
EMMANUEL MASABO et al.: A STATE OF THE ART SURVEY ON POLYMORPHIC MALWARE ANALYSIS AND DETECTION TECHNIQUES

DOI: 10.21917/ijsc.2018.0246

1762

A STATE OF THE ART SURVEY ON POLYMORPHIC MALWARE ANALYSIS AND

DETECTION TECHNIQUES

Emmanuel Masabo1, Kyanda Swaib Kaawaase2, Julianne Sansa-Otim3, John Ngubiri4 and Damien

Hanyurwimfura5

1,2,3,4College of Computing and Information Sciences, Makerere University, Uganda
5College of Science and Technology, University of Rwanda, Rwanda

Abstract

Nowadays, systems are under serious security threats caused by

malicious software, commonly known as malware. Such

malwares are sophisticatedly created with advanced techniques

that make them hard to analyse and detect, thus causing a lot of

damages. Polymorphism is one of the advanced techniques by

which malware change their identity on each time they attack.

This paper presents a detailed systematic and critical review that

explores the available literature, and outlines the research

efforts that have been made in relation to polymorphic malware

analysis and their detection.

Keywords:

Polymorphic Malware, Static Analysis, Dynamic Analysis,

Machine Learning, Malware Detection

1. INTRODUCTION

System’s security is a major concern in today’s computing

environment. There are more powerful threats appearing on daily

basis. According to Symantec report [1], there were almost a

million newly created threats that were injected into the wild on

daily basis in 2014. The anti-malware industry and malware

creators try to outsmart each other by constantly developing more

advanced techniques. Early malware was spread through file

transfers using floppy disks and removable disks. Once a user

opened an infected file on a clean computer, the system could be

infected [2]. Later malware was much more complex and were

mainly spread from the Internet. Currently, malware is even more

complex and highly sophisticated in terms of attacking and

evading detection [3]. They are able to change their identity at

every fresh attack without changing the body of the virus [4], thus

exhibiting the same behaviour. They are also capable of mutating

into an infinite number of new variants [5]. Many researchers

proposed a number of useful approaches to deal with polymorphic

malware as described in survey articles [6] [7]. Despite all the

efforts undertaken to contain the problem of polymorphic

malware, it remains challenging [8] [9] and requires more

research endeavours. This study gives the state of the art and

outlines the research efforts in relation to the techniques used in

analysis and detection of polymorphic malware. Several

techniques exist and each has its own strengths and weaknesses.

To accomplish the objectives of this study, the author searched

journals, conferences and search engines. The primary

contributions of this paper are:

• To provide an analytical review of the most successful later

works on polymorphic malware detection.

• To retrieve the gaps that require further research.

• To assess the adequacy of the most popular tools used to

analyze polymorphic malware.

• To identify the most promising studies that can serve as the

point of reference for the future research.

• To provide recommendations and directions for future

research.

The rest of this paper is organized as follows: section 2

discusses the concepts, structure and working mechanisms of

polymorphic malware. Section 3 portraits the techniques used in

analyzing polymorphic malware. Section 4 discusses

polymorphic malware detection techniques. Finally, the overall

conclusion and recommendations are discussed in section 6.

2. MALWARE STRUCTURE

2.1 GENERAL MALWARE

Malware is a kind of malicious code which is destructive. It is

just like any other regular software. However, it has a harmful

intent such as denial of service, attempt to confidentiality,

information stealing or abuse of integrity [10]. To achieve its

objectives, a malware can perform many operations.

Fig.1. Infection by a Code Virus

Some of them are described as follows: file activity (open,

read, delete, modify, move), Registry activity (open, create,

delete, modify, move, query, close), Service activity (open, start,

create, delete, modify), Mutex (create, delete), Processes (start,

terminate), Runtime DLLs, Network activity (TCP, UDP, DNS,

Source code

#include <stdio.h>

main() {

 printf (“Hello World!\n”);

}

Compiled host

program

Host on

new system

Infected source code

Virus active

on new system

#include <stdio.h>
#include “virus.h”

main() {

 printf (“Hello World!\n”);

}

 virus();

1 2

3

4

5

ISSN: 2229-6956 (ONLINE) ICTACT JOURNAL ON SOFT COMPUTING, JULY 2018, VOLUME: 08, ISSUE: 04

1763

HTTP). Malware types range from simple to more complex ones

such as polymorphic malware. Malware can perform a self-

execution locally or can be controlled remotely via the Internet.

Malware families include but not limited to spyware, adware,

cookies, trapdoor, Trojan horse, sniffers, spam, botnet, logic

bomb, Worm, Virus, key-loggers, ransomware, backdoors,

adware, spyware. Fig.1 below shows the example of a simple

virus infection.

2.2 POLYMORPHIC MALWARE

The first polymorphic malware was developed by Mark

Washbrun in 1990 and was called 1260 virus [11]. Polymorphism

is a stealth technique used by malware to create an unlimited

number of new different malware variants [11] [10] [12] in order

to harden analysis and detection. Their code is constantly

changing at any infection [13]. In general, polymorphic malware

has invariant bytes that are constant across all their created

instances as well as variant bytes that change values at every

infection [7] [14]. The infection process is described in Fig.2.

In order to obstruct analysis, polymorphic malware use code

obfuscation techniques [15] such as packing, encryption and junk

code insertion or substitution [2] [16] [17] [11]. Packed files have

different hash values. Packing is mainly used by malware to

harden the reverse engineering, to harden a dynamic debugging

process, to reduce execution file size, to harden static malware

disassembly, to bypass malware detection and to defeat malware

researchers [2]. The structure of a packed file is shown in Fig.2.

Fig.2. Polymorphic malware infection process [11]

Fig.3. Packing and unpacking process

2.3 COMPONENTS OF A POLYMORPHIC

MALWARE

There are two categories that predominantly characterize the

segments of a polymorphic malware, namely the invariant and

variant bytes [7] [4].

2.3.1 Invariant Bytes:

Protocol framing is in charge of branching down the execution

path of the code with a string that remains unchanged across all

instances of polymorphic malware. Return address or function

pointers are values that are used in overwriting a jump target to

redirect execution. Exploit code is a set of invariant bytes in

charge of malicious activities. It ensures that malicious

behaviours are identical in all newly created malware variants

[18].

2.3.2 Variant Bytes:

Encrypted code or payload contains malicious codes that keep

changing at every infection. Decryption module is in charge of

decrypting the encrypted payload and control is passed to

malicious code to start execution. These modules are obfuscated

in different variants of polymorphic malware. Decryption key is

required to decrypt the payload because multiple keys are

generated by a polymorphic engine in order to allow the creation

of multiple malware instances.

