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Abstract 

The gigantic growth of the internet communication technology has 

illustrated its value and benefits to private businesses, government 

organizations, worldwide professionals, academic institutes and 

individuals over the past few years. The size and range of computing 

devices connected to the internet, substantially increased because of 

IPv6 and offers the potential to establish a much more powerful 

internet compared to the IPv4. IPv6 developed by the IETF to deal 

with a shortage of IP addresses under IPv4. New features of IPv6 

enhance packet processing speeds over routers, switches and end 

systems. These improved features will have different traffic 

characteristics than IPv4. The internet traffic which was earlier 

assumed as Poisson is now shown to have fractal characteristics as; 

heavy tailedness, self-similarity and long range dependency. Internet 

traffic showing above characteristics are found to have burstiness at 

multiple timescales. This behavior impacts network performance and 

degrades it substantially. It also increases complexity for network 

design and create difficulties to maintain desired QoS. IPv4 traffic has 

been well established as self-similar traffic. Nowadays, IPv6 forming 

a larger share of the internet traffic and it is pivotal to asses IPv6 with 

regards to fractal behavior. This will enable network designers to do 

necessary changes in the existing network to reconcile with IPv6. In 

this paper we compared IPv4 and IPv6 with respect to fractal 

behavioral characteristics. It is found that IPv6 shows higher degree 

of heavy tailedness, higher values of Hurst parameter values, higher 

fractal dimension values i.e. it is more self-similar, greater 

autocorrelation achieved even at larger lag and thus showing more 

burstiness. 
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1. INTRODUCTION

Nature of internet traffic must be correctly understood in 

order to design computer networks and network services. 

Earlier, the modelling of internet traffic was same as that of 

telephony, hence Poisson model was commonly used. Study of 

internet packet traffic has challenged this approach. For the 

traffic following Poisson process, the property of burstiness 

would eventually die off over long time scales. Instead, it is 

observed that considerable burstiness is present even over long 

enough time scales [1, 2, 6]. 

The line of thinking was changed by the research paper on 

long range dependence by Leland et al. [3]. It waived off the 

Poisson model adapted for telephony. It clearly stated that new 

approach was required for modelling the data packet traffic. The 

paper emphasized that internet traffic exhibits self-similarity or 

fractal characteristics, long range dependent (LRD) behavior 

and Heavy tails (Power laws) [4]. 

Fig.1. Flow of the internet traffic analysis. Sub points indicates 

the methods and logic used for analysis 

In this paper, we analyzed internet traffic with respect to 

heavy tailed behavior, self-similarity, long range dependency 

and burstiness for both IPv4 and IPv6 [9, 10, 11] traffic. It is 

seen that the three characteristics like heavy tailed behavior, 

self-similarity and long range dependency are responsible for 

burstiness in traffic. The sequence correctly illustrates the 

interrelationships as shown in Fig.1. 

Heavy tailedness is a significant property of internet traffic 

which follows power law. The distribution of file sizes follows 

power law and therefore very large file transfer can be expected 

with non-negligible probability. Many such files in a network 

environment together causes self-similarity. Thus self-similar 

traffic results from heavy tailed behavior of file sizes being 

transferred over the network [5]. 

Self-similarity means the property exhibited by a fractal 

object which appears unchanged at any viewing scale [7]. Thus, 

Internet packet traffic showing burstiness at various time scales 

can be labeled as self-similar traffic. However, the traffic must 

exhibit long range dependence for above mentioned 

phenomenon to occur [1]. 

In this study, our goal is to characterize IPv6 and IPv4 packet 

traffic based on heavy tails, self-similarity, long range 

dependence, auto correlation and power spectral density (PSD) 

analysis for the parameters like packet length and packet 

interarrival time. We also carried out probability distribution 
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fitting for IPv4 and IPv6 packets for above parameters. In order 

to generate accurate data traffic for network simulation, it is 

essential to use correct probability distribution models. 

