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Abstract 

Nowadays, systems are under serious security threats caused by 

malicious software, commonly known as malware. Such 

malwares are sophisticatedly created with advanced techniques 

that make them hard to analyse and detect, thus causing a lot of 

damages. Polymorphism is one of the advanced techniques by 

which malware change their identity on each time they attack. 

This paper presents a detailed systematic and critical review that 

explores the available literature, and outlines the research 

efforts that have been made in relation to polymorphic malware 

analysis and their detection. 
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1. INTRODUCTION 

System’s security is a major concern in today’s computing 

environment. There are more powerful threats appearing on daily 

basis. According to Symantec report [1], there were almost a 

million newly created threats that were injected into the wild on 

daily basis in 2014. The anti-malware industry and malware 

creators try to outsmart each other by constantly developing more 

advanced techniques. Early malware was spread through file 

transfers using floppy disks and removable disks. Once a user 

opened an infected file on a clean computer, the system could be 

infected [2]. Later malware was much more complex and were 

mainly spread from the Internet. Currently, malware is even more 

complex and highly sophisticated in terms of attacking and 

evading detection [3]. They are able to change their identity at 

every fresh attack without changing the body of the virus [4], thus 

exhibiting the same behaviour. They are also capable of mutating 

into an infinite number of new variants [5]. Many researchers 

proposed a number of useful approaches to deal with polymorphic 

malware as described in survey articles [6] [7]. Despite all the 

efforts undertaken to contain the problem of polymorphic 

malware, it remains challenging [8] [9] and requires more 

research endeavours. This study gives the state of the art and 

outlines the research efforts in relation to the techniques used in 

analysis and detection of polymorphic malware. Several 

techniques exist and each has its own strengths and weaknesses. 

To accomplish the objectives of this study, the author searched 

journals, conferences and search engines. The primary 

contributions of this paper are: 

• To provide an analytical review of the most successful later 

works on polymorphic malware detection. 

• To retrieve the gaps that require further research. 

• To assess the adequacy of the most popular tools used to 

analyze polymorphic malware. 

• To identify the most promising studies that can serve as the 

point of reference for the future research. 

• To provide recommendations and directions for future 

research. 

The rest of this paper is organized as follows: section 2 

discusses the concepts, structure and working mechanisms of 

polymorphic malware. Section 3 portraits the techniques used in 

analyzing polymorphic malware. Section 4 discusses 

polymorphic malware detection techniques. Finally, the overall 

conclusion and recommendations are discussed in section 6. 

2. MALWARE STRUCTURE 

2.1 GENERAL MALWARE 

Malware is a kind of malicious code which is destructive. It is 

just like any other regular software. However, it has a harmful 

intent such as denial of service, attempt to confidentiality, 

information stealing or abuse of integrity [10]. To achieve its 

objectives, a malware can perform many operations.  

 

Fig.1. Infection by a Code Virus 

Some of them are described as follows: file activity (open, 

read, delete, modify, move), Registry activity (open, create, 

delete, modify, move, query, close), Service activity (open, start, 

create, delete, modify), Mutex (create, delete), Processes (start, 

terminate), Runtime DLLs, Network activity (TCP, UDP, DNS, 
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HTTP). Malware types range from simple to more complex ones 

such as polymorphic malware. Malware can perform a self-

execution locally or can be controlled remotely via the Internet. 

Malware families include but not limited to spyware, adware, 

cookies, trapdoor, Trojan horse, sniffers, spam, botnet, logic 

bomb, Worm, Virus, key-loggers, ransomware, backdoors, 

adware, spyware. Fig.1 below shows the example of a simple 

virus infection. 

2.2 POLYMORPHIC MALWARE 

The first polymorphic malware was developed by Mark 

Washbrun in 1990 and was called 1260 virus [11]. Polymorphism 

is a stealth technique used by malware to create an unlimited 

number of new different malware variants [11] [10] [12] in order 

to harden analysis and detection. Their code is constantly 

changing at any infection [13]. In general, polymorphic malware 

has invariant bytes that are constant across all their created 

instances as well as variant bytes that change values at every 

infection [7] [14]. The infection process is described in Fig.2. 

In order to obstruct analysis, polymorphic malware use code 

obfuscation techniques [15] such as packing, encryption and junk 

code insertion or substitution [2] [16] [17] [11]. Packed files have 

different hash values. Packing is mainly used by malware to 

harden the reverse engineering, to harden a dynamic debugging 

process, to reduce execution file size, to harden static malware 

disassembly, to bypass malware detection and to defeat malware 

researchers [2]. The structure of a packed file is shown in Fig.2. 

 

Fig.2. Polymorphic malware infection process [11] 

 

Fig.3. Packing and unpacking process 

2.3 COMPONENTS OF A POLYMORPHIC 

MALWARE 

There are two categories that predominantly characterize the 

segments of a polymorphic malware, namely the invariant and 

variant bytes [7] [4]. 