2.4 OBFUSCATION TECHNIQUES

Obfuscation makes malware harder to detect [19]. It transforms

a malicious code to a new different version while keeping the same

functionality [11] [19]. Originally, this technique was used for

protecting software developer’s intellectual property. Later, it has

been used by malware creators to neutralize detection and analysis

[11], [19], [20]. The obfuscated code is different from the original

one and is hard to understand while trying to conceal malware

internal purposes [21]. Obfuscation adds less important

instructions or garbage to an existing code to change its structure

or appearance and yet retain the same behaviour [19] [22]. The

binary sequence of a malicious code is modified without affecting

the original functionality. Obfuscation techniques include

instruction replacement, instruction permutation, variable or

register substitution, junk or dead code insertion and code

transposition [19].

2.4.1 Dead Code Insertion:

The Fig.4 and Fig.5 respectively show the part of the original

code and dead code insertion examples. To inject a dead code, a

Non-operation (NOP) code is injected into the original code. A

NOP sled is a long sequence of instructions that are often included

in the shellcode as part of an exploit in order to increase the

probability of an exploit to be successful. Code analysis task

becomes very complicated when the code is nested as shown in

Table.1. Instructions in Table.1 can change the status flag

registers, but no change is made on the value of the operand

register [11]. It is clear that adding a zero to a register, or assigning

a register value to itself doesn’t have any effect on the execution

results [11].

Mutation Engine

(to produce unlimited number of

different decryptors)

Encrypted

virus body

Encrypted

virus body

Decrypted

virus body

Infection process

Decryptor

Virus

body

Before packing

PE header

Text sections

with Original
Entry Point

(OEP)

Data Section

Resource section

After packing

PE header

Packed original

section with
Modified Entry

Point (MEP)
Unpacker stub to

rediscover the
original entry

point

EMMANUEL MASABO et al.: A STATE OF THE ART SURVEY ON POLYMORPHIC MALWARE ANALYSIS AND DETECTION TECHNIQUES

1764

Table.1. Non-operation code injection [11]

Instruction Operation

ADD Reg, 0 Reg <- Reg + 0

MOV Reg, Reg Reg <- Reg

OR Reg, 0 Reg <- Reg|0

AND Reg, -1 Reg <- Reg &-1

Fig.4. Original code [19]

Fig.5. Dead code insertion [19]

2.4.2 Register Exchanging:

This technique involves switching registers or memory

variables of different malware variants [22] [19] while keeping

the identical behavior [20] and changing the binary sequence of

the code. Two forms of W95.Regswap malware are shown in

Fig.6 and Fig.7 respectively. It is clearly shown that the

functionality is the same, but registers have been interchanged

[23] [24]. This can easily defeat signature-based detection

systems. The Table.2 also shows how polymorphic techniques are

implemented.

Binary Code Sequence Assembly Code

5A pop edx

BF04000000 mov edi,0004h

8BF5 mov esi,ebp

B80C000000 mov eax.000Ch

81C288000000 add edx,0088h

8B1A add ebx,[edx]

899C8618110000 mov
[esi+eax*4+00001118],e

bx

Fig.6. Variant 1 of W95.Regswap malware [11]

Binary Code Sequence Assembly Code

58 pop eax

BB04000000 mov ebx,0004h

8BD5 mov edx,ebp

BF0C000000 mov edi.000ch

81C088000000 add eax,0088h

8B30 mov esi,[eax]

89B4BA18110000 mov [edx+edi*4+00001118],esi

Fig.7. Variant 2 of W95.Regswap malware [11]

2.4.3 Instruction Replacement/Substitution:

Instructions are replaced by equivalent ones as illustrated in

the following example, where all given instructions are equal as

they set the register eax to 0.

MOV eax, 0

XOR eax,eax

AND eax, 0

SUB eax, eax

2.4.4 Instruction Permutation/Reordering:

The sequence of instructions is reordered randomly with the

purpose of making the code binary sequence look different in

multiple instances of the same malware [11] [19]. This reordering

does not affect the functionality of the malware. This technique is

able to generate n! Different instances, where n is the number of

subroutines. An example of instructions permutation is given in

Table.3.

2.4.5 Code Transposition:

This technique reorders or shifts the binary code sequences

and uses unconditional or conditional branches to recover the

original program execution flow [20], [11] [19] as shown in Fig.8.

Table.2. Polymorphic techniques

Original code

#include<stdio.h>

int main()

{

int a,b,c;

c=1;

a=0;

b=6;

ISSN: 2229-6956 (ONLINE) ICTACT JOURNAL ON SOFT COMPUTING, JULY 2018, VOLUME: 08, ISSUE: 04

1765

while (c<b)

{

a= a+b;

c++;

}

}

Variable renaming

#include<stdio.h>

int main()

{

int m,n,p;

p=1;

m=0;

n=6;

while(p<n)

{

m=m+n;

p = p+1;

}

}

Statement reordering

#include<stdio.h>

int main()

{

int a,b,c;

b=6;

a=0;

c=1;

while(c<n)

{

a= a+b;

c++;

}

}

Statement replacing

#include<stdio.h>

int main()

{

int a,b,c;

c=1*1;

a=0*c;

b=6/c;

while(c<b)

{

a= a+b;

c++; }

}

Junk code insertion

#include<stdio.h>

int main()

{

int a,b,c;

c=1;

a=0;

b=6;

bool h=true;

if(h)

{

while(c<b)

{

a= a+b;

c++;

}

}

}

Spaghetti code

#include<stdio.h>

int main()

{

int a,b,c;

goto T;

N: while(c<b)

{

a= a+b;

c++;

}

goto F;

T:c=1;

a=0;

b=6;

goto N;

F:

}

Table.3. Instruction Reordering

Order 1 Order 2

mov eax, 0F

push eax

add esi, ebx

add esi, ebx

mov eax, 0F

push ecx

Fig.8. Binary code shifting [11]

2.4.6 Code Integration:

This technique is very sophisticated as the malware first

decompiles the target program into very small objects and

secondly adds itself to them, then finally reassembles the

integrated code to create a new file [19][21].

2.4.7 Virtualization Obfuscation:

Instructions are virtualized to hide from the analysis. The

malware includes a virtual machine module that is used to

interpret the virtualized code [11].