Organization of paper is as follows. Firstly IPv4 and IPv6 

protocols are explained in detail in section 2. Information about 

data traces used and analysis perspective is explained in section 

3. In section 4, we perform comparison of IPv4 and IPv6 traffic 

for the parameters like inter-arrival time and packet length in 

terms of probability distribution fitting, heavy tailedness, self-

similarity, autocorrelation, power spectral density analysis and 

burstiness. Finally section 5 shows conclusion of research work. 

2. BACKGROUND WORK 

2.1 IPv4 AND IPv6 PROTOCOL 

The main limitation of IPv4 (with 32 bit address) is its lack 

of address space and provides up to 4 billion IP addresses and 

was never designed to have all 4 Billion IP addresses used 

simultaneously. The current world population is of 7 Billion [22] 

and the number of computing devices connected to the Internet 

are much more than number of humans [23]. IPv6 uses 128 bit 

address (approximately 3.4  1038 addresses) and can connect 

massive number of devices at a time. Internet Protocol was 

comprehensively developed for long-term growth of the 

internet.  The IPv4 header contains of 20-bytes. The maximum 

length of the IPv4 header is 60 bytes and it has 13 fields to 

recognize control settings. The IPv6 header is a fixed header of 

40-bytes, with only 8 fields. For optional information an 

extension header is used after IPv6 header.  

The IPv4 header uses optional fields for particular 

processing of packets. These optional fields are not often used 

and hence might degrade router performance. This is not the 

case with IPv6. Here extension headers are not processed until 

the packet reaches the destination node recognized by address 

field of the IPv6 header. IPv6 provides authentication of the 

sender packets and encryption of packets thus security is 

enhanced. Other limitations of the IPv4 protocol are: non-

hierarchical addressing, mobility and multi-homing, large 

routing tables, complex host and router configuration, QoS 

(Quality of Services), multicasting etc. IPv6 protocol stacks are 

employed in parallel with IPv4 so that promotion of IPv6 from 

IPv4 becomes easier. This means that host can work with 

existing IPv4 network and also process IPv6. 

2.2 TRAFFIC CAPTURE AND DATASET 

PREPARATION 

For analysis we downloaded packet level internet traces from 

MAWI working group traffic archive. We used internet traces 

captured in the month of May 2009 from IPv6 line connected to 

WIDE-6Bone. The traffic available is in tcp dump format. All 

traces are inclusive of application traffic like HTTP, SMTP, 

P2P, ICMP6 and FTP. For IPv4 traffic, we use the daily traces 

of trance pacific line (18Mbps CAR on 100Mbps link) 

throughout the month of April 2006 [8]. 

Traces with dump file format and pcap file format are 

processed to calculate the packet length and inter arrival time 

series for further experiments.  

3. RESULT ANALYSIS  

3.1 DISTRIBUTION FITTING 

The Study of probability distribution functions are pivotal in 

network traffic analysis. Here we perform probability distribution 

fitting for time series of parameters like inter-arrival time and 

packet length. A time series is characterized using known 

distribution function and hence we study cumulative distribution 

function [12] for IPv4 and IPv6 traffic in detail. 

The pdf and cdf for three-parameter lognormal distribution is 

given as: 

Probability Density Function for three-parameter lognormal 

distribution is given as: 
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Cumulative Distribution Function for three-parameter 

lognormal distribution is given as: 
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where,  is the Laplace integral. 

The pdf and cdf for three-parameter Weibull distribution is 

given as: 

Probability Density Function for three-parameter Weibull 

distribution: 
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(3) 

Cumulative Distribution Function for three-parameter 

Weibull distribution: 
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(4) 

The pdf and cdf for three-parameter log-logistic distribution is 

given as: 

Probability Density Function for three-parameter log-logistic 

distribution: 
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(5) 

Cumulative Distribution Function for three-parameter log-

logistic distribution: 
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(6) 

Different probability distribution types are tested for 

distribution fitting process. As a standard for goodness of fitting, 

we use Anderson-Darling and chi square test results and decided 

the appropriate distribution type for packet length and packet 

inter-arrival time of IPv6 and IPv4 traffic [13, 14, 15]. 
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From the obtained fitting results, we found three parameter log 

normal distribution as best fit for IPv4 packet length and inter-

arrival time. For IPv6 packet inter-arrival time, Weibull 

distribution gives the best fit whereas for packet length we have 

log logistic distribution as best fitted distribution.  

