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Abstract 

The availability of low cost and tiny sensor devices have resulted in 

increased adoption of wireless sensor network (WSN) in various 

industries and organization. The WSN is expected to play a significant 

role in future internet based application services. WSN has been adopted 

in healthcare, disaster management, environment monitoring and so on. 

The low-cost availability of smart devices has led to increased use of 

wireless devices such as Bluetooth, Wi-Fi etc. Therefore, cognitive radio 

network plays a significant role in handling spectrum efficiently. The 

emerging internet access technology such as 4G and 5G network which 

is expected to come in near future is going to make cognitive spectrum 

access more challenging. The existing cognitive radio based WSN is not 

efficient in utilizing spectrum. They induce high collision due to 

interference and improper channel state information. To address, this 

work present an efficient distributed opportunistic spectrum access for 

wireless sensor network. The channel availability of likelihood 

distribution is computed using continuous-time Markov chain 

considering primary transmitting users temporal channel usage 

channel pattern and spatial distribution. The simulation outcome shows 

the proposed model achieves significant performance improvement over 

existing model. The proposed model improves the overall spectrum 

efficiency of cognitive radio wireless sensor network in terms of 

throughput, packet transmission and collision. 
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1. INTRODUCTION 

A WSN is self-composed of low cost and tiny sensor devices 

which are deployed in remotely dense area. The sensor devices are 

used to sense wide variety of conditions such as tracking object, 

pressure, temperature etc. [1]. The next generation wireless sensor 

networks need to consider the integration of internet of things 

(IoT) [2] where the sensors are connected to internet dynamically 

for various applications [3- 8] such as multimedia, IoT and big 

data, E-commerce etc. The multimedia based application service 

requires high data rate, low energy depletion and more spectrum 

availability [9], [10], and [11]. However the 2.4GHz radio 

frequency band is very crowded due to the availability of wireless 

technologies such as Wi-Fi, Bluetooth technology and the 5G 

network is expected to come in near future which requires efficient 

spectrum access mechanism. As a result cognitive network plays 

an important role in solving spectrum scarcity problems and aid in 

providing efficient spectrum access for future wireless technology 

and its application. Specifically for resource constrained wireless 

sensor networks. The architecture of cognitive radio wireless 

sensor network is shown in Fig.1. 

 

Fig.1. Architecture of Cognitive Radio Wireless Sensor Network 

To develop an efficient spectrum access in cognitive radio 

wireless network it needs to further consider issues and challenges 

such as: 

Opportunistic channel usage for bursty traffic: Once an event 

is detected in the WSN, packet burst is generated by the sensor 

nodes. At this time, densely deployed sensor nodes also try to 

acquire the channel in event area which may lead to the packet 

collision and it reduces the overall network performance, resulting 

in communication overhead, delay etc. Here, sensor nodes with 

cognitive radio ability opportunistically access to multiple 

substitute channels to reduce these major challenges. 

Dynamic spectrum access: Generally fixed spectrum allocation 

scheme is used in the WSN deployment. WSN can be operated on 

unlicensed and licensed band. Spectrum are directly associated 

with the cost which increase the network cost. However WLAN 

can also the unlicensed band. Therefore, WSNs experience the 

overloaded spectrum issue [12]. To increase the network 

performance, opportunistic spectrum sensing techniques must be 

used in WSN as well. 

Using adaptability to reduce power consumption: Power 

consumption in the WSN is also a key issue. Due to loss of packet 

and retransmission of same packet more energy is consumed in the 

network. If nodes are capable to use Cognitive radio it would be 

able to adapt the channel condition. In this way loss, free 

transmission is increased which reduces the energy consumption. 



SAROJA T V et al.: A DYNAMIC SPECTRUM ACCESS OPTIMIZATION MODEL FOR COGNITIVE RADIO WIRELESS SENSOR NETWORK 

1560 

Overlaid deployment of multiple concurrent WSN: As increased 

in usages of WSNs, a particular area can host various networks, 

which require the management of spectrum at real time or dynamic 

management that work well for partially overlapped sensor 

network, and maintain the system performance in terms of 

communication. 