2.3.1 Invariant Bytes: 

Protocol framing is in charge of branching down the execution 

path of the code with a string that remains unchanged across all 

instances of polymorphic malware. Return address or function 

pointers are values that are used in overwriting a jump target to 

redirect execution. Exploit code is a set of invariant bytes in 

charge of malicious activities. It ensures that malicious 

behaviours are identical in all newly created malware variants 

[18]. 

2.3.2 Variant Bytes: 

Encrypted code or payload contains malicious codes that keep 

changing at every infection. Decryption module is in charge of 

decrypting the encrypted payload and control is passed to 

malicious code to start execution. These modules are obfuscated 

in different variants of polymorphic malware. Decryption key is 

required to decrypt the payload because multiple keys are 

generated by a polymorphic engine in order to allow the creation 

of multiple malware instances. 

2.4 OBFUSCATION TECHNIQUES 

Obfuscation makes malware harder to detect [19]. It transforms 

a malicious code to a new different version while keeping the same 

functionality [11] [19]. Originally, this technique was used for 

protecting software developer’s intellectual property. Later, it has 

been used by malware creators to neutralize detection and analysis 

[11], [19], [20]. The obfuscated code is different from the original 

one and is hard to understand while trying to conceal malware 

internal purposes [21]. Obfuscation adds less important 

instructions or garbage to an existing code to change its structure 

or appearance and yet retain the same behaviour [19] [22]. The 

binary sequence of a malicious code is modified without affecting 

the original functionality. Obfuscation techniques include 

instruction replacement, instruction permutation, variable or 

register substitution, junk or dead code insertion and code 

transposition [19]. 

2.4.1 Dead Code Insertion: 

The Fig.4 and Fig.5 respectively show the part of the original 

code and dead code insertion examples. To inject a dead code, a 

Non-operation (NOP) code is injected into the original code. A 

NOP sled is a long sequence of instructions that are often included 

in the shellcode as part of an exploit in order to increase the 

probability of an exploit to be successful. Code analysis task 

becomes very complicated when the code is nested as shown in 

Table.1. Instructions in Table.1 can change the status flag 

registers, but no change is made on the value of the operand 

register [11]. It is clear that adding a zero to a register, or assigning 

a register value to itself doesn’t have any effect on the execution 

results [11]. 
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Table.1. Non-operation code injection [11] 

Instruction Operation 

ADD Reg, 0 Reg <- Reg + 0 

MOV Reg, Reg Reg <- Reg 

OR Reg, 0 Reg <- Reg|0 

AND Reg, -1 Reg <- Reg &-1 

 

 

Fig.4. Original code [19] 

 

Fig.5. Dead code insertion [19] 

2.4.2 Register Exchanging: 

This technique involves switching registers or memory 

variables of different malware variants [22] [19] while keeping 

the identical behavior [20] and changing the binary sequence of 

the code. Two forms of W95.Regswap malware are shown in 

Fig.6 and Fig.7 respectively. It is clearly shown that the 

functionality is the same, but registers have been interchanged 

[23] [24]. This can easily defeat signature-based detection 

systems. The Table.2 also shows how polymorphic techniques are 

implemented. 

 

Binary Code Sequence Assembly Code 

5A pop edx 

BF04000000 mov edi,0004h 

8BF5 mov esi,ebp 

B80C000000 mov eax.000Ch 

81C288000000 add edx,0088h 

8B1A add ebx,[edx] 

899C8618110000 mov 
[esi+eax*4+00001118],e

bx 

Fig.6. Variant 1 of W95.Regswap malware [11] 

Binary Code Sequence Assembly Code 

58 pop eax 

BB04000000 mov ebx,0004h 

8BD5 mov edx,ebp 

BF0C000000 mov edi.000ch 

81C088000000 add eax,0088h 

8B30 mov esi,[eax] 

89B4BA18110000 mov [edx+edi*4+00001118],esi 

Fig.7. Variant 2 of W95.Regswap malware [11] 

2.4.3 Instruction Replacement/Substitution: 

Instructions are replaced by equivalent ones as illustrated in 

the following example, where all given instructions are equal as 

they set the register eax to 0. 

MOV eax, 0 

XOR eax,eax 

AND eax, 0 

SUB eax, eax 

2.4.4 Instruction Permutation/Reordering: 

The sequence of instructions is reordered randomly with the 

purpose of making the code binary sequence look different in 

multiple instances of the same malware [11] [19]. This reordering 

does not affect the functionality of the malware. This technique is 

able to generate n! Different instances, where n is the number of 

subroutines. An example of instructions permutation is given in 

Table.3. 

2.4.5 Code Transposition: 

This technique reorders or shifts the binary code sequences 

and uses unconditional or conditional branches to recover the 

original program execution flow [20], [11] [19] as shown in Fig.8. 

