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Abstract: 

The development of microarray technology has been remarkable, and 

it is becoming a daily tool in many genomic research laboratories. 

The widespread adoption of this technology, coupled with the signifi-

cant volume of data generated per experiment, in the form of images, 

has led to significant challenges in storage and query-retrieval. In this 

paper, we present a lossless bitplane based method for efficient com-

pression of microarray images. This method is based on arithmetic 

coding driven by image-independent multi-bitplane finite-context 

models. It produces an embedded bitstream that allows progressive, 

lossy-to-lossless decoding. The compression results obtained by using 

a large set of images are compared with three image coding stand-

ards, namely, lossless JPEG2000, JBIG and JPEG-LS stated in the 

literature. The proposed method gives better results for all images of 

the test set. 
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1. INTRODUCTION 

The DNA microarray technology has become an important 

tool in the study of gene function, regulation, and interaction 

across large numbers of genes, and even entire genomes. It al-

lows the analysis of thousands of genes in a single experi-

ment[1]-[2].The raw data of a microarray experiment consists of 

a pair of 16 bits per pixel grayscale images. The processes in-

volved in the formation of microarray images are shown in 

Fig.1. The result is a set of two intensity images, one for the ex-

pression level of the reference (control) tissue/cell (the Cy3 or 

the Green channel), and the other for the sample (experimental) 

tissue/cell (the Cy5 or the Red channel). Depending on the spac-

ing between the spots and the overall size of the microarray, this 

procedure allows for a potentially high density of spots on the 

array (hence larger images), making it possible to measure ex-

pression profiles for tens of thousands of genes simultaneously. 

To capture the large range of possible expression levels, the 

intensities are usually represented as a 16-bit integer. With pixel 

spacing of about 2 microns per pixel, at 16 bits per pixel, image 

sizes of up to 50MB are common[8]. For genome-wide expres-

sion analysis, with say 20,000 genes under 5000 experimental 

conditions, we are looking at about 191MB per image per chan-

nel. 

The common approach towards the compression of microar-

ray images has been based on image analysis for spot finding 

(gridding followed by segmentation) with the aim of separating 

the microarray image data into different streams based on pixel 

similarities [3]-[4]. Once separated, the streams are compressed 

individually, together with the segmentation information [7]-[9].  

 

 

Fig.1. Formation of microarray images 

The technique proposed in this paper is the best one currently 

available in terms of compression efficiency of microarray im-

ages. The method is based on arithmetic coding driven by im-

age-independent multi-bitplane finite-context models. Basically, 

the image is compressed on a bitplane basis, going from the 

most significant bitplane to the least significant bitplane. The 

finite-context model used by the arithmetic encoder uses (causal) 

pixels from the bitplane under compression and also pixels from 

the bitplanes already encoded. The proposed method is com-

pared with JPEG2000 [11], [12], JPEG-LS [13], [14], and JBIG 

[15], [16]. 

2. LITERATURE SURVEY 

Some techniques have already been proposed for the lossy 

and lossless compression of microarray images.  

Hua et al. [5] presented a transform-based coding technique. 

Initially, a segmentation is performed using the Mann–Whitney 

algorithm, and the segmentation information is encoded sepa-

rately. Due to the threshold properties of the Mann–Whitney 

algorithm, the gridding stage is avoided. Then, a modified 

EBCOT (embedded block coding with optimized truncation) for 

handling arbitrarily shaped regions is used for encoding the spots 

and background separately, allowing lossy-to-lossless coding of 

background only or both background and spots. 

The technique proposed by Jornsten et al. [6] is characterized 

by a first stage devoted to gridding and segmentation. Using the 

approximate center of each spot, a seeded region growing is per-

formed for segmenting the spots. The segmentation map is en-

coded using chain-coding, whereas the interior of the regions are 

encoded using a modified version of the LOCO-I (LOw COm-

plexity LOssless COmpression for Images) algorithm (this is the 

algorithm behind the JPEG-LS coding standard), named 

SLOCO. Besides lossy-to-lossless capability, Jornsten’s tech-
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nique allows partial decoding, by means of independently en-

coded image blocks. 

The compression method proposed by Faramarzpour et al. 

[8] starts by locating and extracting the microarray spots, isolat-

ing each spot into an individual region of interest (ROI). To each 

of these ROIs, a spiral path is adjusted such that its center coin-

cides with the center of mass of the spot, with the idea of trans-

forming the ROI into a 1-D signal with minimum entropy. Then, 

predictive coding is applied along this path, with a separation 

between residuals belonging to the spot area and those belonging 

to the background area. 