Access to multiple channels to conform to different spectrum 

regulations: As we know that availability of the spectrum 

frequency is different for all the countries. A band which is 

available in India may not be available in some other country. So, 

if sensor nodes are designed with preset frequency band it might 

create a problem for the user. This problem can be overcome by 

using cognitive radio capability; which changes their 

communication frequency based on the availability of spectrum. 

Effective mechanisms are needed for spectrum access by 

sensor device to achieve throughput requirement of multimedia 

service [13], [14] and [15]. The wireless environment is getting 

more complicated and it is getting more problematic in obtaining 

wireless network information for cognitive user. The 5G network 

architecture is expected to provide ultra-low power and super-

efficient spectrum access to support large density of users with less 

delay and limited bandwidth which will be a challenging task for 

existing crowded spectrum. Therefore, distributed channel access 

considering unknown network information is been the existing 

research trends of cognitive radio wireless sensor network. 

There has been various existing work [16] [17] that have 

studied the problem of distributed spectrum access considering 

unknown network information considering single cognitive user. 

In [18] the authors presented multiuser based spectrum access 

model. When multi users are presented in network it induces 

Collison. To address this in [18] the presented an adaptive random 

access model and in [19] authors presented fair access model and 

[20] authors presented priority access model to reduce the collision 

among cognitive users. It is seen from exiting research [21] [22] 

that most of these schemes are limited to provide only one channel 

at a time to a cognitive user. Thus, if a selected channel is busy the 

user needs to wait for another slot. However if another channel is 

free at that time the spectrum is wasted. 

To solve spectrum resource scarcity and utilize bandwidth 

more efficiently and improve the throughput of IOT based 

application under multi user and multichannel environment, [23] 

presented Multi-Armed Bandit Channel Access Scheme. They 

presented a distributed learning scheme to improve usage of idle 

spectrum. However, adopting Multi-Armed Bandit Channel 

Access Scheme may fail to find more spectrum opportunities for 

larger network [24] and mobility of secondary user is not taken 

into consideration. 

To address the research issues, firstly we analyze the channel 

availability of CR-WSN considering the mobility of sensor node 

(secondary user). Then, by exploiting the temporal and spatial 

channel usage characteristic of primary user a distributed 

opportunistic channel access mechanism for multi user and 

multichannel CR-WSN is presented. The likelihood distribution of 

availability of channel is computed using continuous-time Markov 

chain. Simulation outcomes shows the efficiency of proposed 

model over existing approaches [23] in terms of throughput, 

collision and successful transmission. 

The contribution of research work are as follows, 

 This work firstly presented a mechanism to compute the 

likelihood of channel availability considering mobile 

secondary nodes. 

 Secondly, presented a distributed opportunistic spectrum 

access mechanism for multi user and multi-channel CR-

WSN. 

 The proposed model minimize collision and maximize 

network throughput. 

The paper is organized as follows: The proposed CR-WSN 

model is presented in section two. In section three the simulation 

outcome and analysis is presented. The last section the paper is 

concluded with future research. 

2. LITERATURE SURVEY 

Adoption of cognitive radio for WSN has gained huge attention 

in recent time. However there exists several challenges in 

designing efficient cognitive radio WSN for spectrum access of 

unused band of licensed primary user. Here we survey some of 

existing methodology that has been developed in recent time for 

cognitive radio WSN. 

In [25] the authors adopted cognitive radio based wireless 

sensor architecture. They presented dynamic spectrum access of 

unused band of licensed user of cognitive radio. The sensor device 

uses these bands for communication with its neighbor or sink. 

They identified the challenges that existed in spectrum access of 

resource constrained WSN and proliferation of services and 

wireless devices due to scarcity. Therefore it is important to satisfy 

the needs of WSN and cognitive radio in order to utilize the 

benefits of cognisions in WSN. To achieve this, they presented an 

energy efficient WSN for multi-channel MAC. They developed an 

asynchronous duty cycle for spectrum access to satisfy both 

cognitive radio and WSN. The simulation is conducted and 

evaluated with Multi-channel MAC show performance 

improvement in terms of throughput and delay. The drawback of 

this model is that their model performs well for large network but 

for smaller network it degrades which shows that their model is no 

robust and dynamic. 

