MACHINE LEARNING-BASED FACIAL RECOGNITION FOR VIDEO SURVEILLANCE SYSTEMS

ICTACT Journal on Image and Video Processing ( Volume: 14 , Issue: 2 )

Abstract

Video surveillance systems play a crucial role in ensuring public safety and security. However, the traditional methods of surveillance often fall short in effectively identifying individuals, particularly in crowded or dynamic environments. This research addresses the limitations of conventional video surveillance by proposing a machine learning-based facial recognition system. The increasing demand for robust security measures necessitates the development of advanced technologies in video surveillance. Facial recognition has emerged as a promising solution, but existing systems struggle with accuracy and efficiency. This research aims to bridge these gaps by leveraging machine learning techniques for facial recognition in video surveillance. Conventional video surveillance struggles with accurate and rapid identification of individuals, leading to potential security lapses. This research addresses the challenge of enhancing facial recognition accuracy in real-time video feeds, especially in scenarios with varying lighting conditions and occlusions. While facial recognition has gained traction, there is a significant research gap in the implementation of machine learning algorithms tailored for video surveillance. This study aims to fill this void by proposing a novel methodology that combines deep learning and computer vision techniques for robust facial recognition in dynamic environments. The proposed methodology involves training a deep neural network on a diverse dataset of facial images to enable the model to learn intricate facial features. Additionally, computer vision algorithms will be employed to handle challenges such as occlusions and varying lighting conditions. The model''''s performance will be evaluated using real-world video surveillance data. Preliminary results demonstrate a significant improvement in facial recognition accuracy compared to traditional methods. The machine learning-based system exhibits enhanced performance in challenging scenarios, showcasing its potential for practical implementation in video surveillance systems.

Authors

Dileep Pulugu1, P. Anusha2, Ratan Rajan Srivastava3, R. Kalaivani4, Subharun Pal5
Malla Reddy College of Engineering and Technology, India1,2,3,4, Swiss School of Management, Switzerland5

Keywords

Facial Recognition, Machine Learning, Video Surveillance, Deep Learning, Computer Vision

Published By
ICTACT
Published In
ICTACT Journal on Image and Video Processing
( Volume: 14 , Issue: 2 )
Date of Publication
November 2023
Pages
3149 - 3154
Page Views
707
Full Text Views
68

ICT Academy is an initiative of the Government of India in collaboration with the state Governments and Industries. ICT Academy is a not-for-profit society, the first of its kind pioneer venture under the Public-Private-Partnership (PPP) model

Contact Us

ICT Academy
Module No E6 -03, 6th floor Block - E
IIT Madras Research Park
Kanagam Road, Taramani,
Chennai 600 113,
Tamil Nadu, India

For Journal Subscription: journalsales@ictacademy.in

For further Queries and Assistance, write to us at: ictacademy.journal@ictacademy.in