3. POLYMORPHIC MALWARE ANALYSIS

Analysis is a process that allows the analyst to get a clear

picture of the malware structure and functionality [25]. During

analysis, different key features are extracted [26] and provide

knowledge about the functionality of a malware. Informal

EMMANUEL MASABO et al.: A STATE OF THE ART SURVEY ON POLYMORPHIC MALWARE ANALYSIS AND DETECTION TECHNIQUES

1766

categories of analysis include vulnerability analysis [27], source

code analysis [6] [27], and behavioral analysis [6]. Similarity

analysis [21] [28] is undertaken to ensure that a malware is a

variant of an existing one. Analysis task is very important and is

the first thing to be done prior to developing reliable detection

systems. In general, two main analysis techniques exist, namely

Static analysis and Dynamic analysis [6].

3.1 STATIC ANALYSIS

Static analysis is a process whereby information about the

malicious program is extracted without executing it [20], [29],

[30]. This makes static analysis safer than dynamic analysis as

malware is not run [31]. It is classified in two categories such as

basic static analysis and advanced static analysis. The basic static

analysis gives basic information about the malicious program

such as its version, file format, any suspicious imports, etc. Basic

static analysis is straightforward and quick, but not very effective

as it can miss important details [32]. Advanced static analysis

deals with code/structure analysis where the knowledge of

assembly language, compiler code, and Operating system

concepts is required [32]. Malware functionality is analysed by

inspecting the internal code of the malware. This analysis is able

to provide information regarding malware identity, passwords,

libraries, URL, programming language, etc. Function routines and

mutants can be identified [33]. With advanced static analysis, the

code can be disassembled and decompiled [29]. However, static

analysis is unable to handle packing and obfuscation. It reveals

the presence of packing, but the binary needs to be unpacked for

the success of static analysis [13]. In addition to what has been

explained above, the following information can also be revealed

by static analysis [6], [25], [34], [35]:

• File fingerprinting: The cryptographic hash code (eg. md5)

is computed to know if a binary has not been modified.

• Hash coded string extraction: This process helps to extract

human-readable strings embedded in the compiled binary.

With this information, a conclusion is drawn about some

functionality of the binary. Imported and exported functions

are revealed.

• File format: The metadata of a file format is investigated to

extract useful information such as file type, file format and

compilation time.

• Antivirus Scanning: if a binary is already known, it will be

detected by one or more anti-malware programs.

• Packer Detection: due to obfuscation structure (e.g.

encryption and compression) of that malware, suitable tools

such as PEID [32] and Detect It Easy (DIE) can identify

packer and compiler information.

• Disassembly: This process consists of reverse engineering

machine code to assembly language which is understood by

a human. Tools like IDA pro [32] can be used. The generated

assembly code helps the analyst inspect further the logic of

the code and gather more information about the intent of the

malware. OllyBdg [32] tool is used in this process.

Static analysis has two main advantages. First, it is safe during

the analysis process, because a malware doesn’t have to be

executed. Secondly, it provides deeper information about

execution paths of a malware. In addition to that, the static

analysis also has some disadvantages such as requiring much

experience, consuming a lot of time, not being able to handle

packed files, and producing some ambiguous results, in case of

binaries that use self-modifying techniques to indirect jump

instructions [34].

3.2 DYNAMIC ANALYSIS

Dynamic analysis is the process of analysing a malicious

program by first executing and monitoring its runtime

functionalities [20]. Malicious behaviors are monitored and

logged [6], [25], [34]. During this process, the malware unpacks

itself and the changes it makes on the system are also observed.

Dynamic analysis is undertaken in a virtual environment in order

to ensure full protection of the host machine [15], [29], [30], [36].

The basic dynamic analysis consists of observing the basic

behaviors of a malware such as process creation, file activities or

registry activities [32]. On the other hand, the advanced dynamic

analysis makes a profound examination of the internal state of a

running malicious program. It uses advanced debugging

techniques to single step through the malicious code and makes a

deep internal inspection to get more comprehensive information

on the malicious behaviors [32]. The code is analysed at runtime

and any hidden code through packing is revealed [13]. The

identity of a malware is dynamically identified. Function calls,

parameter analysis, and information flow are all visualized.

Dynamic link libraries (dll), processes and file activities are

revealed [29], [37]. Dynamic analysis helps detect polymorphic

mutants as well as packing and obfuscation attributes, [14].

Memory analysis can be performed [30]. The interaction between

malware, file system, processes, and network is inspected [30].

However, dynamic analysis is computationally expensive and

requires a lot of system resources [15] [35].

Advantages of dynamic analysis include the investigation of

live malware behaviours at runtime, handling packed files, and

automated analysis of large malware corpus. The disadvantages

of Dynamic analysis include the possibility of missing out some

execution paths when a malware being monitored becomes

dormant, risk of spreading the infection by a network capable

malware from the virtual environment to the host system; and the

impossibility to monitor the malware when it has the capabilities

of refusing to execute when it is run in a virtual environment.

In addition to seeing runtime behaviors of a malware, dynamic

analysis can allow an analyst get the difference between two

system states. An initial state is recorded before running the

malware and another state is recorded after malware execution. A

comparison will be done and differences highlighted to assess the

impact of the malware on the system [38].

Both static and dynamic analyses are essential techniques

needed for a successful malware investigation task towards

developing detection approaches. Table.4 draws the comparison

between both techniques.

Table.4. Comparison between both Static and Dynamic analyses

Static analysis Dynamic analysis

• A binary is not executed

prior to analysis

• Doesn’t necessarily need a

virtual environment

• A binary must be executed

prior to analysis

ISSN: 2229-6956 (ONLINE) ICTACT JOURNAL ON SOFT COMPUTING, JULY 2018, VOLUME: 08, ISSUE: 04

1767

• Can’t handle packed

binaries before manually

being unpacked

• It’s hard, but can reveal

almost the full code

coverage or global view of

a binary

• Low false positive rate

• It needs a virtual

environment set up before

analysis

• Packed binaries are

automatically unpacked [11]

• Reveals the only path

execution of modules that

are running

• High false positive rate

3.3 MALWARE ANALYSIS TOOLS

3.3.1 Static Analysis Tools:

PEiD: This tool is used to detect the type of the packer or the

compiler used to build an application. This can help the analyst

identify the suitable program to unpack the binary. Entropy and

checksum can also be calculated.

UPX: This is an ultimate packer for executables that helps in

compressing and packing or decompressing and unpacking

executables. Packing process makes malware hard to analyze and

detect. It shrinks the size of malware binaries. The packed

program hides the original data and creates an unpacking stub that

is called by the operating system when a malware attacks.

Unpacking process helps in rediscovering the original executable

and transfers execution to the original entry point. This tool can

unpack malware packed by UPX or other packing tools as well.