In [26] the authors presented a cooperative transmission by 

adopting MIMO (Multiple input Multiple output) for large scale 

wireless sensor network. Here the cognitive radio is adopted for 

transmission of uplink in wireless sensor network. Their model 

identified the issues of network capacity for opportunistic 

spectrum sharing, interference caused due to spectrum sharing 

and energy degradation of sensor device in the presence of 

primary user. To address these issues, they presented cluster based 

cooperative sensor network. They adopted OFDM (orthogonal 

frequency division multiplexing) for cooperative transmission 

and used PSO (particle swarm optimization) for cluster selection. 

Their outcome showed better convergence than existing search 

model and the drawback of this model is that their model is not 

distributed thus it is not suitable for larger network. 

In [27] the authors surveyed various existing cognitive radio 

based wireless sensor networks. They identified that it is 

important to develop a strategy for intelligent allocation of radio 

resource to perform efficient and dynamic spectrum access policy. 

When developing a cognitive radio for WSN, the model needs to 

consider the resource and energy constraint of WSN. The radio 
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allocation schemes are broadly classified into cluster based, 

distributed and centralized. The performance benefits of strategy 

depend on criteria such as throughput maximization, energy 

efficiency, fairness, assurance of QoS and so on. The overall 

survey shows that considerable work has been carried out and 

limited research is carried out for cluster and distributed approach. 

The problem with distributed spectrum access mechanism is that 

it requires efficient optimization technique to detect the channel 

condition. 

In [28] they identified that in cognitive radio network, to detect 

unused channel it needs either predefined sensing sequence or the 

random channel access. Due to this it is difficult in achieving 

efficiency in resource constrained sensor network. To address this 

they presented reinforcement learning for channel sensing in 

cluster based cooperative wireless sensor network. The utility 

policy is defined by adopting Markov Decision problem to 

minimize sensing. The outcome shows improvement of detection 

of primary user and sensing energy cost over existing greedy 

search approach. 

In [29] the authors addressed the energy efficiency issues of 

sensor network when incorporating cognitive radio. The channel 

sensing of cognitive radio will induce energy overhead head for 

resource constrained sensor device. To address this efficient 

spectrum sensing strategy needs to be developed. They presented 

spectrum sensing time period model to predict the current channel 

information status for secondary user channel sensing. They 

adopted a Markov chain model for dynamic spectrum sensing 

which adopt listen before talk strategy. The simulation is 

conducted for varying interval time. The outcome showed that 

Markov chain model improves energy efficiency of cognitive 

radio based WSN but they considered varying network density. 

In [30] they presented a real time monitoring of carbon dioxide 

by adopting cognitive radio wireless ad-hoc network. The 

experiments are conducted for different indoor environment 

considering Carrier sense multiple access with collision 

avoidance as the radio model. The results are presented in terms 

of end-to-end delay and throughput for both normal and cognitive 

environment. The outcome shows adopting cognitive radio for 

wireless sensor network improves the network performance in 

terms of throughput and network end-to-end delay. However, it 

induces spectrum wastages. To address, in [23] presented a Multi-

Armed Bandit Channel Access Scheme to minimize bandwidth 

wastage for multi user and multi-channel CR-WSN. They 

presented a distributed learning scheme to improve usage of idle 

spectrum. However, their scheme may fail to find more spectrum 

opportunities for larger network and mobility of secondary user is 

not taken into consideration. 

Extensive research carried outcome shows that the cognitive 

radio plays significant part in improving the overall network 

performance of wireless sensor network. It is important to utilize 

bandwidth efficiently in order to provision IoT based application 

on multi user and multi-channel CR-WSN. The Markov chain 

model improves the prediction accuracy of channel state 

information for efficient spectrum sensing. The overall survey 

shows that very limited work is carried out in distributed spectrum 

sensing for multi user and multichannel cognitive radio wireless 

sensor network. There is a need to develop a better optimization 

technique to improve accuracy for channel state prediction for 

efficient channel access. In next section, the proposed channel state 

and distributed opportunistic spectrum access optimization by 

using continuous-time Markov chain for CR-WSN is presented. 

