorrectly designated sensors 

activated and makes sensors located in the place of target stay in 

the sleep mode so that it could bring about the high target missing 

rate. 

Thus prediction-based moving target detection mechanisms, it 

becomes the most important challenge to search a solution in 

which less energy will be consumed guaranteeing high quality of 

target detection [4]. In other words, it becomes an important task 

to develop an algorithm in which a certain level of detection 

quality is guaranteed using less energy [5]. And hybrid clustering 

is a scheme in which on-demand dynamic clustering is integrated 

into WSN based on scalable static clustering to resolve what is 

called “boundary problem” in that target missing rate is increased 

when a target passes the boundary of static clusters or moves 

along it. In this scheme, the information about the target is shared 

by sensors of different clusters, thus the quality of target tracking 

will be guaranteed by tracking the target smoothly according to 

the movement of the target and trade-off between energy 

consumption and local sensor collaborations will be well 

performed [3]. However, hybrid clustering schemes would bring 

about huge consumption of energy because of overforming and 

overdismiss of dynamic clusters when the target moves in zigzags 

between a static cluster and a dynamic cluster in the boundary area 

or it moves continuously along the boundary area. From this 

cause, in hybrid clustering scheme, it becomes the most important 

challenge to search a solution in which a certain level of target 

tracking quality will be guaranteed while less energy is 

consuming. To form dynamic clusters deliberately in proper 

location and proper time, a novel DCH selection algorithm is 

proposed to prevent the transmission of redundant messages in 

[6], and in HCMTT [4], the number of redundant dynamic clusters 
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is reduced applying a merging technology instead of selecting 

DCH properly. 

In this paper, a prediction-based hybrid clustering scheme is 

proposed to prevent consumption of large amount of energy 

during the transmission of extra control message or target 

detection data in hybrid clustering due to the frequent forming and 

dismiss of dynamic clusters such as zigzag movement or 

movement of the target according to the boundary area. 

The rest of this paper is organized as follows. In section 2, 

reviews of related schemes about moving target tracking are 

given. In section 3, assumptions of the system and issues in hybrid 

clustering in some special cases are described. A proposed 

algorithm is described in section 4 and it is analyzed in section 5. 

Simulation results are discussed in section 6 and the conclusion 

of the paper is given in section 7. 

2. RELATED WORKS 

In this section, reviews of moving target tracking algorithms 

using WSNs proposed up to now are given with examples. 

In tree-based algorithms, a tree structure is set between sensors 

directly when the target is detected. Each sensor determines its 

parent and then messages are exchanged between sensors that are 

needed to remain the existing tree structure or to be dismissed 

from it. A sensor which detected the movement of target delivers 

the target information to its parent and it is delivered to the root 

of the tree finally. A root should be responsible for delivering the 

sensing report to a base station. There are representative 

algorithms such as DCTC which tracks the target by forming or 

dismissing clusters dynamically, DOT [8] in which the sensor 

closest to a moving target is recognized by exchanging the space-

related information in Gabriel graph, a tree-based scheme without 

statistics of mobility in which the fact is proved that searching the 

optimal message transmission tree that requires the least amount 

of sensing report is NP-hard problem [9], etc. 

In cluster-based algorithm, the network topology dividing into 

clusters is constructed before tracking the target or it is 

constructed directly after detection of moving target. This 

algorithm often has hierarchical structure in which the sensing 

information is transmitted from current cluster head to the next 

head once it is collected in current head from members inside of 

each cluster. Finally, this information is relayed to the base station 

by performing this procedure repeatedly. It is difficult to acquire 

the dynamic characteristics of the target changing according to 

time when the network topology is static. The representatives of 

this case are LEACH [10] which is most often used as a standard 

of comparison between clustering protocols, and RARE [11] 

which is a pure static clustering target tracking scheme where 

sensing data is divided into low quality data and redundant data, 

etc. In dynamic clustering algorithm which overcomes the 

shortage of static clustering algorithm, dynamic clusters appear 

around the target when the target enters the monitoring area. The 

DPT [12] is the typical algorithm which tracks the target purely 

by forming dynamic clusters which makes the total energy 

consumption to minimize constructing optimal set of active 

sensors using prediction. 

In prediction-based algorithm, the next location of the moving 

target is predicted based on the recorded history values of target 

location measurements, while sensors close to the predicted 

location of target are active and the others are sleep to save energy 

in each prediction period [13], [14]. In this scheme, noise is 

accompanied in measurement, prediction or processing stages, 

thus it becomes the most important problem to develop a 

prediction scheme where the deviation of prediction result reaches 

the Cramer-Rao Lower Bound (CRLB) [15]. Many prediction-

based algorithms using different prediction methods has been 

proposed such as extended Kalman filtering (EKF) using Kalman 

filters [16], Unscented Kalman filtering (UKF) [17], a scheme 

using particle filters [18], a scheme combined with maximum 

likelihood estimation [19], etc. and a simple scheme [20] which 

evaluates the prediction processing affecting energy consumption 

as the number of operation as well. All the prediction schemes are 

prone to estimation error which might lead to activation of the 

wrong sensors [4]. 

