ANT COLONY OPTIMIZATION ALGORITHM FOR FEATURE SELECTION IN SENTIMENT ANALYSIS OF SOCIAL MEDIA DATA

ICTACT Journal on Soft Computing ( Volume: 14 , Issue: 4 )

Abstract

Sentiment analysis of social media data involves extracting valuable insights from vast amounts of unstructured text. Feature selection plays a crucial role in enhancing the accuracy and efficiency of sentiment analysis algorithms. This study proposes the application of the Ant Colony Optimization (ACO) algorithm for feature selection in sentiment analysis. ACO is inspired by the foraging behavior of ants and has been successfully applied to various optimization problems. In this context, ACO is utilized to select the most informative features from the dataset, thereby improving the performance of sentiment analysis models. The contribution of this research lies in the adaptation of ACO for feature selection in sentiment analysis of social media data. By leveraging the inherent strengths of ACO, such as its ability to explore large solution spaces and adapt to dynamic environments, more accurate sentiment analysis models can be developed. Experimental results demonstrate that the proposed ACO-based feature selection approach outperforms traditional methods in terms of classification accuracy and computational efficiency. The selected features exhibit strong predictive power, leading to improved sentiment analysis performance on social media data.

Authors

P. Kavitha, S.D. Lalitha
R.M.K. Engineering College, India

Keywords

Sentiment Analysis, Social Media Data, Feature Selection, Ant Colony Optimization, Classification

Published By
ICTACT
Published In
ICTACT Journal on Soft Computing
( Volume: 14 , Issue: 4 )
Date of Publication
April 2024
Pages
3334 - 3339

ICT Academy is an initiative of the Government of India in collaboration with the state Governments and Industries. ICT Academy is a not-for-profit society, the first of its kind pioneer venture under the Public-Private-Partnership (PPP) model

Contact Us

ICT Academy
Module No E6 -03, 6th floor Block - E
IIT Madras Research Park
Kanagam Road, Taramani,
Chennai 600 113,
Tamil Nadu, India

For Journal Subscription: journalsales@ictacademy.in

For further Queries and Assistance, write to us at: ictacademy.journal@ictacademy.in