Table.2. Polymorphic techniques 

Original code 

#include<stdio.h>  

int main()  

{  

int a,b,c;  

c=1;  

a=0;  

b=6;  
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while (c<b) 

{  

a= a+b;  

c++;  

} 

} 

Variable renaming 

#include<stdio.h>  

int main()  

{  

int m,n,p;  

p=1;  

m=0;  

n=6;  

while(p<n)  

{  

m=m+n; 

p = p+1; 

} 

} 

Statement reordering 

#include<stdio.h>  

int main()  

{  

int a,b,c;  

b=6;  

a=0;  

c=1;  

while(c<n)  

{  

a= a+b;  

c++;  

} 

} 

Statement replacing 

#include<stdio.h>  

int main()  

{  

int a,b,c;  

c=1*1;  

a=0*c;  

b=6/c;  

while(c<b)  

{  

a= a+b;  

c++; } 

} 

Junk code insertion 

#include<stdio.h>  

int main()  

{ 

int a,b,c;  

c=1;  

a=0;  

b=6;  

bool h=true;  

if(h)  

{ 

while(c<b)  

{  

a= a+b;  

c++;  

} 

} 

} 

Spaghetti code 

#include<stdio.h>  

int main()  

{  

int a,b,c;  

goto T;  

N: while(c<b)  

{  

a= a+b;  

c++;  

}  

goto F;  

T:c=1;  

a=0;  

b=6;  

goto N;  

F: 

} 

Table.3. Instruction Reordering 

Order 1 Order 2 

mov eax, 0F  

push eax  

add esi, ebx 

add esi, ebx  

mov eax, 0F  

push ecx 

 

Fig.8. Binary code shifting [11] 

2.4.6 Code Integration: 

This technique is very sophisticated as the malware first 

decompiles the target program into very small objects and 

secondly adds itself to them, then finally reassembles the 

integrated code to create a new file [19][21]. 

2.4.7 Virtualization Obfuscation: 

Instructions are virtualized to hide from the analysis. The 

malware includes a virtual machine module that is used to 

interpret the virtualized code [11]. 

3. POLYMORPHIC MALWARE ANALYSIS 

Analysis is a process that allows the analyst to get a clear 

picture of the malware structure and functionality [25]. During 

analysis, different key features are extracted [26] and provide 

knowledge about the functionality of a malware. Informal 
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categories of analysis include vulnerability analysis [27], source 

code analysis [6] [27], and behavioral analysis [6]. Similarity 

analysis [21] [28] is undertaken to ensure that a malware is a 

variant of an existing one. Analysis task is very important and is 

the first thing to be done prior to developing reliable detection 

systems. In general, two main analysis techniques exist, namely 

Static analysis and Dynamic analysis [6]. 

3.1 STATIC ANALYSIS 

Static analysis is a process whereby information about the 

malicious program is extracted without executing it [20], [29], 

[30]. This makes static analysis safer than dynamic analysis as 

malware is not run [31]. It is classified in two categories such as 

basic static analysis and advanced static analysis. The basic static 

analysis gives basic information about the malicious program 

such as its version, file format, any suspicious imports, etc. Basic 

static analysis is straightforward and quick, but not very effective 

as it can miss important details [32]. Advanced static analysis 

deals with code/structure analysis where the knowledge of 

assembly language, compiler code, and Operating system 

concepts is required [32]. Malware functionality is analysed by 

inspecting the internal code of the malware. This analysis is able 

to provide information regarding malware identity, passwords, 

libraries, URL, programming language, etc. Function routines and 

mutants can be identified [33]. With advanced static analysis, the 

code can be disassembled and decompiled [29]. However, static 

analysis is unable to handle packing and obfuscation. It reveals 

the presence of packing, but the binary needs to be unpacked for 

the success of static analysis [13]. In addition to what has been 

explained above, the following information can also be revealed 

by static analysis [6], [25], [34], [35]: 

• File fingerprinting: The cryptographic hash code (eg. md5) 

is computed to know if a binary has not been modified. 

• Hash coded string extraction: This process helps to extract 

human-readable strings embedded in the compiled binary. 

With this information, a conclusion is drawn about some 

functionality of the binary. Imported and exported functions 

are revealed. 

• File format: The metadata of a file format is investigated to 

extract useful information such as file type, file format and 

compilation time. 

• Antivirus Scanning: if a binary is already known, it will be 

detected by one or more anti-malware programs. 

• Packer Detection: due to obfuscation structure (e.g. 

encryption and compression) of that malware, suitable tools 

such as PEID [32] and Detect It Easy (DIE) can identify 

packer and compiler information. 

• Disassembly: This process consists of reverse engineering 

machine code to assembly language which is understood by 

a human. Tools like IDA pro [32] can be used. The generated 

assembly code helps the analyst inspect further the logic of 

the code and gather more information about the intent of the 

malware. OllyBdg [32] tool is used in this process. 

Static analysis has two main advantages. First, it is safe during 

the analysis process, because a malware doesn’t have to be 

executed. Secondly, it provides deeper information about 

execution paths of a malware. In addition to that, the static 

analysis also has some disadvantages such as requiring much 

experience, consuming a lot of time, not being able to handle 

packed files, and producing some ambiguous results, in case of 

binaries that use self-modifying techniques to indirect jump 

instructions [34]. 

3.2 DYNAMIC ANALYSIS 

Dynamic analysis is the process of analysing a malicious 

program by first executing and monitoring its runtime 

functionalities [20]. Malicious behaviors are monitored and 

logged [6], [25], [34]. During this process, the malware unpacks 

itself and the changes it makes on the system are also observed. 