The hybrid clustering scheme constructs dynamic cluster on 

the static structure which is already formed and where the target 

is monitored, switching target tracking tasks between static 

clusters and dynamic clusters. In this scheme, the dynamic cluster 

is constructed on the already formed static structure according to 

the request to track the moving target smoothly between 

neighboring clusters or on the boundary area of a cluster. Whether 

the hybrid clustering becomes an effective replacement in case of 

target missing rate and energy consumption respectively depends 

on the practical application and resulting overhead should be 

considered in its usage. There are many schemes such as CODA 

[21] where new dynamic cluster is appeared when the increment 

of target size and movement in the boundary is detected, HCTT 

[3] which is a single target tracking scheme where boundary 

sensors of static clusters take part in formation of dynamic 

clusters, HCMTT [4] to which merging technology is applied for 

multi-target tracking, etc. However, in hybrid clustering schemes 

such as HCTT and HCMTT, huge amount of energy can be 

consumed due to the frequent formation and dismiss of redundant 

dynamic clusters when the target zigzags between a static cluster 

and a dynamic cluster or when the movement of the target makes 

overlapped dynamic clusters to be formed continuously. 

3. ASSUMPTIONS AND PROBLEM 

STATEMENT 

3.1 ASSUMPTIONS 

We assume that the wireless sensor network formed by N 

sensors randomly deployed in 2-D area is divided into static 

clusters (SC). We assume that the total tracking duration time of 

tracking WSN is divided into time intervals and that the target is 

static in a time interval. Furthermore, we assume that sensors are 

passive like acoustic sensors and each sensor knows its location 

by self-localization algorithm and that the time is synchronized in 

overall WSN to make it possible to give a correct decision for 

target localization.  

Also we assume that each sensor can adjust its transmitting 

power continuously ranging from minimum to maximum 

according to the transmission distance. And we call sensors inside   

of one sensor which has identical communication range of   one-

hop neighboring sensor. Each sensor has sensing radius   and a 

circle of radius   around the target is called the monitoring area. 

Each sensor can be in one of active state, listening or sensing state 
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and idle state. Sensors in active state can transmit data to and 

receive data from neighboring sensors, sense the target. Sensors 

in listening or sensing state can only receive data from 

neighboring sensors or conduct sensing. Sensors in idle state are 

sleeping the most of time, so it can conduct neither sensing nor 

communication. The state that consumes least energy is the idle 

state. Sensors in idle state are waken periodically after predefined 

time and change their state from idle to listening. After that, they 

listen to channels and are converted to active state on receiving 

target detection message. 

3.2 PROBLEM DESCRIPTION 

The boundary problem in target tracking using WSNs occurs 

when the target passes the boundary between multiple clusters or 

moves along it. In other words, this problem occurs when the 

collaboration between local sensors becomes imperfect or 

unreliable because sensors that can monitor the target are 

members of different clusters. Once the boundary problem occurs, 

it can lead to uncertainty of target location detecting, furthermore, 

the target might be lost. The hybrid clustering is proposed just to 

resolve this problem. In this scheme, static clusters are responsible 

for target tracking and collaboration between local sensors when 

the target moves within the clusters, while dynamic clusters are 

formed after starting dynamic clustering to solve boundary 

problems once the target approaches the boundary of clusters. On-

demand dynamic clusters are dismissed when the target is out of 

the boundary far away. In this scheme, static and dynamic clusters 

track the target efficiently in turn when the target moves within 

WSN. However, hybrid clustering schemes such as HCTT and 

HCMTT form and dismiss redundant dynamic clusters frequently 

when the target moves in zigzags between a static cluster and a 

dynamic cluster as shown in Fig.1 a), thus it can lead to extra 

transmission of control message and large consumption of energy. 

Furthermore, as shown in Fig.1 b), successive forming and 

overlapping of dynamic clusters when the target keeps moving 

along the boundary area can lead to the extra data transmission 

from sensors to the base station, thus huge amount of energy can 

be consumed. In the snapshot above, dynamic clusters are 

organized in grids and cluster head (CH) is located at the center 

of them. And yellow nodes denote boundary sensors of static 

clusters, green track denotes the moving track of the target, large 

blue circles denote dynamic clusters formed according to the 

moving target, blue crosses denote internal sensors of static 

clusters which sent sensing report to static cluster head (SCH), red 

circles filled with yellow color denote members of dynamic 

clusters originated from boundary sensors of static clusters, red 

circles with blue cross denote sensors that sent sensing report to 

dynamic cluster head (DCH) and SCH, red circles filled with 

white color denote internal sensors of static clusters that sent 

sensing report to DCH. 

4. PROPOSED ALGORITHM 

We assume that initial WSN is divided into static clusters (SC) 

using several clustering algorithms such as LEACH [10] or 

DHCR [22] that can be properly applied to applications. Then, 

static cluster heads (SCH) and their members are determined 

based on multi-criterion such as distance, residual energy, 

proximity to its neighboring nodes, etc. And the concept of 

boundary sensor in HCTT or HCMTT is applied without 

modification when a certain sensor of a static cluster is defined as 

the boundary sensor of that cluster and when it has sensors of the 

other static cluster in the range of sensing radius   at the same time. 