The range of values of defining parameters of distribution are 

given below: 

Dataset: IPv4 packet length  

Best fit: log normal (3P) 

Range for σ is 0.01486 to 0.01911, μ is 7.1368 to 7.2083 and 

γ is -1019.5 to -923.47.  

CDF plot for IPv4 Data set for Packet length is best fitted as 

shown in Fig.2. 

Dataset: IPv4 inter-arrival time series 

Best fit: log normal (3P) 

Range for σ is 2.1863 to 2.34, μ is 2.8457 to 3.5385 and γ is 

4.9668 to 4.9834 

CDF plot for IPv4 Data set for Packet IAT is best fitted as 

shown in Fig. 3. 

Dataset: IPv6 packet length 

Best fit: log logistic (3P) 

Range for α is 1.3352 to 1.408, β is 60.801 to 73.216 and γ is 

65.991 to 66.0 

CDF plot for IPv6 Data set for Packet length is best fitted as 

shown in Fig.4. 

Dataset: IPv6 inter-arrival time series 

Best fit: Weibull (3P) 

Range for α is 0.52327 to 5.3421, β is 871.89 to 10721 and γ 

is 3.0 to 4.0 

CDF plot for IPv6 Data set for Packet IAT is best fitted as 

shown in Fig.5. 

 

Fig.2. CDF plot for IPv4 Data set (Packet length). Best fit 

obtained for Lognormal (3P) distribution 

CDF plot for packet length and IAT parameters are drawn by 

finding best fit probability distribution using statistical toolbox. 

 

Fig.3. CDF plot for IPv4 Data set (IAT). Best fit obtained for 

Lognormal (3P) distribution 

 

Fig.4. CDF plot for IPv6 Data set (packet length). Best fit 

obtained for Log-logistic (3P) distribution 

 

Fig.5. CDF plot for IPv6 Data set (IAT). Best fit obtained for 

Weibull (3P) distribution 
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3.2 HEAVY TAIL ANALYSIS 

A distribution is heavy-tailed if: 

 
    xxxXP as~ 

 
(7) 

where, 0 < α < 2 [1]. 

That is, the asymptotic shape of the distribution follows a 

power law. 

The properties of Heavy-Tailed Distributions (HTDs) are: 

i. CCDF decays slower than the exponential distribution 
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ii. CCDF = Complementary cumulative distribution function 
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iii. For heavy tailed distribution, CCDF is slower by some 

power of x 
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(10) 

The heavy tailed distribution can be evaluated based on shape 

parameter α. The methods used are: 

1. Log-Log Complementary Distribution (CD) plots 

2. The Hill estimator 

CD plots have the CCDF on log-log-axes. For such a plotted 

graph, heavy tailed distributions shows  
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for large value of x. 

For visual inspection we plot Log-Log CD plots for both 

Poisson distribution and the given data trace. If the graph of 

dataset lies above Poisson’s graph, it is heavy tailed [16].  

Log-Log CD Graphs for inter arrival time of IPv4 and IPv6 

traffic are plotted. They both lie above the log(1-F(x)) plot for 

Poisson traffic. Hence both show heavy tailed behavior. But more 

heavy tailedness is observed in case of IPv6 traffic. 

Log-Log CD plots for IPv4 dataset for IAT parameter is as 

shown in Fig.6. 

 

Fig.6. Log-Log CD plots for IPv4 dataset (IAT) and compared 

with Poisson traffic 

Log-Log CD plots for IPv6 dataset for IAT parameter is as 

shown in Fig.7. 

