WATERSHED ALGORITHM BASED SEGMENTATION FOR HANDWRITTEN TEXT IDENTIFICATION

ICTACT Journal on Image and Video Processing ( Volume: 4 , Issue: 3 )

Abstract

vioft2nntf2t|tblJournal|Abstract_paper|0xf4ffd74d150000009e0c000001000d00
In this paper we develop a system for writer identification which involves four processing steps like preprocessing, segmentation, feature extraction and writer identification using neural network. In the preprocessing phase the handwritten text is subjected to slant removal process for segmentation and feature extraction. After this step the text image enters into the process of noise removal and gray level conversion. The preprocessed image is further segmented by using morphological watershed algorithm, where the text lines are segmented into single words and then into single letters. The segmented image is feature extracted by Daubechies’5/3 integer wavelet transform to reduce training complexity [1, 6]. This process is lossless and reversible [10], [14]. These extracted features are given as input to our neural network for writer identification process and a target image is selected for each training process in the 2-layer neural network. With the several trained output data obtained from different target help in text identification. It is a multilingual text analysis which provides simple and efficient text segmentation.

Authors

P. Mathivanan1, B. Ganesamoorthy 2, P. Maran3
Velammal Engineering College, India1, Adhiparasakthi Engineering College, India2, SSN College of Engineering, India3

Keywords

Slant Correction, Morphological Watershed Algorithm, Daubechies’5/3 Integer-to-Integer Wavelet Transform, Neural Network

Published By
ICTACT
Published In
ICTACT Journal on Image and Video Processing
( Volume: 4 , Issue: 3 )
Date of Publication
February 2014
Pages
767-772
Page Views
450
Full Text Views
14

ICT Academy is an initiative of the Government of India in collaboration with the state Governments and Industries. ICT Academy is a not-for-profit society, the first of its kind pioneer venture under the Public-Private-Partnership (PPP) model

Contact Us

ICT Academy
Module No E6 -03, 6th floor Block - E
IIT Madras Research Park
Kanagam Road, Taramani,
Chennai 600 113,
Tamil Nadu, India

For Journal Subscription: journalsales@ictacademy.in

For further Queries and Assistance, write to us at: ictacademy.journal@ictacademy.in