Lonardi et al. [10] proposed lossless and lossy compression 

algorithms for microarray images (MicroZip). The method uses 

a fully automatic gridding procedure, similar to that of 

Faramarzpour’s method, for separating spots from the back-

ground (which can be lossy compressed). Through segmentation, 

the image is split into two streams: foreground and background. 

Then, for entropy coding, each stream is divided into two 8 bit 

substreams and arithmetic encoded, with the option of being 

previously processed by a Burrows–Wheeler transform.  

In [17], the compression performance of three Image coding 

standards in the context of microarray image compression: 

JPEG2000, JBIG, and JPEG-LS are studied. Since they rely on 

three different coding technologies, the performance cannot be 

evaluated on these standards, but also to collect hints regarding 

what might be the best coding technology regarding microarray 

image compression. In that study of three technologies evaluated 

(predictive coding in the case of JPEG-LS, transform coding in 

the case of JPEG2000 and context-based arithmetic coding in the 

case of JBIG), the technology behind JBIG seemed to be the 

most promising. In fact, JPEG-LS provided the highest compres-

sion, closely followed by JBIG. However, unlike JPEG2000 and 

JBIG, it does not provide lossy-to-lossless capabilities, a charac-

teristic that might be of high interest, especially in the case 

where remote databases have to be accessed using transmission 

channels of reduced bandwidth.  

 Motivated by these observations, an efficient compression 

method is proposed for microarray images which is based on the 

same technology as JBIG but that, unlike JBIG, exploits inter-

bitplane dependencies, providing coding gains in relation to 

JBIG. Designing contexts that gather information from more 

than one bitplane (multibitplane contexts) is not just a matter of 

joining more bits to the context, because for each new bit added 

the memory required doubles. Moreover, there is the danger of 

running into the context dilution problem, due to the lack of suf-

ficient data for estimating the probabilities. Therefore, this ex-

tension to multibitplane contexts must be done carefully[20]. 

3. PROPOSED METHOD  

3.1 IMAGE-INDEPENDENT CONTEXTS 

In this paper, a lossless compression method for microarray 

images using arithmetic coding with a 3D context model is pre-

sented. This method was inspired on EIDAC [18],[19], which is 

a compression method used with success for coding simple im-

ages. The images are compressed on a bit-plane basis, starting 

from the most significant bit-plane (MSBP) and stopping at the 

least significant bit-plane (LSBP), or whenever a bit-plane re-

quires more than one bit per pixel for encoding (the rest of the 

bit-planes are sent un-coded). The causal context model that 

drives the arithmetic encoder uses pixels both from the bit-plane 

currently being encoded (Cintra), in the order North, West, North-

West, North-East (N, W, NW, NE) positions, Fig.2, and from the 

bit-planes already encoded(Cinter).  

NW N NE 

W X  

Fig.2. The context configuration used in Cintra 

When encoding the eight least significant bit-planes, the con-

text model is only formed with pixels from the upper bitplanes. 

This procedure is done to avoid the degradation in compression 

due to, in general, the eight least significant bit-planes being 

close to random and, therefore, almost incompressible. As the 

method proceeds encoding the image, the average bit-rate ob-

tained after encoding each bit-plane is monitored. If, for some 

bit-plane, the average bit-rate exceeds one bit per pixel, then we 

stop the encoding process, and the remaining bit-planes are 

saved without compression. 

The context modeling part of EIDAC was designed mainly 

with the aim of compressing images with eight bitplanes or less, 

implying, at most, 19 bits of context. A straightforward exten-

sion to images with 16 bitplanes would require contexts of 27 

bits. Essentially, the proposed technique differs from EIDAC in 

three aspects: 1) it was designed taking into account the specific 

nature of the images, keeping the size of the contexts limited to 

21 bits; 2) it does not use the histogram packing procedure pro-

posed for EIDAC because, generally, microarray images have 

dense intensity histograms; 3) it implements a rate-control 

mechanism that avoids producing average bitrates of more than 

one bit per pixel in bitplanes that are too noisy. 

3.1.1 Algorithm for Finding Context bits: 

Context model for Most Significant Bitplanes (BP15 to BP9) 

For bitplane 15 to bitplane 9, the context bits are calculated 

from the previously encoded bitplanes by using the following 

procedure. 

Step 1: Find the bitplane for the corresponding bit position by 

using bitget function. 

Step 2: Find the context bits for each bit in the bitplane in row-

scan manner. 

i. Context positions falling outside the image at the im-

age borders are considered as having zero value. 

ii. The causal context model for the current bitplane is 

taken in the order of North, West, North-West, North-

East (N, W, NW, NE) bit positions from the same 

bitplane. 

Step 3: The causal contexts from previous bitplane are taken in 

the order North, West, North-West, North-East, X, East 

(N, W, NW, NE, X, E) bit positions, where X denotes 

the current bit position of bitplane. 