 

Fig.7. Log-Log CD plots for IPv6 dataset (IAT) and compared 

with Poisson traffic 

3.3 SELF-SIMILARITY 

Self-similarity can be simply related to correlation. Insights 

given by self-similarity in terms of looking an object are 

valuable. Self-similarity looks at an object at various scales and 

tells if it looks the same or not. This property is exploited for 

gaining information from time series of the internet traffic. 

Computer networks related calculations like resource sharing, 

routing management and queue management can be done using 

self-similarity perspective. 

Self-similar time series: Instead of continuous process we 

normally represent time series in network traffic. Then self-

similarity can be defined as, 

Let G = {G(j), j ≥ 1} be a stationary sequence. 
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Then, G(n)(k) will be the aggregated sequence. It has 

aggregation level of m which is obtained by averaging over non-

overlapping blocks of size n. So we can state self-similar 

process, for all integers n as, 

 

 nH GnG 1def
 

(13) 

For a process to be randomly scattered it must have Hurst 

value, H = 0.5. When a continuous time stochastic process {G(t), 

t  R} is called strictly self-similar then it has H value {H, 0 < 

H < 1} for; 

 
   tGCctG Hdef  (14) 

Here c is the scaling factor, so we get a new process G(ct). 

def Means equal in finite dimensional distributions. Hurst 

parameter values between 0 and 0.5 indicate short range 

dependency while value of Hurst parameter between 0.5 and 1 

shows long range dependency behavior [4]. 
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Table.1. Average Hurst parameter values for IAT and packet length 

Data set 
R/S 

method 

Abs. 

Moment 

method 

Time 

variance 

method 

Difference 

variance 

method 

Boxed 

periodogram 
Box counting 

IPv4 IAT 0.5678 0.5764 0.5777 0.5546 0.5582 1.6867 

IPv4 packet length 0.5773 0.5988 0.5907 0.5338 0.5480 1.5992 

IPv6 IAT 0.9250 0.8778 0.8535 0.7226 0.6138 1.430 

IPv6 packet length 1 0.911 0.911 0.7273 0.6095 1.863 

 

In this section, we carry out self-similarity analysis of IPv6 and 

IPv4 traffic in terms of packet length and packet inter-arrival time. 

We calculate Hurst parameter using R/S method, absolute moment 

method, time variance method, difference variance method and 

boxed periodogram [17] method. These methods have already been 

implemented in our previous research work [21]. We also carried out 

fractal dimension (FD) analysis [18], [21] and demonstrated in this 

paper using box counting method. The average values obtained for 

both IPv4 and IPv6 traffic are mentioned below for all above 

methods. 

By comparing the Hurst and fractal dimension values for 

different methods mentioned above, we can say that IPv4 and 

IPv6 traffic dataset used are self-similar. But the extent of self-

similarity is more in case of IPv6 traffic. This is due to higher 

heavy tailedness observed in case of IPv6 traffic. 

3.4 LONG RANGE DEPENDENCE 

3.4.1 Autocorrelation Analysis: 

Hurst parameter is a quantitative measure of self-similarity. It 

articulates the speed of decay of autocorrelation function value for 

a time series.  

Long range dependence is easily observed in LAN and WAN 

traffic. It degrades the performance as in case of long range 

dependent traffic where queue length decays slowly. Long-range 

dependence (LRD) can be shown by a time series. For such a 

series autocorrelation function can be written as, 

 
   mmms as~ 

 
(15) 

where, the value of β is between 0 and 1. 

The relation between Hurst parameter and β is as follows 

 2
1


H

 
(16) 

Thus for LRD time series, Hurst parameter [5] is given as, 

1
2

1  H . As, H → 1. The degree of long-range dependence 

increases. 

A time-series which is self-similar can show long range 

dependence. For such a process, autocorrelation function is given 

as, r(k) ~ k-β and k → ∞,where value of β is given as, 0 < β < 1. 

Thus power law behavior is revealed from auto correlation 

function.  

It is known that power law decay slower than exponential. 