IDA Pro: This is an interactive disassembler that is used to

reverse engineer malware binaries and create maps of execution

as well as discovering and analysing vulnerabilities. Tasks done

by IDA include function discovery, stack analysis, local variable

identification, and much more. This is the choice of many

malware analysts. Additional key features of this tool include

code disassembly, discovering obfuscation traces, function

parameters analysis, function calls analysis, operation codes

analysis, strings analysis, persistence tracking, privilege

escalation attack detection, DLLs injection analysis, Runtime

DLLs, Process replacement functionalities, code noise patterns,

Rootkit functionalities, Anti debug/analysis constructs, Kernel

mode activity, User mode activity, user-defined functions, and

attacker identification.

3.3.2 Dynamic Analysis Tools:

Process Monitor: This tool provides real-time monitoring of

file system, processes, registry when the malware is running and

visualizes all the events as they are happening. Running

processes, system calls, file system, Network activity, registry

activity, API calls, Mutex and Self-modifying code traces can all

be detected.

Dependency Walker: This tool helps explore Dynamic Link

Libraries (DLLs), imported functions, exported functions and

monitor interactivity between running processes and DLLs.

Regshot: This tool takes system snapshots before and after the

malware is executed and creates a log of registry manipulations.

Both snapshots are then compared to observe registry

modifications. Registry modifications and system changes give a

clue of malware behaviors.

ApateDNS: This tool helps the analyst to capture DNS

requests made by malware without necessarily being connected to

the Internet. It imitates DNS responses to a given IP address. It

can display all received results in a hexadecimal format.

Wireshark: This is a packet sniffing program that helps to

understand how malware performs network communications. It

can intercept and log the traffic that passes over the network when

the malware is running. Wireshark provides packet details which

enable the analyst to do the in-depth packet streams analysis.

INetSim: This is a tool suitable for simulating common

Internet services. It can provide fake services that allow the

analyst to analyze the network behaviors of a malware. Services

that are emulated by InetSim are but not limited to: HTTP,

HTTPS, FTP, IRC, DNS and SMTP. InetSim can also record all

inbound connections and requests which are very useful to see if

a malware is connected to any service and what requests it is

making.

3.3.3 Sandboxes:

Sandboxes are tools that are able to analyze a malware using

both on static and dynamic analysis techniques. They provide a

detailed report at the end of the analysis. Malware are executed

within the sandbox and all side effects remain within the sandbox

system without affecting the host system.

• Anubis: This is an automated malware analysis tool that

helps monitor API functions, system service calls, function

parameters, etc.

• CwSandbox: This is an automated malware analysis tool

that helps monitor API calls, system calls, Registry

manipulations tracking, Network traces, Operating System

interactions

• GFI sandbox: Automated malware analysis tool to monitor

API calls.

• JoeBox sandbox: This is an automated malware analysis

tool. Its key features include file system analysis, registry

activity analysis, system calls analysis, rules generation,

memory dump analysis, packing analysis and strings

analysis.

• Cuckoo sandbox: This is an automated malware analysis

tool capable of analyzing File activity, registry, system calls,

API, memory dumps, packing, network activity, etc

Different files formats can be analyzed as well as URLs.

This tool also has advanced memory analysis capabilities

that help in discovering deeper hidden malware

functionalities.

4. POLYMORPHIC MALWARE DETECTION

TECHNIQUES

Malware detection is simply a technique valuable for

identifying malware in all targets [39], either computers,

applications or cyber-physical devices [40]. Polymorphic

malware has many variants of the same functionality as discussed

in previous sections. In order to detect them, similarity analysis is

undertaken.

4.1 SEQUENCE CLASSIFICATION DETECTION [41]

Drew et al. [41] proposed a detection approach based on

sequence classification methods. Based on biological gene

sequence mutations. Authors use the same concept to assess

EMMANUEL MASABO et al.: A STATE OF THE ART SURVEY ON POLYMORPHIC MALWARE ANALYSIS AND DETECTION TECHNIQUES

1768

similarities in mutations of malware. They used a tool developed

for gene classification called The Super Threaded Reference-Free

Alignment-Free Nsequence Decoder (STRAND) for classifying

polymorphic malware.

Evaluation: This method was evaluated on a 500 GB malware

dataset provided by Kaggle-Microsoft Malware Classification

Challenge (BIG 2015). Features were developed for STRAND

classifier from given sample bytes, where hex values were

considered and missing values removed. This created a single

string/strand sequence containing only all hex contents extracted

from malware file. Sequences of words of length k or k-mers were

generated by strand. Word length of 10 characters and 2400

minihash values were used. Jaccard similarities were computed.

Training time was less than 7 hours and strand classification

accuracy was 95%, of which 9 classes of polymorphic malware in

the given set were detected.

4.2 SEQUENCE-BASED CLASSIFICATION AND

ENSEMBLES DETECTION [42]

In their expanded version of work [41], Drew et al. in [42]

developed an approach that detects polymorphic malware using

sequence classification methods and ensembles. STRAND

algorithm was used for the classification task.

Evaluation: In this work, they also used Kaggle dataset of 500

GB from Microsoft 2015 challenge. They used bytes (.bytes) data

and assembly data (.asm) features as provided by Microsoft.

Ensembles were created by using both the asm and bytes models

from Strand. The minihash technique was used to detect

similarity. Minihash scores of created models were computed and

the overall detection accuracy became 98%.

4.3 DROPPED FILES BASED POLYMORPHIC

MALWARE DETECTION [17]

Selamat et al. [17] proposed an easy detection technique for

detecting polymorphic malware based on dropped files.

Evaluation: To evaluate their technique, authors in [17]

executed malware in a virtual environment. They used process

explorer to observe malware behaviors. Three different types of

malware pythium2.exe, kax.exe, ieg.exe were used in the

experiment. Each was executed twice. For the first and second

executions, each malware could create a child process. It was

observed that those created subprocesses during first and second

executions were different. The conclusion was drawn that this is

also a good indicator of polymorphic behavior.

4.4 TOPOLOGICAL BASED FEATURE

EXTRACTION DETECTION [8]

Fraley et al. [8] proposed a detection approach that utilizes

topological feature extraction using static and dynamic analysis

techniques. The proposed method relies on data mining

techniques as a means to achieve classification scalability.