That is, boundary sensors can be defined as members of static 

clusters that have members of the other static cluster as their 

neighboring sensors. Internal sensors send the sensing data to 

their SCHs when the target moves in the internal area of static 

clusters (except the boundary area where boundary sensors are 

located).  

 

(a) In zigzag movement 

 

(b) In the movement along the boundary of static clusters 

Fig.1. Snapshot of hybrid clusters when the target moves along 

the specific track 

When the target approaches boundary sensors of static clusters 

and dynamic clusters (DC) are formed according to the request 

before the arrival of the target so that the target tracking can be 

continued. By doing so, successive tracking of the target will be 

ensured in collaboration between heads of static and dynamic 
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clusters. Especially, when the construction cost of dynamic 

clusters are increased due to the zigzag movement of the target 

between a static cluster and a dynamic cluster or it moves along 

the boundary of static clusters, predicted clusters (PC) are formed 

before arriving of the target and the energy consumption is 

reduced significantly. 

In the following part, we describe the plan of processes about 

prediction-based hybrid clustering proposed in this paper in a 

more detailed way. 

4.1 FORMATION AND DISMISS OF PREDICTED 

CLUSTERS  

As shown in Fig.1(a), once reaching the predefined threshold 

of the number of zigzag movement of the target between a static 

cluster and a dynamic cluster is reported from boundary sensors 

of the dynamic cluster, DCH recognizes the formation of 

predicted cluster(called predicted cluster in this paper in order to 

distinguish this dynamic cluster from the case of that prediction is 

not used, considering that this dynamic cluster is formed by 

prediction method), that is, the optimal set of active sensors using 

prediction method. 

Meanwhile, when the target keeps moving along the boundary 

of static clusters, once the number of dynamic clusters exceeds a 

predefined threshold, the formation of predicted clusters begins. 

Needless to say, in this case, the number of overlapping of 

dynamic clusters between DCHs should be exchanged. DCH 

sends Urgent_PCH_Msg to the boundary sensor closest to the 

target which has the largest residual energy and elects it as CH of 

predicted cluster. The elected PCH determine 3 or more CM 

sensors to form predicted clusters by relatively precise 

broadcasting Join_Msg as a radius (set 3/4 in the initial forming 

of PCH) of predicted area using cross layer power control 

technique proposed in [23] etc. Sensors responding to this 

message among sensors inside are set as CMs. After that, PCH 

runs prediction-based clustering algorithm, PCDA described at 

the following in collaboration with PCM nodes, thus the size and 

CH and 3 CM nodes of the next predicted cluster, the length of 

tracking interval time or the length of prediction interval time are 

determined as the result of it. Furthermore, CH of the next 

predicted cluster sends Handoff_Req_Msg to DCH and SCH. 

DCH and SCH respond to this message as Handoff_Conf_Msg, 

thus they hand over target tracking task to new active predicted 

cluster officially and dismiss their members out of this predicted 

cluster and let them in idle state. 

Predicted clusters are dismissed when they become useless for 

target tracking. In other words, it is begun when the target is out 

of the range of the predicted cluster so its members receive a 

signal weaker than a predefined threshold power   from the target. 

This phenomenon can be occurred as well when CM nodes miss 

the target in the measurement stage of the prediction-based 

clustering algorithm and when the target is missed due to errors 

in prediction. The recovering mechanism in the case of missing 

target is described at the following part of the paper. In such two 

cases, member node of the predicted cluster detected this 

phenomenon sends Wakeup_Msg to neighboring members of the 

static cluster instantly so it wakes them. From this moment, the 

static cluster becomes active and it takes charge of target tracking. 

In that case, if PCH does not receive sensing report during one 

tracking interval time (△t), it sends Resign_Msg to their members, 

so the predicted cluster is collapsed. 

4.2 PREDICTION BASED CLUSTERING 

ALGORITHM 

Proposed algorithm in this subsection is called prediction 

based clustering algorithm with dynamic adjustment (PCDA) 

because it adjusts the size of the predicted cluster and the length 

of the tracking interval time dynamically according to the 

prediction error and the speed of the target. This algorithm works 

in three stages such as measurement stage, prediction stage and 

activation stage. The description of the control messages used in 

this algorithm is shown in Table.1. 

Table.1. Description of the control message 

message description 

Measure_Msg Tuple(node_ID, node_coordinate, node-

distotarget) 

Predicted_Msg Tuple(CH_ID, target_nextcoordinate, 

nextPC_radius) 

Utility_Msg Tuple(node_ID, node_utility) 

NextCH_Msg Tuple(CH_ID, nextPC_radius, 

nexttracking_interval, 

target_nextcoordinate, prediction_error) 

NextCM_Msg Tuple(nextCH_ID, nexttracking_interval) 

4.2.1 Measurement Stage: 

In this stage, CM nodes inside of the current predicted cluster 

measure the current location of the target in collaboration with CH 

nodes. 

Once CM node   detects the target, it makes Measure_Msg 

including its ID and coordinates, distance to the target and sends 

it to CH node of the predicted cluster. CH, received 

Measure_Msg, calculates the location of the target using the 

following trilateration [21]. 
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where di,t is the distance between sensor si and the target in t 

tracking interval time or t prediction period, (xi,yi) is the 

coordinate of sensor si, (xt,yt) is the coordinate of the target in t 

prediction period. 

