This paper proposes a new face recognition algorithm called local derivative tetra pattern (LDTrP). The new technique LDTrP is used to alleviate the face recognition rate under real-time challenges. Local derivative pattern (LDP) is a directional feature extraction method to encode directional pattern features based on local derivative variations. The nth -order LDP is proposed to encode the first (n-1)th order local derivative direction variations. The LDP templates extract high-order local information by encoding various distinctive spatial relationships contained in a given local region. The local tetra pattern (LTrP) encodes the relationship between the reference pixel and its neighbours by using the first-order derivatives in vertical and horizontal directions. LTrP extracts values which are based on the distribution of edges which are coded using four directions. The LDTrP combines the higher order directional feature from both LDP and LTrP. Experimental results on ORL and JAFFE database show that the performance of LDTrP is consistently better than LBP, LTP and LDP for face identification under various conditions. The performance of the proposed method is measured in terms of recognition rate.

A Geetha1, M Mohamed Sathik2, Y Jacob Vetharaj3
Nesamony Memorial Christian College, India1,3, Sadakathullah Appa College, India2

Local Binary Pattern (LBP), Local Ternary Pattern (LTP), Local Derivative Pattern (LDP), Local Tetra Pattern (LTrP)
Published By :
Published In :
ICTACT Journal on Image and Video Processing
( Volume: 7 , Issue: 3 )
Date of Publication :
February 2017

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.