Evaluation: This method uses IDA pro and cuckoo sandbox

for feature extraction. Experiments were conducted on data set of

3637 samples of which 2400 were clean, 800 were malicious and

437 were unlabeled. They used function call graphs to trace

instruction patterns. Belief propagation was used to uncover the

properties of malicious files. Twenty features (12 structural and 8

behavioral) were collected and used to make a complete feature

set. Few examples of extracted features include MOV, ADD,

LEA, file size, and compiler type. The created feature set was

converted into the ARFF data format compatible with the Weka

data mining tool. Ensemble bagging algorithms were used in

Weka for classification and cross-validation with 10 folds was

used for validation. The overall accuracy was 99.9 % where low

false negative is 0.001

4.5 STRING MATCHING AND SUBSTITUTION

MATRICES [5]

Naidu et al. [5] proposed a detection method that involved the

extraction of syntactic structures of a malware from its hex code.

It helped in identifying the piece of code that is malicious and the

variant type of the malware. The Smith-Waterman algorithm was

used to identify variants.

Evaluation: Experiments were done using two variants of

JS.cassandra malware. Hex dumps were extracted using sigtool

from ClamAV. Hex bytes were then converted to binary code and

from binary to DNA sequences. The DNA sequences were input

into JAligner tool where Smith-Waterman algorithm (SWA) was

implemented. Common substrings or patterns were extracted

Pairwise local alignment (PLA) was performed using SWA with

different substitution matrices. Only substrings with the highest

percentage of identities and similarities were extracted after PLA.

161 sub-strings were retained through 6 substitution matrices.

These 161 substrings have been considered as meta-signatures

and used to detect all known polymorphic variants of

JS.Cassandra. T-Coffee tool was used to perform multiple

sequence alignment on the generated meta-signatures and

generated consensuses. Rules were generated using a data mining

classification algorithm called PRISM and this allowed the

generation of 47 super signature substrings. Therefore, those 47

super signatures and 161 meta signatures were converted back to

hexadecimal and tested against JS.Cassandra. This method was

able to detect 100% of JS.Cassandra malware and all its known

variants.

4.6 CLIENT-SERVER BASED DETECTION [2]

Harmonen in [2] proposed a client-server architecture for

identifying polymorphic malware. This method has two

advantages: storing remotely virus information databases without

allowing individual client updates and protecting the client

application as well.

Evaluation: The client application is deployed on the target

system and keeps monitoring the system of interest. Suspicious

files are investigated. File hash and file metadata information are

sent to the server. The server compares the received data with the

one in its database. When multiple hash values are received from

different clients and the corresponding metadata is the same, the

file is identified as a polymorphic malware. The server is able to

determine if the file is benign, known polymorphic malware or a

new variant.

4.7 VIRAL POLYMORPHIC MALWARE

DETECTION [9]

Naidu et al. [9] proposed a polymorphic malware detection

approach that is based on automatic signature extraction.

ISSN: 2229-6956 (ONLINE) ICTACT JOURNAL ON SOFT COMPUTING, JULY 2018, VOLUME: 08, ISSUE: 04

1769

Needleman-Wunsch and Smith-Waterman algorithms are used

for developing a detection mechanism.

Evaluation: This method is built on top of same author’s

previous work [5] which is discussed above. Needleman-Wunsch

algorithm was used together with Smith-Waterman algorithm.

JS.Cassandra and W32.Kitti polymorphic malware were used in

experiments. Hex dumps were extracted and converted to DNA.

Pairwise sequence alignments were performed, meta and super

signatures were generated. Finally, this method was able to detect

100% of JS.Cassandra and W32.Kitti known polymorphic

variants.

4.8 HYBRID CLUSTERING DETECTION

APPROACH [43]

Sharma et al. [43] proposed an approach that uses signatures

and pattern matching to detect polymorphic malware.

Evaluation: Experiments were done using tools such as

SciPy, Numpy and Python. A python module called pydasm is

used to extract features and its report recorded. Opcodes are

extracted from the given instructions and are used for further

processing. KNN algorithm is implemented and the method was

able to detect polymorphic malware. The detection accuracy was

not provided.

4.9 COMBINED TOKEN EXTRACTION AND

SEQUENCE ALIGNMENT DETECTION [18]

Eskandari et al. [18] proposed a technique that combines two

approaches, namely token extraction and multiple sequence

alignment for achieving a high accuracy and noise tolerance

flexibility.

Evaluation: To evaluate their method, the authors used

DARPA 1999 intrusion detection system dataset. They extracted

tokens from suspicious flows and eliminated irrelevant parts of

suspicious flow. They generated Simple regular expression (SRE)

signatures and applied multiple sequence alignment. Tests were

done on DARPA 1999 intrusion detection system dataset,

polymorphic versions of CodeRed II, Apache-Knacker, ATPhttpd

and BIND-TSIG exploit malware. This method was able to

analyze inherent similarities of samples, thus detecting

successfully polymorphic malware.

4.10 BEHAVIORAL BASED SEQUENTIAL

PATTERNS [20]

Ahmadi et al. [20] proposed a malicious files detection

approach that is based on behavioral sequential patterns. API calls

behavior features were extracted using dynamic analysis and API

calls log was generated. Initial dataset was then created from log

data by only considering the repetitive patterns. Feature selection

was conducted using Fisher score algorithm. Support Vector

Machines (SVM) and decision tree algorithms were used for

malware classification. This method was evaluated on a sample

of 806 malware and 306 benign files. A detection accuracy of

95% was successfully achieved.

4.11 ZERO DAY HYBRID DETECTION [3]

Kaur et al. [3] developed a hybrid anomaly and signature

detection system was used to detect zero-day polymorphic worms

in an active network flow.

Evaluation: The system architecture has three components

such as Suspected Traffic Filter (STF), Zero attack evaluation

(ZAE) and Signature generator (SG). Suspicious traffic is

collected using STF where known malware are blocked and

logged. Zero-day attacks are redirected to the honeypot for further

analysis. STF module is composed of two components: Honeynet

and IDS/IPS to capture and compare network the traffic flow. The

Longest Common Prefix (LCP) algorithm is used in the

comparison process. When IDS/IPS is found to have ignored an

attack that was logged by honeynet, it means that it’s a new

unknown attack. Analyses are done by ZAE component by which

malicious strings are extracted such as NOP sleds, decryptor,

shellcodes and return addresses. The SG module generates

content based signatures by using invariant bytes found in a

polymorphic malware. The method has been tested on a sample

of 15435 packets of which 734 were polymorphic. The detection

rate was 96% with almost zero positive rates.

4.12 BEHAVIOR ANALYSIS OF MALWARE USING

MACHINE LEARNING [15]

Arshi et al. [15] proposed a behavioral detection approach

based on machine learning. They focused on malware

classification and clustering. 1270 malware samples of different

format pdf, executables, HTML, zipped and jpeg were analyzed.