Dynamic analysis is undertaken in a virtual environment in order 

to ensure full protection of the host machine [15], [29], [30], [36]. 

The basic dynamic analysis consists of observing the basic 

behaviors of a malware such as process creation, file activities or 

registry activities [32]. On the other hand, the advanced dynamic 

analysis makes a profound examination of the internal state of a 

running malicious program. It uses advanced debugging 

techniques to single step through the malicious code and makes a 

deep internal inspection to get more comprehensive information 

on the malicious behaviors [32]. The code is analysed at runtime 

and any hidden code through packing is revealed [13]. The 

identity of a malware is dynamically identified. Function calls, 

parameter analysis, and information flow are all visualized. 

Dynamic link libraries (dll), processes and file activities are 

revealed [29], [37]. Dynamic analysis helps detect polymorphic 

mutants as well as packing and obfuscation attributes, [14]. 

Memory analysis can be performed [30]. The interaction between 

malware, file system, processes, and network is inspected [30]. 

However, dynamic analysis is computationally expensive and 

requires a lot of system resources [15] [35]. 

Advantages of dynamic analysis include the investigation of 

live malware behaviours at runtime, handling packed files, and 

automated analysis of large malware corpus. The disadvantages 

of Dynamic analysis include the possibility of missing out some 

execution paths when a malware being monitored becomes 

dormant, risk of spreading the infection by a network capable 

malware from the virtual environment to the host system; and the 

impossibility to monitor the malware when it has the capabilities 

of refusing to execute when it is run in a virtual environment. 

In addition to seeing runtime behaviors of a malware, dynamic 

analysis can allow an analyst get the difference between two 

system states. An initial state is recorded before running the 

malware and another state is recorded after malware execution. A 

comparison will be done and differences highlighted to assess the 

impact of the malware on the system [38]. 

Both static and dynamic analyses are essential techniques 

needed for a successful malware investigation task towards 

developing detection approaches. Table.4 draws the comparison 

between both techniques. 

Table.4. Comparison between both Static and Dynamic analyses 

Static analysis Dynamic analysis 

• A binary is not executed 

prior to analysis 

• Doesn’t necessarily need a 

virtual environment 

• A binary must be executed 

prior to analysis 
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• Can’t handle packed 

binaries before manually 

being unpacked 

• It’s hard, but can reveal 

almost the full code 

coverage or global view of 

a binary 

• Low false positive rate 

• It needs a virtual 

environment set up before 

analysis 

• Packed binaries are 

automatically unpacked [11] 

• Reveals the only path 

execution of modules that 

are running 

• High false positive rate 

3.3 MALWARE ANALYSIS TOOLS 

3.3.1 Static Analysis Tools: 

PEiD: This tool is used to detect the type of the packer or the 

compiler used to build an application. This can help the analyst 

identify the suitable program to unpack the binary. Entropy and 

checksum can also be calculated. 

UPX: This is an ultimate packer for executables that helps in 

compressing and packing or decompressing and unpacking 

executables. Packing process makes malware hard to analyze and 

detect. It shrinks the size of malware binaries. The packed 

program hides the original data and creates an unpacking stub that 

is called by the operating system when a malware attacks. 

Unpacking process helps in rediscovering the original executable 

and transfers execution to the original entry point. This tool can 

unpack malware packed by UPX or other packing tools as well. 

IDA Pro: This is an interactive disassembler that is used to 

reverse engineer malware binaries and create maps of execution 

as well as discovering and analysing vulnerabilities. Tasks done 

by IDA include function discovery, stack analysis, local variable 

identification, and much more. This is the choice of many 

malware analysts. Additional key features of this tool include 

code disassembly, discovering obfuscation traces, function 

parameters analysis, function calls analysis, operation codes 

analysis, strings analysis, persistence tracking, privilege 

escalation attack detection, DLLs injection analysis, Runtime 

DLLs, Process replacement functionalities, code noise patterns, 

Rootkit functionalities, Anti debug/analysis constructs, Kernel 

mode activity, User mode activity, user-defined functions, and 

attacker identification. 

3.3.2 Dynamic Analysis Tools: 

Process Monitor: This tool provides real-time monitoring of 

file system, processes, registry when the malware is running and 

visualizes all the events as they are happening. Running 

processes, system calls, file system, Network activity, registry 

activity, API calls, Mutex and Self-modifying code traces can all 

be detected. 

Dependency Walker: This tool helps explore Dynamic Link 

Libraries (DLLs), imported functions, exported functions and 

monitor interactivity between running processes and DLLs. 

Regshot: This tool takes system snapshots before and after the 

malware is executed and creates a log of registry manipulations. 

Both snapshots are then compared to observe registry 

modifications. Registry modifications and system changes give a 

clue of malware behaviors. 

ApateDNS: This tool helps the analyst to capture DNS 

requests made by malware without necessarily being connected to 

the Internet. It imitates DNS responses to a given IP address. It 

can display all received results in a hexadecimal format. 