3. PROPOSED DISTRIBUTED 

OPPORTUNISTIC SPECTRUM ACCESS 

TECHNIQUE FOR CR-WSN 

Let us consider a cognitive radio wireless sensor network, 

consisting of a set of primary user such as the base station\sink and 

the unlicensed secondary user (sensor devices). A sensor device is 

fitted with cognitive radio for opportunistic access of licensed 

spectrum. Let H be the set of nonempty opportunistic channel that 

can be accessed by sensor devices. There exists limited channel 

availability for sensor device due to characteristics nature of 

primary user and sensor devices positions/locations. The 

characteristic of spectrum opportunity depends on the channel 

availability to sensor device which is defined as the amount of time 

the channel is available to sensor devices or not. The accessibility 

of channel c, c ∈ H, for a sensor device is defined by the temporal 

channel usage pattern of primary user and spatial distribution on 

channel c and the location of sensor device. 

Therefore estimating the channel availability plays an 

important role in improving the QoS of secondary user and 

improves utilization of spectrum. Let us consider a continuous-

time Markov chain that considers primary user channel usage 

pattern and the secondary user location. The continuous-time 

Markov chain consists of three modes MI, MB and MZ. MI is the 

mode in which a node is within coverage of idle primary 

transmitting user that transmit on channel c, MB is the mode where 

in a node is within coverage of active primary transmitting user 

that transmit on channel c and MZ is the mode where in a node is 

outside the coverage area of primary transmitting user that transmit 

on channel c. When the position of sensor devices is changed the 

mode changes from one form to another form and channel is 

inaccessible only when mode is in MB. The mode MI and MZ can 

be merged to one mode where the channel is accessible to the 

sensor device which is represented by MX. The mode of 

unavailability of channel is represented by MN. 

Let KX,c and KN,c  be the time duration of sensor node in MX and 

MN respectively. The likelihood distribution of channel availability 

of KX,c and KN,c is important to compute the transition mode of MI, 

MB and MZ i.e. Let K',c be the time period of a sensor device when 

it is in range of primary transmitting user on channel c and K'',c be 

the time period when a sensor device is outside the range of 

primary transmitting user on channel c. Thus the rate of transition 

modes depend on the likelihood distribution of K',c and K'',c. To 

compute K',c and K'',c a two-dimensional Markov chain model is 

considered. 

The spatial distribution of Primary transmitting user that 

process on common channel c are distributed in square area. The 

distance among two adjacent primary transmitting users in vertical 

direction is represented as Aq,c and a horizontal direction is 

represented as Ap,c. The square area of 2Tc is considered for 

coverage area of Primary transmitting user where Tc < min(Ap,c,Aq,c) 

to avoid overlapping section among primary transmitter user. To 

protect the primary transmission, we consider that approximate 

coverage area greater than the actual coverage area. 



SAROJA T V et al.: A DYNAMIC SPECTRUM ACCESS OPTIMIZATION MODEL FOR COGNITIVE RADIO WIRELESS SENSOR NETWORK 

1562 

The temporal usage of pattern of primary transmitting user that 

communicates on channel c is exhibited as idle (primary 

transmitting user does not communicate) and busy (primary 

transmitting user is active and communicate) mode. The sensor 

nodes in the coverage area of primary transmitting user do not have 

access to transmit on same channel during the transmission period 

of primary transmitting user in order to avoid the interference with 

primary user network. The periodic length of idle/busy mode is 

exhibited as an exponential random variable as μI /μB, that is, 

KI,c ~ e(μI,c) and KB,c ~ e(μB,c) 

where, F~e(μ) indicates that variable F is an exponential 

distribution with μ. 
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The sensor nodes are considered to be in range of primary 

transmitting user φT to optimize 'K . Let φT be square of length VT,c. 

For easiness, let AS = AP = A and ALP,c = ALS,c = AL,c. The length of 

all is normalized by A, i.e. VT,c = 2Tc /A. To obtain 'K  a 2-D 

Markov chain is used. Let each location (g,u) within φT be in mode 

Z_(g,u). The Markov chain of all these modes as: 

  
, , ,, 1,1 1,2 1, 2,1 2,2 ,, ,..., , , ,...,

T C T c T cg u V V VZ Z Z Z Z Z Z  

It is considered that sensor nodes are in mode Zg,u if it changes 

its position from location (g,u) to its adjacent location (g,u), the 

mode transition also takes place from (g,u) to (g,u). The sensor 

devices that are in the boundary area of primary transmitting user 

are considered as diminishing modes. Let BX be the collection of 

diminishing modes sets. Let W be transition number of sensor 

device leaving area φT that is the mode of transition in mode BX. 

