ENHANCED NEURAL NETWORK SCHEDULING FOR LOAD BALANCING IN MULTI-CLOUD

ICTACT Journal on Data Science and Machine Learning ( Volume: 1 , Issue: 3 )

Abstract

vioft2nntf2t|tblJournal|Abstract_paper|0xf4ffa9972b00000004f8050001000600
In the cloud, numerous problems are encountered, owing to the fact that this environment is a closely connected environment. As the nodes continue to switch from one stage to the other in respect of specifications, problems can also be found in the field of service distribution and in the level of service delivered. The positioning of contact nodes remains unchanged. The efficiency of cloud service is influenced by criteria such as throughput, load, latency and even more adversely. The above parameters are linked to the user requests for a load balancing technique. Certain load balancing techniques have been addressed in this paper to increase the level of operation in the cloud world. This paper introduces and changes a structure for the provision of resource and load balancing. The system suggested relies on an optimization algorithm for binary ant colony to perform ideally as regards cost and cost. A workflows system was suggested for preferably loading and advancing the use of underused VMs. The findings show a stable low cost trend with a minimal number of VMs and steadily grows with a rise in VMs

Authors

S Selvakumar
Kalasalingam Academy of Research and Education, India

Keywords

Recurrent Neural Network, Load Balancing, Workflow Execution

Published By
ICTACT
Published In
ICTACT Journal on Data Science and Machine Learning
( Volume: 1 , Issue: 3 )
Date of Publication
June 2020
Pages
77-80
DOI

ICT Academy is an initiative of the Government of India in collaboration with the state Governments and Industries. ICT Academy is a not-for-profit society, the first of its kind pioneer venture under the Public-Private-Partnership (PPP) model

Contact Us

ICT Academy
Module No E6 -03, 6th floor Block - E
IIT Madras Research Park
Kanagam Road, Taramani,
Chennai 600 113,
Tamil Nadu, India

For Journal Subscription: journalsales@ictacademy.in

For further Queries and Assistance, write to us at: ictacademy.journal@ictacademy.in