Wireshark: This is a packet sniffing program that helps to 

understand how malware performs network communications. It 

can intercept and log the traffic that passes over the network when 

the malware is running. Wireshark provides packet details which 

enable the analyst to do the in-depth packet streams analysis. 

INetSim: This is a tool suitable for simulating common 

Internet services. It can provide fake services that allow the 

analyst to analyze the network behaviors of a malware. Services 

that are emulated by InetSim are but not limited to: HTTP, 

HTTPS, FTP, IRC, DNS and SMTP. InetSim can also record all 

inbound connections and requests which are very useful to see if 

a malware is connected to any service and what requests it is 

making. 

3.3.3 Sandboxes: 

Sandboxes are tools that are able to analyze a malware using 

both on static and dynamic analysis techniques. They provide a 

detailed report at the end of the analysis. Malware are executed 

within the sandbox and all side effects remain within the sandbox 

system without affecting the host system. 

• Anubis: This is an automated malware analysis tool that 

helps monitor API functions, system service calls, function 

parameters, etc. 

• CwSandbox: This is an automated malware analysis tool 

that helps monitor API calls, system calls, Registry 

manipulations tracking, Network traces, Operating System 

interactions 

• GFI sandbox: Automated malware analysis tool to monitor 

API calls. 

• JoeBox sandbox: This is an automated malware analysis 

tool. Its key features include file system analysis, registry 

activity analysis, system calls analysis, rules generation, 

memory dump analysis, packing analysis and strings 

analysis. 

• Cuckoo sandbox: This is an automated malware analysis 

tool capable of analyzing File activity, registry, system calls, 

API, memory dumps, packing, network activity, etc 

Different files formats can be analyzed as well as URLs. 

This tool also has advanced memory analysis capabilities 

that help in discovering deeper hidden malware 

functionalities. 

4. POLYMORPHIC MALWARE DETECTION 

TECHNIQUES 

Malware detection is simply a technique valuable for 

identifying malware in all targets [39], either computers, 

applications or cyber-physical devices [40]. Polymorphic 

malware has many variants of the same functionality as discussed 

in previous sections. In order to detect them, similarity analysis is 

undertaken. 

4.1 SEQUENCE CLASSIFICATION DETECTION [41] 

Drew et al. [41] proposed a detection approach based on 

sequence classification methods. Based on biological gene 

sequence mutations. Authors use the same concept to assess 
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similarities in mutations of malware. They used a tool developed 

for gene classification called The Super Threaded Reference-Free 

Alignment-Free Nsequence Decoder (STRAND) for classifying 

polymorphic malware. 

Evaluation: This method was evaluated on a 500 GB malware 

dataset provided by Kaggle-Microsoft Malware Classification 

Challenge (BIG 2015). Features were developed for STRAND 

classifier from given sample bytes, where hex values were 

considered and missing values removed. This created a single 

string/strand sequence containing only all hex contents extracted 

from malware file. Sequences of words of length k or k-mers were 

generated by strand. Word length of 10 characters and 2400 

minihash values were used. Jaccard similarities were computed. 

Training time was less than 7 hours and strand classification 

accuracy was 95%, of which 9 classes of polymorphic malware in 

the given set were detected. 

4.2 SEQUENCE-BASED CLASSIFICATION AND 

ENSEMBLES DETECTION [42] 

In their expanded version of work [41], Drew et al. in [42] 

developed an approach that detects polymorphic malware using 

sequence classification methods and ensembles. STRAND 

algorithm was used for the classification task. 

Evaluation: In this work, they also used Kaggle dataset of 500 

GB from Microsoft 2015 challenge. They used bytes (.bytes) data 

and assembly data (.asm) features as provided by Microsoft. 

Ensembles were created by using both the asm and bytes models 

from Strand. The minihash technique was used to detect 

similarity. Minihash scores of created models were computed and 

the overall detection accuracy became 98%. 

4.3 DROPPED FILES BASED POLYMORPHIC 

MALWARE DETECTION [17] 

Selamat et al. [17] proposed an easy detection technique for 

detecting polymorphic malware based on dropped files.  

Evaluation: To evaluate their technique, authors in [17] 

executed malware in a virtual environment. They used process 

explorer to observe malware behaviors. Three different types of 

malware pythium2.exe, kax.exe, ieg.exe were used in the 

experiment. Each was executed twice. For the first and second 

executions, each malware could create a child process. It was 

observed that those created subprocesses during first and second 

executions were different. The conclusion was drawn that this is 

also a good indicator of polymorphic behavior. 

4.4 TOPOLOGICAL BASED FEATURE 

EXTRACTION DETECTION [8] 

Fraley et al. [8] proposed a detection approach that utilizes 

topological feature extraction using static and dynamic analysis 

techniques. The proposed method relies on data mining 

techniques as a means to achieve classification scalability. 