Logic Model Tree and K-Means algorithms have been used for

the task of classification and clustering respectively. The results

show that 18% of analyzed malware were embedded with

networking capabilities to connect to the outer world, while 82%

aimed to corrupt the system locally or network resources.

Malware have also been grouped successfully according to their

file format types.

5. DISCUSSIONS

This research explored the literature about polymorphic

malware analysis, detection as well as involved techniques. The

findings show that a great work has been done in previous

research efforts. This problem has been widely addressed using

machine learning techniques. However, some studies also tried to

address it using other techniques used normally in DNA sequence

such as multiple sequence alignment, Needleman-Wunsh, Smith-

waterman, Strand gene sequence classifier, etc. Some studies use

more than one algorithm to build models and select the most

reliable one. The Fig.9 highlights the algorithms used by selected

detection techniques.

EMMANUEL MASABO et al.: A STATE OF THE ART SURVEY ON POLYMORPHIC MALWARE ANALYSIS AND DETECTION TECHNIQUES

1770

Fig.9. Algorithms used by selected techniques

Fig.10. Number of dataset samples of the selected techniques

Fig.11. Performances of selected techniques

Table.5. Comparison of selected detection techniques

Technique Code Contributions Limitations

Topological features based

extraction [8]
TFBE

A novel approach that extracts, analyses and

combines multiple high factors to detect

polymorphic malware. Faster and accurate for small

samples

Need to be evaluated on a larger

dataset.

Sequence classification

detection [41]
SCD

A novel approach to detect polymorphic malware

by using biological gene sequences and STRAND

classifier.

Can work on a larger sample

Considers statically extracted

features only.

Behavioural features were not

considered.

Dropped files based

Polymorphic Malware

Detection [17]

DFPMD
Proposed a simple but fast technique of identifying

polymorphic malware using dropped files.

False positives may incur, just in

case where the genuine file has the

same features.

Sequence-based classification

and ensembles detection [42]
SBCE

A novel approach that extends [30] to detect

polymorphic malware by using biological gene

sequences and STRAND classifier.

It uses (.bytes) and .asm files and can work on a

larger sample.

Considers statically extracted

features only. Behavioural features

not considered.

False positives may incur just in case

where the genuine file has the same

features

String matching and substitution

matrices [5]
SMSM

Proposed a novel detection method that extracts of

syntactic structures from hex code and implements

Smith-Waterman algorithm to identify variants.

Accurate on small samples.

Need to be evaluated on a larger

dataset. Considers statically

extracted features only.

Behavioural features not considered

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Techniques and most algorithms used

Multiple sequence alignment
KNN
Needleman-Wunsch
Smith-Waterman
Strand gene sequence classifier
Locality- Sensitive Hashing (LSH)
Belief Propagation (BP)
Advanced Ensemble

6%

34%

0%

34%

0%

2%

0%
24%

Dataset size per technique

TFBE

SCD

DFPMD

SBCE

SMSM

CSD

VPMD

HCDA

CTESAD

0

0.2

0.4

0.6

0.8

1

0%

10%

20%

30%

40%

50%

60%

70%

80%

D
et

ec
ti

o
n

 a
cc

u
ra

cy

%
 o

f
u

sa
g

e
o

f
P

M

Performance metrics (PM) usage

analysis

Frequency of usage % of different performance metrics

Accuracy variation in different techniques

ISSN: 2229-6956 (ONLINE) ICTACT JOURNAL ON SOFT COMPUTING, JULY 2018, VOLUME: 08, ISSUE: 04

1771

Client-server based detection [2] CSD

Novel client-server approach where virus

information is stored on a remote database and does

not allow individual client updates

Serious problems can occur when the

Internet is not available.

Viral polymorphic malware

detection [9]
VPMD

Novel polymorphic malware detection approach

that is based on automatic signature extraction and

uses Needleman-Wunsch and Smith Waterman

algorithms for detection mechanism.

Needs to be evaluated on a larger

dataset.

Considers statically extracted

features only. Behavioural features

not considered.

Considers only known polymorphic

variants of an existing malware

Hybrid clustering detection

approach [43]
HCDA

Detection method that uses signatures and pattern

matching to detect polymorphic malware.

Need to provide detection accuracy.

Behavioural analysis needs to be

considered

Combined Token Extraction and

Sequence Alignment detection

[18]

CTESAD

Novel signature-based technique that combines

token extraction and multiple sequences alignment

for achieving a high accuracy and noise tolerance

flexibility.

It is fast and noise tolerant

Low detection accuracy.

Behavioural analysis needs to be

considered

Efficient hybrid technique for

detecting zero-day polymorphic

worms [3]

EHTZDD

Early detection and containment of zero-day

polymorphic malware. Automatic signature

generation

Behavioural features not considered

Table.6. Data sources of selected techniques

Techniques Dataset source Number of samples Number of families Malware only Malware and benign

TFBE
ClamAV, VirusTotal,

VirusShare and Contagio
3637 - No Yes

SCD
Microsoft kaggle malware

dataset 500GB
21741 9 Yes No

DFPMD Second Part to Hell 100 2 Yes No

SBCE
Microsoft kaggle malware

dataset 500GB
21741 9 Yes No

SMSM Second Part to Hell 352 1 yes No

VPMD Second Part to Hell 1457 2 Yes No

CTESAD

DARPA 1999 Intrusion

Detection Evaluation

Datasets

100 4 Yes No

EHTZDD honeypots 15435 - No yes

Table.7. Evaluation methods and performance metrics used by the selected techniques

Techniques Val CV Test split Test Sample Accuracy Log loss F score FP FN ROC TPR FPR

TFBE yes - - 0.9999 - - 0.0001 0.997 0.003

SCD yes - - 95% 0.222864 - - - - - -

DFPMD - - - - - - - - - - -

SBCE yes - - 98% - - - - - - -

SMSM - - - 100% - - - - - - -

CSD - - - - - - - - - - -

VPMD - - - 100% - - - - - - -

HCDA - - - 97.83% - 95% - - - - -

CTESAD - - - 52% - - - - - - -

EHTZDD - - - 96% - - - - - 0.961 0.06

EMMANUEL MASABO et al.: A STATE OF THE ART SURVEY ON POLYMORPHIC MALWARE ANALYSIS AND DETECTION TECHNIQUES

1772

Table.8. Algorithms and analysis methods used by the selected

techniques

Techniques
Static

Analysis

Dynamic

Analysis
Algorithms

TFBE Yes Yes

-Meta bagging

-Advanced Ensemble

Classification

-Belief Propagation (BP),

-Locality-Sensitive Hashing

(LSH)

SCD Yes No

-Strand gene sequence

classifier

-Jaccard Similarity

DFPMD Yes -

SBCE Yes
-Strand gene sequence

classifier

SMSM Yes No -Smith-Waterman algorithm

VPMD Yes No
-Needleman-Wunsch Smith-

Waterman

HCDA yes No -KNN

CTESAD No No -Multiple sequence alignment

EHTZDD Yes No -

To evaluate the performance of their approaches, most

researchers used accuracy as the main performance metric.

