
G APPA RAO, et al.: A PARTIAL RATIO AND RATIO BASED FUZZY-WUZZY PROCEDURE FOR CHARACTERISTIC MINING OF MATHEMATICAL FORMULAS FROM

DOCUMENTS

DOI: 10.21917/ijsc.2018.0242

1728

A PARTIAL RATIO AND RATIO BASED FUZZY-WUZZY PROCEDURE FOR

CHARACTERISTIC MINING OF MATHEMATICAL FORMULAS FROM

DOCUMENTS

G. Appa Rao1, G. Srinivas2, K. Venkata Rao3 and P.V.G.D. Prasad Reddy4

1Department of Computer Science and Engineering, GITAM Institute of Technology, India
2Department of Information Technology, Anil Neerukonda Institute of Technology and Sciences, India

3,4Department of Computer Science and Systems Engineering, Andhra University, India

Abstract

Retrieval of mathematical text from data is a key predicament in

present circumstances. To achieve this, we have considered three

different algorithms viz., Sequence matcher, Levenshtein Distance and

Fuzzy-Wuzzy. Two different variants of Fuzzy-Wuzzy are found

applicable to this study out of four variants. Performance of these

variants in retrieving mathematical texts, is calculated using efficiency

measure, sensitivity analysis and time series exploration. Fuzzy-Wuzzy

partial ratio algorithm scored better over the other variants on

efficiency measure and sensitivity analysis.

Keywords:

Sequence Matcher, Levenshtein Distance, Fuzzy-Wuzzy, Partial Ratio

1. INTRODUCTION

The importance in mining of time series has been improved in

the present years as majority of the technical papers are in print

with mathematical formulae with time series. Due to high

dimensionality and high relationship between data time series is

very complex. The search for associated mathematical expression

by the researchers is operational in technological aspect and

cannot be completed in effect with text based search engine

excluding apposite text keywords are known. The search for

mathematical formulae is important and delicate as they restrain

both constitutional and interpretation information. In general, the

theoretical basis of the knowledge in numerous technical

documents is generally represented with mathematical formulae.

The established search engines Google and Yahoo works

competently for text based information. But they are besieged in

searching data with mathematical formulae.

Let us consider an example cosx+eSinx, this formula includes

three symbols e, sin and cos indicates exponential and

trigonometric functions. In this equation the sin and cos terms

contains some semantic meaning and cos and sin terms are

structurally connected to exponential.

As already fairly a few schemes were anticipated for the

extraction of mathematical formulae, in this paper we intended a

new-fangled method for retrieving repetitive and non-repetitive

formulae come out in the given text.

The later part of this paper is planned as follows. Section 2

appraises the associated work on mathematical retrieval systems.

Section 3 pacts with the probable approach. Section 4 includes the

experimental results. As a final point, the conclusion is obtainable

in section 5.

1.1 EXTRACTING MATH FORMULAS

Commonly, MathML and Latex are used for writing Math

formulae. The text file with Math Keywords is encumbered in our

program in add on mode. Then the math keywords from laden text

Document acknowledged in Reading Mode. Pre-processing

consent to read the file and hoard every string in the list after

removing the stop words from the file. The subsequent step is to

load the math keyword document into the program and build a list

which encloses all the keywords related to math. Evaluate the

math keyword list with the keywords in the text document to

excavate math keywords [1]-[6].

2. MOTIVATION AND CONTRIBUTION

Mathematical formula retrieval for problem solving by

Samarasinghe and Hui [2] proposed document retrieval to help

solve mathematical problems. In this approach they have used

Kohonen’s Self Organizing Maps for data clustering. They have

presented the proficiency of the planned approach with other

clustering techniques [1]-[4].

Feature Extraction and Clustering-based Retrieval for

mathematical formulae [1] planned that in order to present the

scientific knowledge mathematical formulae or expressions are

essential. As mathematical formulae contain both semantic and

structural information it is very tricky to retrieve related

mathematical formulae. They proposed an efficient approach with

help of approach for the retrieval of mathematical formulae. They

proposed a new approach with three popular clustering algorithms

k-Means, Self-Organizing Map (SOM), and Agglomerative

Hierarchical Clustering (AHC) for formula retrieval.