Evaluation: This method uses IDA pro and cuckoo sandbox 

for feature extraction. Experiments were conducted on data set of 

3637 samples of which 2400 were clean, 800 were malicious and 

437 were unlabeled. They used function call graphs to trace 

instruction patterns. Belief propagation was used to uncover the 

properties of malicious files. Twenty features (12 structural and 8 

behavioral) were collected and used to make a complete feature 

set. Few examples of extracted features include MOV, ADD, 

LEA, file size, and compiler type. The created feature set was 

converted into the ARFF data format compatible with the Weka 

data mining tool. Ensemble bagging algorithms were used in 

Weka for classification and cross-validation with 10 folds was 

used for validation. The overall accuracy was 99.9 % where low 

false negative is 0.001 

4.5 STRING MATCHING AND SUBSTITUTION 

MATRICES [5]  

Naidu et al. [5] proposed a detection method that involved the 

extraction of syntactic structures of a malware from its hex code. 

It helped in identifying the piece of code that is malicious and the 

variant type of the malware. The Smith-Waterman algorithm was 

used to identify variants. 

Evaluation: Experiments were done using two variants of 

JS.cassandra malware. Hex dumps were extracted using sigtool 

from ClamAV. Hex bytes were then converted to binary code and 

from binary to DNA sequences. The DNA sequences were input 

into JAligner tool where Smith-Waterman algorithm (SWA) was 

implemented. Common substrings or patterns were extracted 

Pairwise local alignment (PLA) was performed using SWA with 

different substitution matrices. Only substrings with the highest 

percentage of identities and similarities were extracted after PLA. 

161 sub-strings were retained through 6 substitution matrices. 

These 161 substrings have been considered as meta-signatures 

and used to detect all known polymorphic variants of 

JS.Cassandra. T-Coffee tool was used to perform multiple 

sequence alignment on the generated meta-signatures and 

generated consensuses. Rules were generated using a data mining 

classification algorithm called PRISM and this allowed the 

generation of 47 super signature substrings. Therefore, those 47 

super signatures and 161 meta signatures were converted back to 

hexadecimal and tested against JS.Cassandra. This method was 

able to detect 100% of JS.Cassandra malware and all its known 

variants. 

4.6 CLIENT-SERVER BASED DETECTION [2] 

Harmonen in [2] proposed a client-server architecture for 

identifying polymorphic malware. This method has two 

advantages: storing remotely virus information databases without 

allowing individual client updates and protecting the client 

application as well. 

Evaluation: The client application is deployed on the target 

system and keeps monitoring the system of interest. Suspicious 

files are investigated. File hash and file metadata information are 

sent to the server. The server compares the received data with the 

one in its database. When multiple hash values are received from 

different clients and the corresponding metadata is the same, the 

file is identified as a polymorphic malware. The server is able to 

determine if the file is benign, known polymorphic malware or a 

new variant. 

4.7 VIRAL POLYMORPHIC MALWARE 

DETECTION [9] 

Naidu et al. [9] proposed a polymorphic malware detection 

approach that is based on automatic signature extraction. 
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Needleman-Wunsch and Smith-Waterman algorithms are used 

for developing a detection mechanism. 

Evaluation: This method is built on top of same author’s 

previous work [5] which is discussed above. Needleman-Wunsch 

algorithm was used together with Smith-Waterman algorithm. 

JS.Cassandra and W32.Kitti polymorphic malware were used in 

experiments. Hex dumps were extracted and converted to DNA. 

Pairwise sequence alignments were performed, meta and super 

signatures were generated. Finally, this method was able to detect 

100% of JS.Cassandra and W32.Kitti known polymorphic 

variants. 

4.8 HYBRID CLUSTERING DETECTION 

APPROACH [43] 

Sharma et al. [43] proposed an approach that uses signatures 

and pattern matching to detect polymorphic malware. 

Evaluation: Experiments were done using tools such as 

SciPy, Numpy and Python. A python module called pydasm is 

used to extract features and its report recorded. Opcodes are 

extracted from the given instructions and are used for further 

processing. KNN algorithm is implemented and the method was 

able to detect polymorphic malware. The detection accuracy was 

not provided. 

4.9 COMBINED TOKEN EXTRACTION AND 

SEQUENCE ALIGNMENT DETECTION [18] 

Eskandari et al. [18] proposed a technique that combines two 

approaches, namely token extraction and multiple sequence 

alignment for achieving a high accuracy and noise tolerance 

flexibility. 

Evaluation: To evaluate their method, the authors used 

DARPA 1999 intrusion detection system dataset. They extracted 

tokens from suspicious flows and eliminated irrelevant parts of 

suspicious flow. They generated Simple regular expression (SRE) 

signatures and applied multiple sequence alignment. Tests were 

done on DARPA 1999 intrusion detection system dataset, 

polymorphic versions of CodeRed II, Apache-Knacker, ATPhttpd 

and BIND-TSIG exploit malware. This method was able to 

analyze inherent similarities of samples, thus detecting 

successfully polymorphic malware. 

4.10 BEHAVIORAL BASED SEQUENTIAL 

PATTERNS [20] 

Ahmadi et al. [20] proposed a malicious files detection 

approach that is based on behavioral sequential patterns. API calls 

behavior features were extracted using dynamic analysis and API 

calls log was generated. Initial dataset was then created from log 

data by only considering the repetitive patterns. Feature selection 

was conducted using Fisher score algorithm. Support Vector 

Machines (SVM) and decision tree algorithms were used for 

malware classification. This method was evaluated on a sample 

of 806 malware and 306 benign files. A detection accuracy of 

95% was successfully achieved. 

