QUANTUM-RESISTANT CRYPTOGRAPHIC ALGORITHMS FOR SECURE COMMUNICATION

ICTACT Journal on Communication Technology ( Volume: 15 , Issue: 3 )

Abstract

With the rise of quantum computing, traditional cryptographic algorithms, such as the Elliptic Curve Digital Signature Algorithm (ECDSA), face potential vulnerabilities. Quantum computers could efficiently solve problems that are currently computationally infeasible for classical computers, thus threatening the security of cryptographic systems. As a result, there is a pressing need to develop quantum- resistant cryptographic algorithms to ensure secure communication in a future where quantum computing is prevalent. ECDSA, widely used for securing digital communications, relies on elliptic curve cryptography to provide robust security through digital signatures. However, the advent of quantum computing poses a significant threat to ECDSA's security, as quantum algorithms such as Shor's algorithm could break the elliptic curve-based encryption by efficiently solving discrete logarithm problems. To address this issue, we propose a quantum-resistant cryptographic algorithm based on lattice-based cryptography. Our approach utilizes the Learning With Errors (LWE) problem, known for its resistance to quantum attacks. We implement the proposed algorithm and compare its performance with ECDSA in terms of key generation time, signing time, and verification time. The algorithm's security is analyzed against quantum attacks using theoretical and empirical methods. The experimental results demonstrate that the quantum-resistant algorithm provides a comparable level of security to ECDSA while offering significant advantages in the context of quantum resistance. Specifically, our quantum-resistant algorithm achieved key generation times of 120 ms, signing times of 150 ms, and verification times of 100 ms. In comparison, ECDSA showed key generation times of 80 ms, signing times of 90 ms, and verification times of 70 ms. Despite these performance trade-offs, the quantum resistance of the proposed algorithm ensures future-proof security for digital communications.

Authors

S. Vijay1, S. Priya2, C.N. Harshavardhana3, R. Kemparaju4
Government Science College, Hassan, India1, Government First Grade College, Domlur, India2, Government First Grade College for Women, Holenarasipura, India3, Government First Grade College, T. Narasipura, India4

Keywords

Quantum Resistance, ECDSA, Lattice-based Cryptography, Learning With Errors (LWE), Cryptographic Security

Published By
ICTACT
Published In
ICTACT Journal on Communication Technology
( Volume: 15 , Issue: 3 )
Date of Publication
September 2024
Pages
3276 - 3281
Page Views
505
Full Text Views
27

ICT Academy is an initiative of the Government of India in collaboration with the state Governments and Industries. ICT Academy is a not-for-profit society, the first of its kind pioneer venture under the Public-Private-Partnership (PPP) model

Contact Us

ICT Academy
Module No E6 -03, 6th floor Block - E
IIT Madras Research Park
Kanagam Road, Taramani,
Chennai 600 113,
Tamil Nadu, India

For Journal Subscription: journalsales@ictacademy.in

For further Queries and Assistance, write to us at: ictacademy.journal@ictacademy.in