Further we have, β < 1, hence the sum of autocorrelation values 

will approach to infinity. Long range dependency can also be 

depicted in power spectrum. The power spectrum is hyperbolic 

and rises to infinity at zero frequency.  

It is observed from these graphs that for IAT and packet 

length, low values of auto correlation are obtained. This can be 

related to the low values of H. We have H values in range of 0.5 

to 0.6.  

This indicates lesser-long range dependence. IPv4 packet 

length and packet interarrival time autocorrelation plots shows 

that IPv4 packet does not show good degree of long range 

dependence. This is acceptable as Hurst exponent obtained is 

also less. Similar results were obtained for remaining data 

traces.  

On the other hand autocorrelation values for IPv6 packet 

length and packet inter-arrival time depict a high amount of long 

range dependent behavior. This is likely as earlier we obtained 

high Hurst exponent values. Similar results were obtained for 

other data traces. 

 

Fig.8. Autocorrelation function plot for IPv4 dataset (IAT) 
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Fig.9. Autocorrelation function plot for IPv4 dataset (Packet 

length) 

 

Fig.10. Autocorrelation function plot for IPv6 dataset (IAT) 

 

Fig.11. Autocorrelation function plot for IPv6 dataset (packet 

length) 

3.4.2 Power Spectral Density: 

Self-similar traffic can be characterized by power spectral 

density (PSD). For LRD time series, PSD follows a power law 

near origin. 

 
  ,10,  vasvvQx  

(17) 

where, v is frequency, Qx(v) is the spectrum density and γ = H – 1. 

They showed analogous characteristics; representing a little 1/f 

type power spectrum behavior. Also Gaussian type power spectra 

were observed for both of them. Value of PSD is more in case of IPv6 

as compared to IPv4. We have shown a plot of PSD [19] for a data 

trace, but similar plots are obtained for other data traces. 

 

Fig.12. PSD plot for IPv4 dataset (IAT) 

 

Fig.13. PSD plot for IPv4 dataset (Packet length) 

 

Fig.14. PSD plot for IPv6 dataset (IAT) 
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Fig.15. PSD plot for IPv6 dataset (Packet length) 

3.5 BURSTINESS 

By definition, burstiness is the degree of variation in network 

traffic. Burstiness can be studied using Peak to mean ratio (PMR) 

and index of dispersion for counts (IDC).  

For time scale = t, IDC can be defined as 

 

 
 t

t
t

KE

KVariance
I 

 

(18) 

where, Kt indicates the number of arrivals in an interval of time t 

and E(Kt) is mean number of arrivals in time t.  

Mathematically, Peak to mean ratio (PMR) can be written as: 

 

 
 t

t

KMean

KMax
PMR  .

 

(19) 

The value of the IDC is 1 for all ‘t’ for a Poisson process, and 

also compared with other research works [20]. 

We check the values for burstiness in terms of IDC and PMR. 

Value of IDC should be greater than 1 even for larger time scales. 

We calculated IDC and PMR for 100 different scales like 1, 

10, 25, 50, 75, 100, 125, 150, 175 and 200 seconds. 

Approximately 2.5 lakh packets containing dataset were analyzed 

for IPv4 and IPv6 traffic. Higher values of IDC and PMR are 

obtained for IPv6, even at higher time scales. Even in case of 

packet length parameter, IDC and PMR values are high as 

compared to IPv4 traffic. The IDC values obtained are as given in 

Table.2 and Table.3. 

Table.2. Average IDC for IPv4 data traffic 

Time 

duration* (seconds) 
1 10 50 100 

IPv4 

(packet length) 
330.5 288.36 221.64 205.6 

IPv4 IAT 348.36 280.73 217.9 198.3 

*Due to small length traces available for IPv4 IDC could be 

calculated over short duration only. 