4.2.2 Prediction Stage: 

In this stage, the next location of the target, the size of the next 

predicted cluster and the length of the tracking interval time are 
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determined based on the measurement information of the target 

up to current state. Based on such information, the next predicted 

cluster is formed for the tracking of the next location of the target. 

• Prediction of the next location of the target 

There are several mobility models of the target [24-27]. In 

random way point (RWP) model, which is the most general 

mobility model, Mn+1 is randomly elected not concerning the 

history and current location and the size of the next speed 
nV  is 

also randomly elected between vmin and vmax in that way when the 

target moves from a certain way point Mn inside of the monitoring 

area to the next way point Mn+1. And we assume that the target 

moves from Mn to Mn+1 with identical speed Vn. There are two 

RWP models with or without pause time according to whether the 

target stops in every way point or not. In RWP model with pause 

time, the pause time is used before changing the speed and 

direction of the target, and this model is used in this paper as well. 

In random way point and constant acceleration model 

(RCAM) [20], it is assumed that the target moves in random 

direction for an arbitrary time with the speed and acceleration in 

the range of [0, vmax] and [0, amax], respectively. In such random 

way point model, the pause time is used before changing 3 

parameters such as speed, direction and acceleration, and the 

target moves directly with constant acceleration when it moves 

from Mn to Mn+1 contrary to the previous RWP model. 

Based on such mobility model, CH node calculates the 

predicted location (xt+1, yt+1) in the next prediction period (t+1) of 

the target using the following prediction schemes in prediction 

period t. 

In RWP model: The speed and the direction of the target is 

predicted as follows. 
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where (xt-1, yt-1) and (xt, yt), tt+1 and tt are coordinates and times of 

target location measurements of the measured target in (t-1) 

prediction period and t prediction period, respectively. Once the 

speed and direction of the target are predicted, the location of the 

target is calculated as follows. 

 cos
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In RCAM: The target moves with constant acceleration, thus 

the speed of the target in the next prediction period is predicted as 

follows. The predicted speed and direction of the target in (t+1) 

prediction period are calculated as follows when the prediction 

error equals to [ , ]t     . 
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The next predicted location of the target is as follows. 

 1 1 cost t t tx v t x     (11) 

 1 1 cost t t ty v t y     (12) 

If the prediction error becomes [ , ]t     , the predicted 

speed is decomposed into x-axis component and y-axis 

component. Denoting x-axis component and y-axis component in 

(t+1)th prediction period as , 1x tv   and , 1y tv   respectively, they are 

calculated as follows. 

 , 1 , , 12x t x t x tv v v    (13) 

 , 1 , , 12y t y t y tv v v    (14) 

The next predicted location of the target is as follows. 

 1 , 1t x t t tx v t x        (15) 

 1 , 1t y t t ty v t y        (16) 

• Determination of size of the next predicted cluster 

CH calculates the prediction error for determination of size of 

the next predicted cluster, that is, the predicted area around the 

target using recorded values of coordinates of the target location 

such as the current measurement location of the target. First, the 

prediction error is defined as the deviation between the measured 

value of the target coordinates in current prediction period and the 

predicted value of the coordinates of the current target. And it is 

used as a parameter evaluating the quality of target tracking. And 

the prediction error of the next prediction period is calculated as 

the arithmetic mean of the current prediction error and the 

prediction error of the previous prediction period as follows. 
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where , ,( , )m t m tx y  and , 1 , 1( , )p t p tx y   are measured value and the 

predicted value of the coordinates of the target in tth prediction 

period and (t-1)th prediction period respectively. Based on this 

prediction error, the size of the next predicted cluster, that is, the 

radius of the predicted cluster around the location of the target 

during the next prediction period is calculated as follows. 

 _

3

4

s
next PC next

r
R d    (18) 

where Rnext_PC is the radius of the next predicted cluster and rs is 

the sensing radius of sensors. This formula shows that the size of 

the next predicted cluster is adjusted dynamically according to the 

prediction error expressing the quality of target tracking. In other 

words, the size of the predicted cluster is increased when the 

quality of target tracking is decreased by large prediction error, so 

more members can attend target tracking.  

• Determination of the tracking interval time in the next 

prediction 

The tracking interval time 1tt   in the next prediction is the 

time interval between 2 successive tracking point (measurement 

point or sensing point), and the setting of it affects both of energy 

consumption and the quality of the tracking. The speed of the 

target has the most significant influence to the determination of 

the tracking interval time calculated by CH, thus the tracking 

interval time is decreased when the speed of the target is fast and 

it is increased when the speed of the target is low to reduce the 



ISSN: 2229-6948(ONLINE)                                              ICTACT JOURNAL ON COMMUNICATION TECHNOLOGY, SEPTEMBER 2020, VOLUME: 11, ISSUE: 03 

2213 

energy consumption. In other words, the tracking interval time is 

not constant and it is adjusted dynamically according to the speed 

of the target. Using Eq.(5) referred in the above, it is possible to 

determine the instant speed of the target, so 1tt   is calculated as 

follows. 