Accuracies achieved were in the range of 90% to 100% as shown

by Fig.11. Some other studies used also other performance

metrics such as log loss, TPR, FPR, F-score, etc. as shown in

Fig.11. Detection rates of 100% are subject of further exploration

because it can simply be an over-fitting situation. This can happen

when the dataset used is very small or the quality of the dataset

itself. The Fig.10 shows the datasets sizes used in the presented

techniques. Another observation is that during analysis, some

studies extracted either static features or dynamic features, while

others considered a hybrid of both types of features. Either can

lead to good results in terms of performance metrics. However, an

optimal detection system could use hybrid features and achieve

better results by minimizing the disadvantages of static and

dynamic analysis while maximizing their advantages.

6. CONCLUSIONS

In this research, we have provided a detailed discussion on

polymorphic malware characteristics and attacking strategies. We

have specifically discussed tools and techniques used in analysis

and detection of polymorphic malware. We provided an adequate

comparison through which weaknesses and strengths of each

techniques were discussed. We found that, there are much more

sophisticated attacking mechanisms built in polymorphic

malware, that negatively affect the performance of the currently

available tools and strong defensive techniques. Therefore,

research must be done continuously as a major way to find more

adequate solutions to address this big problem. Based on this

review, the following major gaps still have to be taken into

consideration in order to develop more efficient detection

solutions:

• There is a need for an improved feature engineering

mechanism that could address efficient detection at a larger

scale.

• There is a need to investigate the impact of a combination of

analysis and detection techniques for the improvement of

detection approaches.

• There must be an improvement on detection mechanisms to

improve real-time detection before the system is infected.

• There is a need for an interactive coordination in terms of

information sharing and automatic detection responsibilities

among detection systems. This could be implemented in a

multi-agent based detection approach.

• There is a need for dynamic vulnerability analysis

capabilities implemented in detection systems. This will

enable them to scan installed applications and report

problems in time to the software owners. Therefore, this will

limit the spreading of zero-day polymorphic malware if

owners can quickly fix the bugs.

ACKNOWLEDGMENT

We would like to thank the Mobility to Enhance Training of

Engineering Graduates in Africa (METEGA) and the Regional

Universities Forum for Capacity Building in Agriculture

(RUFORUM) for supporting our research.

REFERENCES

[1] Symantec, “Internet Security Threat Report”, Available at:

https://www.itu.int/en/ITU-

D/Cybersecurity/Documents/Symantec_annual_internet_th

reat_report_ITU2015.pdf, Accessed on 2015.

[2] T. Harmonen, “Identifying Polymorphic Malware,” US.

Grant, 2014.

[3] R. Kaur and M. Singh, “Efficient Hybrid Technique for

Detecting Zero-Day Polymorphic Worms”, Proceedings of

IEEE International Advance Computing Conference, pp. 95-

100, 2014.

[4] S. Paul and B.K. Mishra, “PolyS: Network-based Signature

Generation for Zero-Day Polymorphic Worms”,

Proceedings of IEEE International Advance Computing

Conference, Vol. 6, No. 4, pp. 159-163, 2013.

[5] V. Naidu, “Using Different Substitution Matrices in a

String- Matching Technique for Identifying Viral

Polymorphic Malware Variants”, Proceedings of IEEE

Congress on Evolutionary Computation, pp. 2903-2910,

2016.

[6] R. Kaur and M. Singh, “A Survey on Zero-Day Polymorphic

Worm Detection Techniques”, IEEE Communications

Surveys and Tutorials, Vol. 16, No. 3, pp. 1520-1549, 2014.

[7] S. Paul and B.K. Mishra, “Survey of Polymorphic Worm

Signatures”, International Journal of u-and e-Service,

Science and Technology, Vol. 7, No. 3, pp. 129-150, 2014.

[8] J.B. Fraley and M. Figueroa, “Polymorphic Malware

Detection using Topological Feature Extraction with Data

Mining”, Proceedings of IEEE SoutheastCon, pp. 1-7, 2016.

[9] V. Naidu and A. Narayanan, “Needleman-Wunsch and

Smith-Waterman Algorithms for Identifying Viral

Polymorphic Malware Variants”, Proceedings of IEEE 14th

ISSN: 2229-6956 (ONLINE) ICTACT JOURNAL ON SOFT COMPUTING, JULY 2018, VOLUME: 08, ISSUE: 04

1773

International Conference on Dependable, Autonomic and

Secure Computing, pp. 326–333, 2016.

[10] I.A. Saeed, J.B. Campus, M.A. Selamat, M. Ali and M.A.

Abuagoub, “A Survey on Malware and Malware Detection

Systems”, International Journal of Computer Applications,

Vol. 67, No. 16, pp. 975-987, 2013.

[11] B. Rad, M. Masrom and S. Ibrahim, “Camouflage in

Malware: from Encryption to Metamorphism”,

International Journal of Computer Science and Network

Security, Vol. 12, No. 8, pp. 74-83, 2012.

[12] M. Chau, G. Alan Wang and H. Chen, “A Syntactic

Approach for Detecting Viral Polymorphic Malware

Variants”, Proceedings of Pacific-Asia Workshop on

Intelligence and Security Informatics, pp. 146-165, 2016.

[13] S. Cesare, Y. Xiang and W. Zhou, “Malwise-an Effective

and Efficient Classification System for Packed and

Polymorphic Malware”, IEEE Transactions on Computers,

Vol. 62, No. 6, pp. 1193-1206, 2013.

[14] G. Liang, J. Pang and C. Dai, “A Behavior-Based Malware

Variant Classification Technique”, International Journal of

Information and Education Technology, Vol. 6, No. 4, pp.

291-295, 2016.

[15] D. Arshi and M. Singh, “Behavior Analysis of Malware

using Machine Learning”, Proceedings of 8th International

Conference on Contemporary Computing, pp. 481-486,

2015.

[16] K. Rieck, P. Trinius, C. Willems and T. Holz, “Automatic

Analysis of Malware Behavior using Machine Learning”,

Journal of Computer Security, Vol. 19, No. 4, pp. 639-668,

2011.