The approximation of 'K is done by W × δk, where δk is period that 

a sensor node in network location. The likelihood distribution of 

W needs to be computed to compute the likelihood distribution of 

'K . The transition likelihood of Zg,u belonging to BX is obtained as 

follows: 
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The transition likelihood of Zg,u that does not belong to BX is 

obtained as follows 
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The matrix L is sparse and the likelihood distribution of modes 

after w transition is represented by τw. The initial mode likelihood 

distribution is represented by τ0. It holds that τw = by τ0 Lw. It is 

conceivable that nodes to be in any modes in φT at the beginning 

of time k0, excluding devices in BX. Let the set of probable modes 

be BC. The cardinality of BC is represented by, ZC, which is 

computed as ZC = |BC| = (VT,c - 2)2. Rest of the initial probable path 

is considered to have equivalent likelihood, therefore τ0 is 

computed as follows: 
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where, lC is the likelihood of every probable initial modes. The 

likelihood of W is not greater than w is as follows, 

    

,g u X

w

Z B

L W w 


   . (7) 

Thus the likelihood density function of 𝑊 is as follows: 

 L(W=w) = L(W≤w) - L(W≤w-1)  (8) 
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Therefore, if all the modes in BX is considered as "M and other 

mode to 'M , the Zg,u is considered to be 2-D i.e. two modes 

Markov chain { 'M , "M }. The sensor devices is initially in '.M In 

every transition the sensor devices will remain in 'M with 

likelihood 1-l0 or transits to "M with likelihood l0, the l0 is 

computed as 

  
,

0 ,

1
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l L Z Z
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 (9) 

The sensor devices don’t change its location till the mode 

transits to "M . Therefore, the transition number of sensor devices 

before leaving the primary transmitting user area is said to follow 

a geometric distribution with l = l0. Therefore 'K is computed by an 

exponential distribution. 

To optimize ''K , let us consider a square area φT which is torus 

and length of network VQ,c = PL,c/P]. Here the φT are considered as 

diminishing mode. The transition matrix L is computed similarly 

as Eq.(4) and Eq.(5). 



ISSN: 2229-6948(ONLINE)                                                                                      ICTACT JOURNAL ON COMMUNICATION TECHNOLOGY, SEPTEMBER 2017, VOLUME: 08, ISSUE: 03 

1563 

 

 
 

 
 

, ,1

,1 ,

, 1,

1, ,

Q

Q

Q

Q

g V g p

g g V k

V u u n

u V u q

L Z Z L

L Z Z L

L Z Z L

L Z Z L

 





 

 

 (10) 

Similar to 'K  the probable initial mode are considered to be 

equal with the likelihood. The collection of probable initial mode 

set is represented by 2 2

, ,C J c R cB V V  . Therefore the initial state 

likelihood distribution τ(0) is computed as follows: 
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Similar to Eq.(8) the likelihood mass of W  is computed as 

follows: 

      1L W w L W w L W w       (12) 
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where,W represent the transition number before a sensor devices 

changes its location to primary transmitting user area of coverage. 

The experimental and simulation analysis is performed in next 

chapter below. 

4. SIMULATION RESULT AND ANALYSIS 

The system environment used is windows 7, 64-bit quad core 

operating system with 12GB of ram. The authors have used dot net 

framework 4.0 and C# 6.0 programming language for the proposed 

and existing work [23] and conducted experimental study on 

following parameters, throughput achieved per channel, successful 

packet transmission and packet collision per channel. The network 

area is fixed to 3030 meters, the sensor nodes considered are 25 

and 50 devices, and the spectrum consists of 8 timeslots and 3 

frequency slots. For every second, 40 bytes of message is 

generated per sensor node and random selection of source and 

destination sensor devices is considered. The BPSK modulation 

scheme is used which support maximum bandwidth of 3Mbps. 

In Fig.2, the simulation outcome of packet collision is shown. 