 
1t

S
t

v
      (19) 

where  

S is the distance that the target can move during  

1tt   and it is often predefined as a distance that the target can 

move at maximum speed during 1s. 

On the whole, in prediction stages up to now, current CH self-

calculates parameters that can be sent to neighboring relaying 

sensors inside of the communication range for successive tracking 

of the target such as the coordinates of the target in the next 

prediction period, the size of the next predicted cluster, tracking 

interval time of the next prediction, etc. 

• Formation of the next predicted cluster 

In this stage, the next predicted cluster is formed officially 

based on the information for the next predicted clustering 

achieved in previous stages. 

First, CH makes Predicted_Msg including the coordinates of 

the next predicted location of the target and the size of the next 

predicted cluster, and broadcasts it to its neighboring sensors. 

Each sensor received Predicted_Msg calculates the distance di,t+1 

from itself to the target in the next prediction period. Sensors with 

lower distances than the size of the next predicted cluster evaluate 

the usability for target tracking using the following formula 

inspired by [28]. 

 
max 2

, 1

1
(1 )

1

res

i
i

i i t

E
w w w

E d 

    


 (20) 

where  

wi is the usability parameter which denotes the extent that can be 

used to target tracking in the next tracking period,  

max

iE  is the initial maximum energy of sensor si,  

res

iE is the residual energy of sensor si.  

w is the weight considering the different influence of parameters 

affecting the calculation of usability and it is elected in the range 

[0,1].  

This weight can be adjusted to be reached the acceptable result 

through simulations. We will consider it in section 6. Sensors the 

distance to the target is smaller than the size of the next predicted 

cluster make Utility_Msg including such usability and its ID, and 

respond Predicted_Msg from CH. 

When CH receives Utility_Msg, it sorts usabilities by size to 

elect proper sensors for target tracking. Next, it elects sensor with 

secondly large usability as CH of the next predicted cluster, and 

expects that next three sensors in order of size are elected as CM 

nodes. 

4.2.3 Activation Stage: 

In activation stage, current CH makes NextCH_Msg including 

the size of the next predicted cluster, tracking interval time in the 

next prediction, current measured location of the target, current 

prediction error, etc., and sends it to CH of the next predicted 

cluster. Besides that behavior, it sends NextCM_Msg including 

ID and 1tt   of CH of the next predicted cluster to CM nodes of 

the next predicted cluster. When CH nodes and CM nodes of the 

next predicted cluster receive NextCH_Msg and NextCM_Msg 

respectively, they are in active state in the current prediction stage 

before the target arrives. CH goes back to idle state finishing its 

behavior in the current tracking stage. 

Activated CH nodes and CM nodes of the next predicted 

cluster move to the measurement stage again when the target is 

moving into the area of the cluster, and relay the location of the 

target to the base station running PCDA algorithm repeatedly, 

measuring the current location of the target. The pseudo code of 

PCDA algorithm is shown in Algorithm. 

Although the above algorithm is efficient, there are some cases 

of missing the target including the case that the direction of the 

target movement is turning into the opposite side, so the 

recovering mechanism is described briefly. Although there are 

many recovering schemes, in our case, once the target is missed, 

the current predicted cluster activates its one-hop neighboring 

sensors firstly so that they can attend target tracking. That is, it 

activates all sensors in the communication range of 
c

r  around CH 

node. If the target is not detected yet after the activation, the base 

station makes all sensors of WSN to attend the target detection. 

Algorithm. Pseudo code of PCDA 

Begin (Prediction based Clustering algorithm) 

Stage I: Target location measurement by Current Predicted 

Cluster (CPC) 

1. if sensor node in CPC detect the target then 

2. send a Measure_Msg to current CH 

3. end  

Stage II: Next Predicted Cluster (NPC) construction 

1. for CH in CPC receiving Measure_Msg do 

2. Estimate speed and direction of target in next tracking interval 

and predict the next location of target 

3. Determine _next PCR , radius of NPC based on prediction error 

4. Determine 1tt  , the next tracking interval time interval based 

on target speed  

5. Generate a Predicted_Msg and broadcast to neighbor nodes  

6. for each sensor node i receiving Predicted_Msg do 

7. if , 1 _i t next PCd R   then 

 calculate utility jw  and reply a Utility_Msg  

8. end 

9. for CH in CPC receiving Utility_Msg do 

Sort utilities  iw  

Select the sensor node argmax i
i

i w  to CH in NPC and three 

sensor nodes with next orders of the highest utility to CMs in NPC 

Stage III: Activation by CH in CPC 

1. Generate a NextCH_Msg and a NextCM_Msg, send to CH and 

CMs in NPC and activate them 
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2. After 1tt  , NPC become CPC and iterate algorithm 

End 

5. ANALYSIS OF THE PROTOCOL 

To analyze the protocol, we assume that n static clusters are 

randomly deployed throughout the overall monitoring area and all 

sensors are deployed according to Poisson distribution with the 

density of  . Thus, the mean number of neighboring sensors in 

the case of static and dynamic cluster equals to
2 1cr  . 

Theorem 1. The computational complexity of the predicted 

clustering is O(1) and it is much more smaller than the 

computational complexity 
2 2( 1)c cr r    of the dynamic 

clustering. 