Table.3. Average IDC for IPv6 data traffic 

Time duration 

(seconds) 
1 10 50 100 200 

IPv6 packet length 829.9 857.4 677.3 653.9 628.6 

IPv6 IAT 5990 5456 5507 4735 4058 

 

 

Fig.16. Time series plot for IPv4 data set (IAT) for time scale 10 

seconds 

Mathematically, an object is said to be self-similar if it looks 

"roughly" or “exactly” the same on any scale (short, medium or 

long scale). Self-similar traffic is bursty on many or all timescales 

(i.e. Variation in the average rate of the traffic stream is same for 

all time scales). Also for self-similar traffic, as link speed increases, 

if the traffic is truly bursty at all-time scales, the queuing delay 

would not decrease with increased traffic aggregation. This is the 

reason where Poisson model fails to represent the HTTP traffic and 

well defined by self-similarity process. 

 

Fig.17. Time series plot for IPv4 data set (IAT) for time scale 

100 seconds 
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Fig.18. Time series plot for IPv6 data set (IAT) for time scale 10 

sec 

Performance analysis is done for IPv4 and IPv6 traffic in this 

research work whereas it is done for HTTP and VoIP traffic by 

other researchers. The approach used in this research are based on 

autocorrelation analysis, fractal dimension analysis and 

probability distribution fitting analysis etc. Also, the comparison 

for IPv4 and IPv6 in terms of self-similarity and burstiness is 

rarely seen in the available literature survey.  

 

Fig.19. Time series plot for IPv6 data set (IAT) for time scale 

100 seconds 

In this research work, IPv4 and IPv6 traffic is characterized 

based on heavy tails, self-similarity, long range dependence, auto 

correlation, power spectral density (PSD) and burstiness. This 

analysis is done for the parameters like packet size and packet 

interarrival time. The Table.4 compares our research work with 

others. 

 

Table.4. Comparison of our research work with existing research work 

Traffic 

considered 

Heavy tailed analysis 

(HTD), Long range 

dependence (LRD), 

autocorrelation analysis 

(AA), Power spectral 

density analysis (PSD) 

Hurst parameter methods and 

Fractal dimension calculations 

(average values given) 

Burstiness using 

index of dispersion 

for counts (IDC) 

Probability 

Distribution 

Our paper 

IPv4 and IPv6 

mixed traffic 

HTD: 0<𝛼< 2 

LRD:AA: Sum of 

autocorrelation function 

tends to be infinity, 

PSD: Follow power law 

near origin 

R/S: 0.5 (IPv4), 0925 (IPv6) 

AM: 0.576(IPv4), 0.877(IPv6) 

VT: 0.577(IPv4), 0.835(IPv6) 

Diff. variance: 0.55(IPv4), 

0.7226(IPv6) 

Boxed periodogram:0.55(IPv4), 

0.61(IPv6) 

Box counting:1.68(IPv4), 

1.43(IPv6) 

IDC: 198 IPv4- 

IAT -100 sec, IDC: 

4735 (IPv6- IAT- 

100 sec) 

 

IPv4 IAT: 

Lognormal 

IPv4 packet size: 

Lognormal 

IPv6 IAT: Weibull 

IPv6 Packet size: 

Log-Logistic 

Cebrail: [24] 

IPv4 and IPv6 

mixed traffic 

AA: Sum of 

autocorrelation function 

tends to be infinity, 

PSD: Follow power law 

near origin 

 

R/S: 0.7(IPv4), 0.9 (IPv6), 

Diff. variance: 0.56(IPv4), 

0.79(IPv6) 

Aggregated variance: 

0.73(IPv4), 0.84(IPv6) 

Absolute value: 0.73(IPv4), 

0.89(IPv6) 

Wavelet Method: 0.61(IPv4), 

1(IPv6) 

Not Done Not Done 

Jaiswal: [21] 

HTTP traffic 
Not Done 

R/S plots: 0.627 

V-T plots: 0.62 

Absolute Moment: 0.72 

Periodogram: 0.68 

Correlation integrals: 0.922 

Not Done IAT: Weibull 
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Ali Gezer: [19] 