4.11 ZERO DAY HYBRID DETECTION [3] 

Kaur et al. [3] developed a hybrid anomaly and signature 

detection system was used to detect zero-day polymorphic worms 

in an active network flow. 

Evaluation: The system architecture has three components 

such as Suspected Traffic Filter (STF), Zero attack evaluation 

(ZAE) and Signature generator (SG). Suspicious traffic is 

collected using STF where known malware are blocked and 

logged. Zero-day attacks are redirected to the honeypot for further 

analysis. STF module is composed of two components: Honeynet 

and IDS/IPS to capture and compare network the traffic flow. The 

Longest Common Prefix (LCP) algorithm is used in the 

comparison process. When IDS/IPS is found to have ignored an 

attack that was logged by honeynet, it means that it’s a new 

unknown attack. Analyses are done by ZAE component by which 

malicious strings are extracted such as NOP sleds, decryptor, 

shellcodes and return addresses. The SG module generates 

content based signatures by using invariant bytes found in a 

polymorphic malware. The method has been tested on a sample 

of 15435 packets of which 734 were polymorphic. The detection 

rate was 96% with almost zero positive rates. 

4.12 BEHAVIOR ANALYSIS OF MALWARE USING 

MACHINE LEARNING [15] 

Arshi et al. [15] proposed a behavioral detection approach 

based on machine learning. They focused on malware 

classification and clustering. 1270 malware samples of different 

format pdf, executables, HTML, zipped and jpeg were analyzed. 

Logic Model Tree and K-Means algorithms have been used for 

the task of classification and clustering respectively. The results 

show that 18% of analyzed malware were embedded with 

networking capabilities to connect to the outer world, while 82% 

aimed to corrupt the system locally or network resources. 

Malware have also been grouped successfully according to their 

file format types. 

5. DISCUSSIONS 

This research explored the literature about polymorphic 

malware analysis, detection as well as involved techniques. The 

findings show that a great work has been done in previous 

research efforts. This problem has been widely addressed using 

machine learning techniques. However, some studies also tried to 

address it using other techniques used normally in DNA sequence 

such as multiple sequence alignment, Needleman-Wunsh, Smith-

waterman, Strand gene sequence classifier, etc. Some studies use 

more than one algorithm to build models and select the most 

reliable one. The Fig.9 highlights the algorithms used by selected 

detection techniques. 
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Fig.9. Algorithms used by selected techniques 

 

Fig.10. Number of dataset samples of the selected techniques 

 

Fig.11. Performances of selected techniques 

Table.5. Comparison of selected detection techniques 

Technique Code Contributions Limitations 

Topological features based 

extraction [8] 
TFBE 

A novel approach that extracts, analyses and 

combines multiple high factors to detect 

polymorphic malware. Faster and accurate for small 

samples 

Need to be evaluated on a larger 

dataset. 

Sequence classification 

detection [41] 
SCD 

A novel approach to detect polymorphic malware 

by using biological gene sequences and STRAND 

classifier. 

Can work on a larger sample 

Considers statically extracted 

features only. 

Behavioural features were not 

considered. 

Dropped files based 

Polymorphic Malware 

Detection [17] 

DFPMD 
Proposed a simple but fast technique of identifying 

polymorphic malware using dropped files. 

False positives may incur, just in 

case where the genuine file has the 

same features. 

Sequence-based classification 

and ensembles detection [42] 
SBCE 

A novel approach that extends [30] to detect 

polymorphic malware by using biological gene 

sequences and STRAND classifier. 

It uses (.bytes) and .asm files and can work on a 

larger sample. 

Considers statically extracted 

features only. Behavioural features 

not considered. 

False positives may incur just in case 

where the genuine file has the same 

features 

String matching and substitution 

matrices [5] 
SMSM 

Proposed a novel detection method that extracts of 

syntactic structures from hex code and implements 

Smith-Waterman algorithm to identify variants. 

Accurate on small samples. 

Need to be evaluated on a larger 

dataset. Considers statically 

extracted features only. 

Behavioural features not considered 
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Client-server based detection [2] CSD 

Novel client-server approach where virus 

information is stored on a remote database and does 

not allow individual client updates 

Serious problems can occur when the 

Internet is not available. 

Viral polymorphic malware 

detection [9] 
VPMD 

Novel polymorphic malware detection approach 

that is based on automatic signature extraction and 

uses Needleman-Wunsch and Smith Waterman 

algorithms for detection mechanism. 

Needs to be evaluated on a larger 

dataset. 

Considers statically extracted 

features only. Behavioural features 

not considered. 

Considers only known polymorphic 

variants of an existing malware 

Hybrid clustering detection 

approach [43] 
HCDA 

Detection method that uses signatures and pattern 

matching to detect polymorphic malware. 

Need to provide detection accuracy. 