Proof. The computational complexity of the predicted 

clustering is due to the computation of the next predicted cluster 

size produced by prediction error computation in prediction stage 

and due to the computation of the next tracking interval time 

produced by prediction of the target speed. Such computations are 

performed only in PCH nodes. Therefore, the computational 

complexity of the predicted clustering is O(1). However, in 

dynamic clustering, the discrimination should be performed for 

each sensor to determine whether it becomes the boundary node 

of dynamic cluster for its all neighboring sensors in the worst 

case, thus the total computational complexity is very high as
2 2( 1)c cr r   . Such considerations also let us could observe 

the predicted clustering and dynamic clustering are local 

processes independent of the size of WSN. 

Theorem 2. The overhead complexity of the control message 

necessary for the predicted clustering is lower 
22

c
r

 or more than 

that of control message necessary for the dynamic clustering. 

Proof. The predicted clustering is performed through three 

stages such as measurement stage, prediction stage and activation 

stage, and the overhead of total control messages for the next 

predicted cluster formed through these stages is as follows in the 

worst case. 

3(Measure_Msg)+
2( 1)cr   (Predicted_Msg)+

2(3 / 2)sr  

(Utility_Msg)+1(NextCH_Msg)+3(NextCM_Msg)≈
2( 1)cr   

+<2
2( 1)cr   

where X(Y) denotes that the number of Y control messages is X. 

On the other hand, the dynamic clustering is performed through 

several stages such as CH election stage, dynamic cluster 

formation stage, boundary sensor formation stage in dynamic 

cluster, and one dynamic cluster is formed as a result of it. Then, 

the overhead of the total control message is as follows. 

22( 1)cr   (eletion_Msg)+
2( 1)cr   (recruit_Msg)+

2( 1)cr   (confirm_Msg)+ some control messages for the 

replacement≈4
2( 1)cr   

22( 1)cr   (eletion_Msg)+
2( 1)cr   (recruit_Msg)+

2( 1)cr   (confirm_Msg)+some control messages for the 

replacement≈4
2( 1)cr   

From the above considerations, we can observe that the 

communication complexity of the predicted clustering is Θ(1) the 

same as that of the dynamic clustering and its overhead is lower 

than that of the dynamic clustering approximately 
22 cr  or 

more. 

Theorem 3. The number of active sensors in the predicted 

cluster is 16/9 or more times smaller than that of the dynamic 

cluster. 

Proof. The mean number of sensors in one dynamic cluster is 

2

cr  and that of the predicted cluster is 29

4
sr  in maximum 

when the prediction error is maximized because the size of the 

predicted cluster is in the range of [3 / 4,3 / 2]s sr r . The mean 

number of the dynamic cluster is 16/9 or more times larger than 

that of the predicted cluster because the relation 2c sr r  is valid. 

Moreover, considering that only about four sensors are activated 

including CH node not all sensors inside of the predicted cluster, 

saving of the energy due to the activation becomes larger. 

Theorem 4. The computation complexity and communication 

complexity of target tracking by the prediction based hybrid 

cluster are O(n). 

Proof. The computation and communication complexity of 

target tracking protocol based on the hybrid cluster using request 

combination of the static and dynamic cluster are O(n) [3]. 

According to theorem 1 and 2, the computation and 

communication complexity of the predicted clustering are Θ(1), 

so that of the prediction based hybrid clustering is also O(n). 

6. PERFORMANCE EVALUATION 

In this section, we evaluate the performance of the proposed 

PCDA algorithm through simulations. First, the simulation 

environment is described, and second, performance measurement 

parameters are described, and last, the experimental results about 

performance measurements are given and further analyzed. 

6.1 SIMULATION ENVIRONMENT 

All simulations are performed using MATLAB. The 

simulation environment is configured as follows. A total of 2000 

sensors are randomly deployed in the area of 400m×400m. 

Sensors are organized as static clusters according to the LEACH 

protocol. The transmission range of each node cr , is set to 

/ 2c sr r   and sr  is fixed as 20m. Moreover, the energy 

consumption model is the same as adopted from [10] and [22]. 

Then, the energy consumed at transmitters is denoted as follows.  

 

4

0

2

0

,

,

r elec emp DA

r elec fs DA

E lE l d lE if d d

E lE l d lE if d d





    


   

  (21) 

where DAE  is the energy for the aggregation of data, elecE is the 

energy consumed per bit for the circuits at the receiver, fs and 

amp  are parameters depends on the amplifier model of the 

transmitter, d is a distance, d0 is the threshold distance, l is the 

length of packets. The energy consumed at the receiver is denoted 

as follows.  
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 r elecE lE  (22) 

The parameters of energy consumption model are shown in 

Table.2. 

We assume that the target moves according to random way 

point models of RWP model and RCAM model considered at the 

prediction stage of PCDA algorithm. It is assumed that the 

moving speed of the target varies in the range of 0~15m/s, the 

maximum acceleration is 3m/s2 in RCAM, the limit of the error 

angle of the predicted location is 15   . Each point of simulated 

data is achieved from the mean value through one hundred 

experiments. 