Step 4: If the number of previous bitplanes > 1, proceed Step3 

for the MSBP16 and the  bitplane immediately previous 

to the current bitplane. Else proceed Step3 for the 

MSBP16. 
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Step 5:  From the intermediate bitplanes, take the context bits as 

only the bit which is corresponding to current bit posi-

tion of the considered bitplane. 

Step 6: Repeat above Steps and find context bits for the bitplane 

until the last pixel is reached. 

Context model for Least Significant Bitplane (BP8 to BP1) 

 For bitplane 8 to bitplane 1, the context bits are calculated 

from the previously encoded bitplanes by using the following 

procedure. 

Step 1: Find the bitplane for the corresponding bit position by 

using bitget function. 

Step 2: Find the context bits for each bit in the bitplane in row-

scan manner. 

Step 3: The causal contexts from the bitplane 16 are taken in the 

order of North, West, North-West, North-East, X, East 

(N, W, NW, NE, X, E) bit positions, where X denotes 

the current bit position of bitplane. 

Step 4:  From the intermediate bitplanes, take the context bits as 

only the bit which is corresponding to current bit posi-

tion of the considered bitplane. 

Step 5: Repeat above steps and find context bits for the bitplane 

until the last pixel is reached. 

3.1.2 Context Length: 

By applying this Image-independent context configuration 

procedure at five different compression stages, we get context 

bits of different length for each bitplane. (a) when encoding the 

most significant bitplane (four bits of context); (b) when encod-

ing the second most significant bitplane (ten bits of context); (c) 

when encoding the third most significant bitplane (16 bits of 

context); (d) from the fourth until the eighth most significant 

bitplanes (17–21 bits of context); (e) the eight least significant 

bitplanes (13–20 bits of context).  

3.2 FINITE-CONTEXT MODELS 

The core of the proposed method consists of an adaptive fi-

nite-context model followed by arithmetic coding (Fig.3). A 

finite-context model of an information source assigns probability 

estimates to the symbols of an alphabet A, according to a condi-

tioning context computed over a finite and fixed number M, of 

past outcomes (M order- finite-context model). In bitplane com-

pression, A= {0, 1} and |A|=2.In practice, the probability that the 

next outcome, xt+1 is “0” is obtained using the estimator given in 

Eq.(1) 

 P(xt+1=0|c
t
) =  (n(0, c

t
)+∂) / (n(0, c

t
)+ n(1, c

t
)+2∂), (1) 

where, n(s, c
t
) represents the number of times that, in the past, 

the information source generated symbol s having c
t
 as the con-

ditioning context. The parameter ∂ > 0, besides allowing fine 

tuning the estimator, avoids generating zero probabilities when a 

symbol is encoded for the first time. In our case, we used  ∂ = 1, 

which corresponds to Laplace’s estimator (it can be seen as an 

initialization of all counters to one). The counters are updated 

each time a symbol is encoded. Since the context template is 

causal, the decoder is able to reproduce the same probability 

estimates without needing additional information. 

 

 

3.2.1 Arithmetic Coding Algorithm with Scaling: 

Step 1: Send the context bits and bits of corresponding pixel 

value to the encoder using cat function. 

Step 2: Initially set the upper and lower limit of the tag interval 

as 0 and 1 respectively. 

Step 3: Find the probability of occurrence of 0’s and 1’s in the 

sequence using probability density function. 

Step 4: Send the bits of the sequence one by one into the encod-

er. 

Step 5: Reset the upper and lower limits based on the current bit 

to be encoded. 

             There are 3 possibilities for new interval, 

i. The interval is entirely confined to the lower half of 

unit interval [0, 0.5]. 

ii. The interval is entirely confined to the upper half of 

unit interval [0.5, 1.0]. 

iii. The interval straddles the midpoint of unit interval. 

Step 6: If case 1 occurs, perform E1 mapping and send 0 as scal-

ing factor. 

Step 7: If case 2 occurs, perform E2 mapping and send 1 as scal-

ing factor. 

Step 8: If case 3 occurs, no need of rescaling. 

Step 9: Repeat the above steps for entire bit sequence until the 

end of sequence is encountered. 

3.3 MULTI-BITPLANE METHOD 

The images are compressed on a bitplane basis, starting from 

the Most Significant Bitplane (MSBP) to the Least Significant 

Bitplane (LSBP) until the average bitrate becomes more than 

one bits per pixel. The compression procedure is given in Fig.4. 

First, the microarray input image is divided into 16 bitplanes. 

Then for each bitplane, find the best context configuration using 

image independent context models. The pixels in the bitplane are 

encoded using the arithmetic encoder by sending the calculated 

context bits. This process is repeated for bitplanes until the aver-

age bitrate exceeds 1 bpp and the remaining bitplanes are sent 

uncompressed. 

