SEMANTIC SEGMENTATION IN MEDICAL IMAGE ANALYSIS WITH CONVOLUTIONAL NEURAL NETWORKS

ICTACT Journal on Image and Video Processing ( Volume: 14 , Issue: 2 )

Abstract

Medical image analysis plays a pivotal role in modern healthcare, aiding clinicians in accurate diagnosis and treatment planning. However, the complexity and diversity of medical images pose significant challenges for traditional image processing methods. Existing methods often struggle to precisely delineate structures in medical images, leading to suboptimal diagnostic accuracy. The demand for automated and accurate segmentation tools in medical imaging has grown, highlighting the necessity for robust and efficient algorithms capable of handling diverse anatomical variations and pathologies. While CNNs have shown promise in image analysis, their application to medical images requires customization to accommodate unique challenges. The literature lacks comprehensive studies that bridge the gap between general-purpose CNNs and the specific demands of medical image segmentation, especially concerning the diverse and intricate structures present in medical imagery. This study addresses the need for advanced techniques by leveraging Convolutional Neural Networks (CNNs) for semantic segmentation in medical image analysis. Our approach involves the design and implementation of a specialized CNN architecture tailored to the nuances of medical image data. We employ state-of-the-art techniques for data preprocessing, model training, and validation. The model is trained on a diverse dataset encompassing various medical imaging modalities, ensuring its adaptability and generalizability. The proposed CNN-based semantic segmentation model demonstrates superior performance in accurately delineating anatomical structures compared to traditional methods. Evaluation metrics, including Dice coefficient and sensitivity, indicate the model efficacy in achieving precise segmentation. The results underscore the potential of CNNs in advancing medical image analysis for improved clinical outcomes.

Authors

Shweta Nishit Jain, Priya Pise, Akhilesh Mishra
Shri Jagdishprasad Jhabarmal Tibrewala University, India

Keywords

Convolutional Neural Networks, Medical Image Analysis, Semantic Segmentation, Anatomical Structures, Automated Diagnosis

Published By
ICTACT
Published In
ICTACT Journal on Image and Video Processing
( Volume: 14 , Issue: 2 )
Date of Publication
November 2023
Pages
3143 - 3148
Page Views
428
Full Text Views
36

ICT Academy is an initiative of the Government of India in collaboration with the state Governments and Industries. ICT Academy is a not-for-profit society, the first of its kind pioneer venture under the Public-Private-Partnership (PPP) model

Contact Us

ICT Academy
Module No E6 -03, 6th floor Block - E
IIT Madras Research Park
Kanagam Road, Taramani,
Chennai 600 113,
Tamil Nadu, India

For Journal Subscription: journalsales@ictacademy.in

For further Queries and Assistance, write to us at: ictacademy.journal@ictacademy.in