Table.2. Parameters used in simulations 

Parameter Value 

Network Area 400m×400m 

Number of sensors 2000 

elec
E

 
50nJ/bit 

DA
E

 
5nJ/bit/signal 

fs


 
10pJ/bit/m2 

amp


 
0.0013pJ/bit/m4 

0
d

 
87m 

l  500bytes 

Initial energy of sensors 1-4J 

size of control packets 8bytes 

We used the following metrics to evaluate the performance of 

our proposed algorithm in simulations. 

• Number of dead sensors–the number of exhausted sensors in 

energy during the overall target tracking 

• Energy consumption–sum of energy consumed in all sensors 

of WSN 

• Missing probability–the ratio of the total energy of tracking 

periods where the target is missed to the total target tracking 

interval time. It equals to the working time of the recovering 

mechanism and it is an important measurement parameter to 

evaluate the quality of the tracking. 

• Mean distance of activated sensors–the mean distance 

between actual location of the target and activated sensors. 

It is used a measurement value to evaluate the quality of 

target tracking. 

• Mean squared distance error of activated sensors–it is the 

mean squared error of the distance between the activated 

sensor at the predicted location of the target and the sensor 

closest to the actual location of it. It is used as the 

measurement value to evaluate the quality of target tracking. 

In our simulations, the performance of the proposed PCDA 

algorithm in comparison with other schemes such as DPT which 

is the pure dynamic clustering scheme using prediction, low 

power prediction mechanism in [20] (denoted as LPPM in this 

paper), HCTT which is the hybrid clustering scheme for the single 

target tracking and HCMTT which is the hybrid clustering scheme 

for multiple target tracking. 

6.2 SIMULATION RESULTS 

6.2.1 Effect of the weight w and target tracking interval time 

t to the performance of target tracking 

Effect of the weight w 

The weight w is set considering the effect to usability of the 

residual energy and distance to the target and its proper value is 

chosen through simulations. In general, a lower w can give a 

higher usability to the sensor closer to the target rather than 

sensors with higher residual energy contrary to larger w. In our 

simulation, w is set to 5 values such as 0, 0.25, 0.5, 0.75 and 1.0. 

Simulation results about the variation of the number of dead 

sensors versus simulation time and that of missing rate are shown 

in Fig.2 and Fig.3 respectively. 

 

Fig.2. Number of dead sensors versus simulation time in 

different w 

In Fig.2, we can observe that the number of dead sensors is in 

inverse proportion to w in general. That is, electing w to be 

approached to 0, the effect of residual energy factor is ignored, 

while that of distance factor is valued more, thus the number of 

dead sensors are increased because sensors with low energy closer 

to the target can attend target tracking.  

 

Fig.3. Missing probability versus simulation time in different w 
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Electing w to be approached to 1, the energy is more valued 

than the distance to the target, so the numbers of dead sensors are 

decreased while the missing probability is being increased 

because sensors with higher residual energy father from the target 

attend target tracking. This fact shows that sensors with low 

energy are dead sooner if too low w is used resulting imbalance 

of energy consumption, on the contrary, if too large w is used, the 

quality of target tracking is reduced because sensors closest to the 

target are removed from target tracking due to their low energy. 

Observing curves of missing probability in Fig.3, we can see 

that the higher missing probability is due to the larger w. This is 

because the distance measurement error of the target and location 

prediction error depending on it is increased when w is increased 

reducing the effect of the distance factor, thus the prediction error 

is increased and missing probability is increased in the end. The 

increase of prediction error results in the increase of the predicted 

cluster size in PCDA, so more sensors are activated. Thus, the 

number of dead sensors is increased due to the increase of energy 

consumption. 

Two curves in Fig.2 and Fig.3 show that the reasonable w is 

about 0.25~0.5 in the aspect of energy consumption and missing 

probability. So, the weight is set to 0.4 in the following 

simulations. 

Effect of target tracking interval time t  

t is target tracking interval time and it is the time interval 

between two neighboring measurement points or two neighboring 

prediction estimation points. The target has a constant 

acceleration when it moves according to RCAM, so it can move 

more distance than S (the distance moved for 1s with maximum 

speed. In our case, it is 15m) predefined in (19) for t . At that 

time, the prediction error will be increased, if t  is not decreased. 

Generally, missing probability is decreased when t is decreased, 

and the energy consumption is decreased when it is increased. In 

our simulation, t is set to 1s, 2s, 3s, 4s, 5s and the energy 

consumption and missing probability is evaluated versus 

simulation time. Simulation results are shown in Fig.4 and Fig.5. 

Fig.4 and Fig.5 show that network lifetime is extended in great 

extent due to the reduced energy consumption but missing 

probability is increased when t  is increased. Thus, we can 

achieve relatively better compromise between energy 

consumption and quality of tracking electing t  in the range of 

2-3s in our case. 

6.2.2 Quality of Tracking: 

In this subsection, the quality of tracking in PCDA is 

evaluated in comparison with other schemes using several 

measurement parameters such as mean distance of activated 

sensors, mean squared distance error of them, missing probability, 

etc. 

First, the actual track of the target is shown in comparison with 

tracks predicted using PCDA, DPT, LPPM schemes when it in 

different t moves according to RWP and RCAM model. The 

simulation result shown in Fig.6 shows that the proposed scheme 

tracks the actual track more precisely than DPT and LPPM 

schemes. This is just because the size of predicted clusters and 

tracking interval time is adjusted according to the prediction error 

and speed of the target in PCDA scheme.  