 
 

Fig.3. Finite-context model: the probability of the next outcome 

xt+1 is conditioned by the M last outcomes. In this example, M=5 
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Fig.4. Encoding procedure of the proposed method  

4. EXPERIMENTAL RESULTS 

The compression method proposed in this paper was imple-

mented in Matlab and evaluated using microarray images that 

have been collected from three different publicly available 

sources: 1). 32 images that we refer to as the APO_AI set; 2). 14 

images from ISREC set; 3). three images from Micro-Zip image 

set[10]. Image size ranges from 1000 x 1000 to 5496 x 1956 

pixels, i.e., from uncompressed sizes of about 2 MB to more 

than 20 MB (all images have 16 bits per pixel).  

The average results obtained are tabulated in Table.1 and Table.2 

which takes into account the different sizes of  the images, i.e., 

they correspond to the total number of bits divided by the total 

number of image pixels.  

Table.1 shows that the number of bits per pixel is reduced 

from 16 bits per pixel while encoding from most significant bit-

planes to least significant bitplane of microarray images. The 

encoding process is stopped when average bit rate exceeds one.  

Fig.5 represents the average number of bits per pixel required 

for encoding each bitplane of two images namely Def661cy5, 

Def665cy5 of ISREC image set of 1000 x 1000 pixels.The 

average bitrate exceeds one bpp at bitplane 2  and bitplane 4 for 

images Def661cy5 and  Def665cy5 respectively 

Table.2 shows that the number of bits per pixel is reduced 

from 16 bits per pixel while encoding most significant bit-planes 

of microarray images of Micro-Zip image set and the encoding 

process is stopped when average bit rate exceeds one.  

Table.1. Encoding results of bit-planes of ISREC image set 

 

      ISREC 

 

 

       Bitplanes 

       (bpp) 

Def66Cy5.tif Def665Cy5.tif 

BP16 9.8 12.021 

BP15 10.0808 12.8254 

BP14 10.6584 13.521 

BP13 10.7067 13.29 

BP12 10.8889 12.6147 

BP11 10.8271 12.8271 

BP10 10.9526 12.145 

BP9 10.5475 12.633 
 

 

Fig.5. Bitplane vs bits per pixel 

Table.2. Encoding results of bit-planes of Micro-Zip image set 

 

MicroZip 

 

 

Bitplanes 

(bpp) 

Array1 Array2 

BP16 10.256 6.525 

BP15 10.545 7.091 

BP14 11.756 8.587 

BP13 12.789 8.524 

BP12 11.897 7.765 

BP11 12.241 8.490 

BP10 11.567 8.786 

BP9 11.125 8.640 

 

Fig.6. bitplane vs bits per pixel 
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Table.3. Comparison of Compression Results with Existing methods (Literature) 

Image Set JPEG2000(bpp) JBIG (bpp) JPEG-LS (bpp) EIDAC (bpp) Proposed method (bpp) Compression ratio (%) 

APO_AI 11.063 10.851 10.608 10.543 10.280 64 

ISREC 11.366 10.925 11.145 10.446 10.199 63 

MicroZip 9.515 9.297 8.974 8.837 8.840 55 
 

Fig.6 depicts the average number of bits per pixel required 

for encoding each bitplane of two images namely array1, array 

of Micro-Zip image set. The average bitrate exceeds one bpp at 

bitplane 4 and bitplane 2 for images array1 and array2 respectively. 

Table.3 tabulates the comparison of the compression results 

of the proposed method with the existing methods in the litera-

ture. The proposed method is 6.1% better than JBIG, 4.3% better 

than JPEG-LS and 8.2% better than lossless JPEG2000. The 

results of the existing methods namely JPEG-2000. JBIG, JPEG-

LS and EIDAC are taken from the literature, for comparison. 

5. CONCLUSION 

 In this paper, we presented an efficient method for lossless 

compression of microarray images, allowing progressive, lossy-

to-lossless decoding .This method is based on bitplane compres-

sion using image-independent finite-context models and arith-

metic coding. It does not require gridding and/or segmentation 

as most of the specialized methods that have been proposed so 

far. This may be an advantage if only compression is sought, 

since it reduces the complexity of the method. Moreover, since it 

does not require gridding, it is robust, for example, against lay-

out changes in spot placement. Decoding is faster, because the 

decoder does not have to search for the best context. 

The results obtained have been compared with other image 

coding standards in the literature like JBIG, JPEG2000, JPEG-

LS, and EIDAC, based on image-independent context models. 

The results obtained shows that the proposed method has better 

compression performance in all three test sets. 
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