The sensor nodes are varied from 25 and 50 sensor devices and 

outcome shows that the proposed model reduces packet collision 

over existing model. A collision reduction of 22.37% is achieved 

when sensor nodes are equal to 25 and collision reduction of 8.79% 

is achieved when sensor nodes are equal to 50. It is seen from graph 

that as we increase the number of sensor devices the collision also 

increases for both proposed and existing approach. 

 

Fig.2. Packet collision for varied sensor devices 

In Fig.3, the simulation outcome of throughput achieved per 

channel is shown. The sensor nodes are varied from 25 and 50 

sensor devices and outcome shows that the proposed model 

improves throughput over existing model. An average throughput 

improvement of 33.21% is achieved when sensor node is equal to 

25 and throughput improvement of 27.38% is achieved when 

sensor node is equal to 50 which are shown in Fig.4. 

 

Fig.3. Throughput achieved per slot for varied sensor devices 

 

Fig.4. Average Throughput achieved per slot for varied sensor 

devices 
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In Fig.5, the simulation outcome of number of packet 

transmitted successfully is shown. The sensor nodes are varied from 

25 and 50 sensor devices and outcome shows that the proposed 

model improves packet transmission over existing model. A 

successful improvement of 27.39% is achieved when sensor node 

is equal to 25 and throughput improvement of 27.38% is achieved 

when sensor node is equal to 50 which are shown in Fig.5. 

 

Fig.5. Successful packet transmission for varied sensor devices 

To evaluate the performance of packet Collision and throughput 

performance of both proposed and existing approach the node size 

is fixed to 25 sensor devices and time slot is varied from 4, 6 and 8. 

In Fig.6, the simulation outcome of throughput achieved for varied 

time slot is shown. The outcome shows that the proposed model 

improves throughput over existing model. A throughput 

improvement of 24.79% is achieved when time slot is equal to 4, 

throughput improvement of 29.68% is achieved when time slot is 

equal to 6 and through improvement of 16.38% is achieved when 

time slot is equal to 8. The Fig.6 shows when we increase the time 

slot the average throughput achieved also increases due to 

unutilized slots for both proposed and existing approach. 

 

Fig.6. Average throughput performance for varied time slots 

In Fig.7, the simulation outcome of collision achieved for 

varied time slot is shown. The outcome shows that the proposed 

model reduces collision over existing model. A collision 

reduction of 8.09% is achieved when time slot is equal to 4, 

collision reduction of 28.68% is achieved when time slot is equal 

to 6 and collision reduction of 22.38% is achieved when time slot 

is equal to 8. The Fig.6 shows when we increase the time slot the 

collision decreases due to slots available for both proposed and 

existing approach. 

 

Fig.7. Collision performance for varied time slots 

It is seen from the result obtained that proposed model is 

efficient in terms of throughput, successful packet transmission 

and reduced packet collision when compared to existing cognitive 

radio based wireless sensor network. 

5. CONCLUSION 

In cognitive radio network the spectrum is mostly not occupied 

by the primary licensed user all the time. Utilizing these 

unoccupied spectrums plays key role providing efficient service 

end user. The wireless sensor network adopts cognitive radio to 

transmit data using unoccupied channel. In this work, a cognitive 

networking with dynamic opportunistic spectrum access 

mechanism for WSNs is introduced. The channel availability of 

likelihood distribution is computed using continuous-time Markov 

chain considering primary transmitting users temporal channel 

usage channel pattern and spatial distribution. The experiment is 

conducted to evaluate the performance of proposed model in terms 

of collision, successful packet transmission and throughput 

efficiency by varying network density size. The outcome shows 

significant performance improvement. An improvement of 16.3% 

is achieved in terms of collision reduction, an improvement of 

30.8% in terms of successful packet transmission is achieved and 

an improvement of 30.8% in terms of throughput is achieved for 

varied network density. An improvement of 19.3% is achieved in 

terms of collision reduction and an improvement of 23.8% in terms 

of throughput is achieved for varied time slots. The outcome of 

proposed model is scalable in terms of network density. The future 

model would consider different MAC and modulation schemes 

and would consider developing non-cooperative game theory 

model for efficient channel access. 
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