 

Fig.4. Energy consumption versus simulation time in different 

t  

 

Fig.5. Missing probability versus simulation time 

 

(a) In RWP model 
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(b) In RCAM model 

Fig.6. Comparison between actual track of the target and 

predicted track of it 

The simulation results of mean distance of activated sensors, 

mean squared distance error of them, missing probability 

according to the variation of prediction error are shown in Fig.7, 

Fig.8, Fig.9 respectively when the target moves along the track 

shown in Fig.6 (it is simply called the general track distinguishing 

it from the track in Fig.1 follows the boundary or from zigzag 

track). 

The Fig.7 shows that mean distance of activated sensors is not 

increased rapidly however the prediction error is increased 

because the mean distance between actual location of the target 

and activated sensors are independent to prediction scheme. 

Furthermore, in PCDA, DPT and LPPM schemes, the mean 

distance of PCDA is small with small prediction error, but it is 

increased than DPT because the proposed PCDA increases the 

size of the predicted cluster dynamically according to the 

prediction error when it is increased. 

The simulation result in Fig.8 shows that mean squared error 

(MSE) of the distance between activated sensor in predicted 

location of the target and the sensor closest to the actual location 

of the target is always 0, but it is increased in DPT or LPPM, 

PCDA when the prediction error is increased. 

The simulation result in Fig.9 shows that the prediction error 

has no effect to missing probability because sensors for target 

tracking are not activated based on the prediction scheme in 

HCMTT. Furthermore, it shows that in DPT and LPPM schemes, 

predicted cluster with constant size is used and tracking interval 

time is also constant, thus these schemes have higher missing 

probability. However, in DPT, we can observe that missing 

probability is lower than that in the proposed scheme when the 

size of its predicted cluster is larger than that of PCDA scheme. 

 

 

a) In RWP model 

 

b) In RCAM model 

Fig.7. Mean distance of activated sensors versus prediction error 

(in the case of general track) 

 

(a) In RWP model 
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(b) In RCAM model 

Fig.8. Mean squared distance error of activated sensors 

according to prediction error (in the case of general track) 

Curves of missing probability versus simulation time when the 

target moves along a specific track are shown in Fig.10. This 

simulation result shows that missing probability of PCDA scheme 

does not exceed 10% when the target moves along specific tracks 

such as zigzag track or tracks lied in boundary. Missing 

probability of hybrid clustering schemes such as HCTT or 

HCMTT is 0 because they are independent to prediction scheme. 

6.2.3 Energy Consumption: 

In this subsection, energy consumption performance of PCDA 

is evaluated in comparison with other schemes. Fig.11 shows the 

simulation result of the variation of energy consumption when the 

target moves along the general track shown in Fig.6. Furthermore, 

Fig.12 and Fig.13 show that the variation of the number of dead 

sensors and energy consumption in proposed PCDA and other 

schemes versus simulation time when the target moves along the 

specific track shown in Fig.1. 

 

(a) In RWP model 

 

(b) In RCAM model 

Fig.9. Missing probability according to the prediction error (in 

the case of general track) 

The simulation result in Fig.11 shows that energy 

consumption of DPT scheme is the lowest. In the simulation of 

DPT, we assumed that prediction based dynamic cluster is formed 

using only low beam in this scheme and the usage of recovering 

mechanism is not considered. 

And we can observe that energy consumption of PCDA is 

higher than that of DPT, but it is lower than other schemes. In 

HCTT and HCMTT, the communication should be established 

with all sensors inside of communication range rc and sensing 

range rs, thus energy consumption is increased.  

The simulation results in Fig.12 and Fig.13 show that the 

number of dead sensors increases rapidly due to the overforming 

and dismiss of dynamic clusters consuming huge amount of 

energy when the target moves along the specific track in hybrid 

clustering scheme without prediction. However, in PCDA, 

network lifetime is increased significantly due to the lower energy 

consumption. 

 

(a) zigzag track 
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(b) track lied in boundary 

Fig.10. Missing probability versus simulation time in the 

specific track 

 

Fig.11. Energy consumption versus prediction error in the case 

of general track 

 

 (a) zigzag track 

 

 (b) track lied in boundary 

Fig.12. Number of dead sensors versus simulation time in the 

case of specific track 

 

(a) zigzag track 

 

(b) track lied in boundary 

Fig.13. Energy consumption versus simulation time in the case 

of specific track 
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7. CONCLUSION 

In this paper, we proposed an energy efficient hybrid 

clustering scheme combined with prediction method for target 

tracking in WSNs. The prediction-based clustering algorithm 

PCDA is used in this scheme. In this algorithm, the size of the 

predicted cluster and tracking interval time are adjusted 

adaptively according to prediction error and the speed of the 

target, thus achieves the balance between the quality of tracking 

and energy consumption. Simulation results showed that the 

proposed scheme can greatly decrease energy consumption and 

extend network lifetime in great extent guaranteeing a certain 

level of the quality of tracking when the large amount of energy 

is consuming due to overforming and dismiss of dynamic clusters. 
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