[17] N.S. Selamat, F. Hani, M. Ali and M. Science, “Polymorphic

Malware Detection”, Proceedings of International

Conference on IT Convergence and Security, pp. 12-18,

2016.

[18] M. Eskandari, M.S. Razieh and A. Asadi, “Automatic

Signature Generation for Polymorphic Worms by

Combination of Token Extraction and Sequence Alignment

Approaches”, Proceedings of IEEE 7th Conference on in

Information and Knowledge Technology, pp. 116-126, 2015.

[19] I. You and K. Yim, “Malware Obfuscation Techniques: A

Brief Survey”, Proceedings of International Conference on

Broadband, Wireless Computing Communication and

Applications, pp. 297-300, 2010.

[20] M. Ahmadi, A. Sami, H. Rahimi and B. Yadegari, “Malware

Detection by Behavioural Sequential Patterns”, Computer

Fraud and Security, Vol. 2013, No. 8, pp. 11-19, 2013.

[21] D. Uppal, V. Mehra and V. Verma, “Basic Survey on

Malware Analysis, Tools and Techniques”, International

Journal on Computational Sciences and Applications, Vol.

4, No. 1, pp. 103-112, 2014.

[22] M. Alazab et al., “A Hybrid Wrapper-Filter Approach for

Malware Detection”, Journal of Networks, Vol. 9, No. 11,

pp. 2878-2891, 2014.

[23] S. Singla, E. Gandotra, D. Bansal and S. Sofat, “A Novel

Approach to Malware Detection using Static Classification”,

International Journal of Computer Science and Information

Security, Vol. 13, No. 3, pp. 1-5, 2015.

[24] S. Chaumette, O. Ly and R. Tabary, “Automated Extraction

of Polymorphic Virus Signatures using Abstract

Interpretation”, Proceedings of 5th International Conference

on Network and System Security, pp. 41-48, 2011.

[25] A. Verma, M. Rao, A. Gupta, W. Jeberson and V. Singh, “A

Literature Review on Malware and Its Analysis”,

International Journal of Current Research and Review, Vol.

5, No. 16, pp. 71-82, 2013.

[26] S. Ranveer and S. Hiray, “Comparative Analysis of Feature

Extraction Methods of Malware Detection”, International

Journal of Computer Applications, Vol. 120, No. 5, pp. 1-7,

2015.

[27] L. Wang, Z. Li, Y. Chen, Z.J. Fu and X. Li, “Thwarting

Zero-Day Polymorphic Worms with Network-Level

Length-based Signature Generation”, IEEE/ACM

Transactions on Networking, Vol. 18, No. 1, pp. 53-66,

2010.

[28] M.A.I. Almarshad, M.M.Z.E. Mohammed and A.S.K.

Pathan, “Detecting Zero-Day Polymorphic Worms with

Jaccard Similarity Algorithm”, International Journal of

Communication Networks and Information Security, Vol. 8,

No. 3, pp. 203-214, 2016.

[29] Y. Prayudi and S. Yusirwan, “The Recognize of Malware

Characteristics Through Static and Dynamic Analysis

Approach as an Effort to Prevent Cybercrime Activities”,

Journal of Theoretical and Applied Information Technology,

Vol. 77, No. 3, pp. 438-445, 2015.

[30] M. Vasilescu, L. Gheorghe and N. Tapus, “Practical

Malware Analysis based on Sandboxing”, Proceedings of

13th Edition: Networking in Education and Research, pp. 1-

6, 2014.

[31] U. Baldangombo, N. Jambaljav and S.J. Horng, “A Static

Malware Detection System using Data Mining Methods”,

International Journal of Artificial Intelligence and

Applications, Vol. 4, No. 4, pp. 113-119, 2013.

[32] M. Sikorski and A. Honig, “Practical Malware Analysis:

The Hands-On Guide to Dissecting Malicious Software”, 1st

Edition, No Starch Press, 2012.

[33] J.U. Joo, I. Shin and M. Kim, “Efficient Methods to Trigger

Adversarial Behaviors from Malware during Virtual

Execution in Sandbox”, International Journal of Artificial

Intelligence and Applications, Vol. 9, No. 1, pp. 369-376,

2015.

[34] S. Gadhiya and K. Bhavsar, “Techniques for Malware

Analysis”, International Journal of Advanced Research in

Computer Science and Software Engineering, Vol. 3, No. 4,

pp. 2277-2281, 2013.

[35] J. Landage and M. Wankhade, “Malware and Malware

Detection Techniques: A Survey”, International Journal of

Engineering Research, Vol. 2, No. 12, pp. 61-68, 2013.

[36] S.K. Pandey and B.M. Mehtre, “Performance of Malware

Detection Tools: A Comparison”, Proceedings of IEEE

International Conference on Advanced Communication,

Control and Computing Technologies, pp. 1811-1817, 2015.

[37] S. Yusirwan, Y. Prayudi and I. Riadi, “Implementation of

Malware Analysis using Static and Dynamic Analysis

Method”, International Journal of Computer Applications,

Vol. 117, No. 6, pp. 11-15, 2015.

[38] S. Hong and S. Lee, “New Malware Analysis Method on

Digital Forensics”, Indian Journal of Science and

Technology, Vol. 8, No. 17, pp. 1-6, 2015.

EMMANUEL MASABO et al.: A STATE OF THE ART SURVEY ON POLYMORPHIC MALWARE ANALYSIS AND DETECTION TECHNIQUES

1774

[39] A. Kumar, K.S. Kuppusamy and G. Aghila, “A Learning

Model to Detect Maliciousness of Portable Executable using

Integrated Feature Set”, Journal of King Saud University-

Computer and Information Sciences, 2017.

[40] M.Z.A. Bhuiyan, J. Wu, G.M. Weiss, T. Hayajneh, T. Wang

and G. Wang, “Event Detection through Differential Pattern

Mining in Cyber-Physical Systems”, IEEE Transactions on

Big Data, 2017.

[41] J. Drew, T. Moore and M. Hahsler, “Polymorphic Malware

Detection using Sequence Classification Methods”,

Proceedings of IEEE Security and Privacy Workshops, pp.

81-87, 2016.

[42] J. Drew, M. Hahsler and T. Moore, “Polymorphic Malware

Detection using Sequence Classification Methods and

Ensembles”, EURASIP Journal on Information Security,

Vol. 2017, No. 1, pp. 1-2, 2017.

[43] P. Sharma, S. Kaur and J. Arora, “An Advanced Approach

to Polymorphic/Metamorphic Malware Detection using

Hybrid Clustering Approach”, International Research

Journal of Engineering and Technology, Vol. 3, No. 6, pp.

2229-2232, 2016.