IPv4 and IPv6 

Bit Torrent 

traffic 

AA: Sum of 

autocorrelation function 

tends to be infinity, 

PSD: Follow power law 

near origin 

 

Absolute value: 0.788(IPv4), 

0.76(IPv6) 

Aggregated variance: 

0.71(IPv4), 0.77(IPv6) 

R/S: 0.78(IPv4), 0.75(IPv6) 

Wavelet method: 0.733(IPv4), 

0.688(IPv6) 

Not Done 

IPv4 packet size: 

Log logistic, 

IPv4 IAT: Weibull 

IPv6 packet size: 

Pareto 

IPv6 IAT: Gamma 

Crovella: [1] 

WWW traffic 
HTD: 0<𝛼< 2 

V-T plots, R/S Plot, 

Periodogram, Whittle 

Estimator: H values are not 

mentioned but stated that 0.7 < 

H < 0.8 

Not done Not Done 

Zhu-wang: [25] 

Web traffic, 

wireless and 

wireline IP 

network 

Not done 

V-T plots: 0.66 (Wireless), 0.68 

(Wireline) 

R/S plot: 0.66 (Wireless), 0.7 

(Wireline) 

Not done 

Weibull for both 

Wireless (0.18, 0.67) 

and Wireline (0.03, 

0.53) 

4. CONCLUSION 

In this paper, we examine characteristics of IPv6 and IPv4 

traffic obtained from the standard internet traffic datasets. For 

analysis, we used packet level internet traces from MAWI 

working group traffic archive. We used internet traces captured in 

the month of May 2009 from IPv6 line connected to WIDE-

6Bone. For IPv4 traffic, we analyze the daily traces of trance 

pacific line (18Mbps CAR on 100Mbps link) throughout month 

of April 2006. Detail analysis is carried out in terms of cdf 

analysis, self-similarity analysis, autocorrelation analysis, power 

spectral density analysis, PMR and IDC analysis. 

Data communication of packets follows heavy tailed 

distributions in the internet network. Self-similarity can be used 

to describe this behavior. The processed data traffic shows heavy 

tailedness and thus follows power law. IPv6 traffic showed higher 

heavy tailed behavior compared to IPv4. Hurst parameter 

provides analytical proof of self-similarity using various 

techniques. Higher degree of heavy tailedness results in higher 

degree of self- similarity. This is evident from the H values 

obtained for IPv4 and IPv6 data traces. The H values for IPv4 are 

close to 0.6 and H values for IPv6 are close to 1 for both 

parameters like inter arrival time and packet length.  Thus, it is 

evident that IPv6 traffic is more self-similar compared to IPv4. 

Long range dependency was tested using auto correlation and 

power spectral density plots. The results obtained using this 

analysis, correctly matched with heavy tailed distribution and 

self-similarity analysis. Lower H values indicates lower long 

range dependence. This is reflected by auto correlation plots of 

IPv4 for both inter-arrival time and packet length. IPv6 packet 

traffic showed higher auto correlation values for greater lags and 

decayed slowly. Especially, for packet length parameter, auto 

correlation graphs showed very high auto co-relation values and 

decayed very slowly with respect to time. This clearly indicates 

higher self-similarity in case of IPv6 traffic. Burstiness is 

analyzed using IDC, PMR and plotting time series graphs for 

different time scales. IPv4 packet traffic shows less burstiness and 

it decays over higher time scales, whereas IPv6 traffic maintains 

bursty nature even for higher time scales. 

With rigorous experimentations, it is assured that, IPv6 is 

burstier as it showed higher degree of heavy tailedness. 

Accordingly, increased self-similarity is noticed. Upon further 

investigation, it showed higher values of auto correlation function 

and results large power spectral density value near the origin. This 

all contributed to increased bursty nature of IPv6 traffic than IPv4. 

This analysis is very much important and can be used by internet 

service providers for network design and management to ensure 

smooth functioning of network flow for IPv4 and IPv6 traffic in 

future. 
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