Behavioural analysis needs to be 

considered 

Combined Token Extraction and 

Sequence Alignment detection 

[18] 

CTESAD 

Novel signature-based technique that combines 

token extraction and multiple sequences alignment 

for achieving a high accuracy and noise tolerance 

flexibility. 

It is fast and noise tolerant 

Low detection accuracy. 

Behavioural analysis needs to be 

considered 

Efficient hybrid technique for 

detecting zero-day polymorphic 

worms [3] 

EHTZDD 

Early detection and containment of zero-day 

polymorphic malware. Automatic signature 

generation 

Behavioural features not considered 

Table.6. Data sources of selected techniques 

Techniques Dataset source Number of samples Number of families Malware only Malware and benign 

TFBE 
ClamAV, VirusTotal, 

VirusShare and Contagio 
3637 - No Yes 

SCD 
Microsoft kaggle malware 

dataset 500GB 
21741 9 Yes No 

DFPMD Second Part to Hell 100 2 Yes No 

SBCE 
Microsoft kaggle malware 

dataset 500GB 
21741 9 Yes No 

SMSM Second Part to Hell 352 1 yes No 

VPMD Second Part to Hell 1457 2 Yes No 

CTESAD 

DARPA 1999 Intrusion 

Detection Evaluation 

Datasets 

100 4 Yes No 

EHTZDD honeypots 15435 - No yes 

Table.7. Evaluation methods and performance metrics used by the selected techniques 

Techniques Val CV Test split Test Sample Accuracy Log loss F score FP FN ROC TPR FPR 

TFBE yes - - 0.9999 - - 0.0001   0.997 0.003 

SCD yes - - 95% 0.222864 - - - - - - 

DFPMD - - - - - - - - - - - 

SBCE yes - - 98% - - - - - - - 

SMSM - - - 100% - - - - - - - 

CSD - - - - - - - - - - - 

VPMD - - - 100% - - - - - - - 

HCDA - - - 97.83% - 95% - - - - - 

CTESAD - - - 52% - - - - - - - 

EHTZDD - - - 96% - - - - - 0.961 0.06 
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Table.8. Algorithms and analysis methods used by the selected 

techniques 

Techniques 
Static 

Analysis 

Dynamic 

Analysis 
Algorithms 

TFBE Yes Yes 

-Meta bagging 

-Advanced Ensemble 

Classification 

-Belief Propagation (BP), 

-Locality-Sensitive Hashing 

(LSH) 

SCD Yes No 

-Strand gene sequence 

classifier 

-Jaccard Similarity 

DFPMD  Yes - 

SBCE Yes  
-Strand gene sequence 

classifier 

SMSM Yes No -Smith-Waterman algorithm 

VPMD Yes No 
-Needleman-Wunsch Smith-

Waterman 

HCDA yes No -KNN 

CTESAD No No -Multiple sequence alignment 

EHTZDD Yes No - 

To evaluate the performance of their approaches, most 

researchers used accuracy as the main performance metric. 

Accuracies achieved were in the range of 90% to 100% as shown 

by Fig.11. Some other studies used also other performance 

metrics such as log loss, TPR, FPR, F-score, etc. as shown in 

Fig.11. Detection rates of 100% are subject of further exploration 

because it can simply be an over-fitting situation. This can happen 

when the dataset used is very small or the quality of the dataset 

itself. The Fig.10 shows the datasets sizes used in the presented 

techniques. Another observation is that during analysis, some 

studies extracted either static features or dynamic features, while 

others considered a hybrid of both types of features. Either can 

lead to good results in terms of performance metrics. However, an 

optimal detection system could use hybrid features and achieve 

better results by minimizing the disadvantages of static and 

dynamic analysis while maximizing their advantages. 

6. CONCLUSIONS 

In this research, we have provided a detailed discussion on 

polymorphic malware characteristics and attacking strategies. We 

have specifically discussed tools and techniques used in analysis 

and detection of polymorphic malware. We provided an adequate 

comparison through which weaknesses and strengths of each 

techniques were discussed. We found that, there are much more 

sophisticated attacking mechanisms built in polymorphic 

malware, that negatively affect the performance of the currently 

available tools and strong defensive techniques. Therefore, 

research must be done continuously as a major way to find more 

adequate solutions to address this big problem. Based on this 

review, the following major gaps still have to be taken into 

consideration in order to develop more efficient detection 

solutions: 

• There is a need for an improved feature engineering 

mechanism that could address efficient detection at a larger 

scale. 

• There is a need to investigate the impact of a combination of 

analysis and detection techniques for the improvement of 

detection approaches. 

• There must be an improvement on detection mechanisms to 

improve real-time detection before the system is infected. 

• There is a need for an interactive coordination in terms of 

information sharing and automatic detection responsibilities 

among detection systems. This could be implemented in a 

multi-agent based detection approach. 

• There is a need for dynamic vulnerability analysis 

capabilities implemented in detection systems. This will 

enable them to scan installed applications and report 

problems in time to the software owners. Therefore, this will 

limit the spreading of zero-day polymorphic malware if 

owners can quickly fix the bugs. 
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