Rao et al. [7] implemented Leveshtein distance and Sequence

matcher to check string similarity on Mathematical texts and

keywords. An evaluation of their performance was carried out

based on the time taken for the retrieval of keywords from

Mathematical texts. Sequence matcher performed with lesser

false negatives when compared with Levenshtein distance.

3. SEQUENCE MATCHER AND

LEVENSHTEIN DISTANCE

Sequence Matcher is an agile class for match up pairs of

sequences of any type, so long as the sequence components are

analogous. The essential thought is to find the best ever

neighboring matching sub string that contains useful elements. The

similar idea is then continually applied to the segments of the

successions towards right and towards the left of the similar

ISSN: 2229-6956 (ONLINE) ICTACT JOURNAL ON SOFT COMPUTING, JULY 2018, VOLUME: 08, ISSUE: 04

1729

subsequence. This does not give up irrelevant edit sequences but

does be inclined to capitulate matches that “look right” to people.

Sequence Matcher gives the ratio in between 0 to 1 after evaluating

two strings. When the assessment ratio after comparison between

two strings is greater than 0.7 then it will be considered as keyword

and keyword will be stored in the data set [8].

The Levenshtein Distance is used to assess the likeness

between source string and objective string. The essential ideas of

Levenshtein Distance are broadly used in areas like computer

science, computational linguistics, bioinformatics, molecular

biology, DNA analysis. It can also be used in evaluating the

similarity of melodies or rhythms in music. The Levenshtein

distance has extensively permeated in our day to day life.

Levenshtein distance or edit distance is used for of spell checking

and error correction in a program or in an application. The

amalgamation of Levenshtein distance or edit distance with Trie

index locates linked words faster. In order to transform one word

into another word Levenshtein distance refers to the number of

single character operations such as insertion, replacement or

deletion. The edit distance between “cat” and “rat” is one, since

substituting the character ‘c’ by ‘r’ the word “cat” can be

converted to “rat”.

4. FUZZY STRING MATCHING

Fuzzy string matching also describes fairly precise String

Matching, which is a process of finding strings that approximately

match a given pattern. Edit distance is used to calculate the

proximity of match in terms of edit distance, which is the number

of primordial operations necessary to translate the string into an

accurate match. Primeval operations are usually: insertion,

deletion and substitution. Fuzzy String Matching can have diverse

realistic applications. Archetypal examples are spell-checking,

text re-use detection, spam filtering, as well as quite a few

applications in the bioinformatics domain like matching DNA

sequences. Fuzzy-Wuzzy library used for testing string

resemblance between two words or sentences and gives the ratio

between 0 and 1. If the ratio is more nearer to 1 then we can say

that particular words are well matched. If it is nearer to 0 then we

can say both are irrelevant to each other.

There are four popular types of fuzzy matching logic

supported by Fuzzy-Wuzzy package:

• Ratio: uses pure Levenshtein Distance based matching

• Partial Ratio: matches based on best substrings

• Token Sort Ratio: tokenizes the strings and sorts them

alphabetically before matching

• Token Set Ratio: tokenizes the strings and compare the

intersection and remainder

4.1 FLOWCHART OF ACTUAL PROCESS

The Fig.1 shows the actual procedure of retrieving Math

formulae with proposed Fuzzy-Wuzzy (Partial Ratio) and Fuzzy-

Wuzzy (Ratio).

4.1.1 Procedure of Fuzzy-Wuzzy based Retrieval of

Mathematical Formulae:

Step 1: Open a file with mathematical text in append mode.

Step 2: Perform a read operation on the file and preprocess the

data by splitting the lines of text into Mathematical

Functions and removing the stop words.

Step 3: Create an Apriori Text File with predefined math

functions and open it in read mode.

Step 4: Using fuzzy-wuzzy partial ratio or ratio function, check

the matching of mathematical functions obtained from

Step 2 with the predefined math functions in Apriori file.

a. If an exact match of a particular keyword is found

then it will be printed as math keyword.

b. If not a keyword in text file is checked for its

semantic string similarity with keywords in the

Apriori Math file.

i. If the similarity ratio is greater than 0.75 on

testing, then the particular keyword will be

recognized as math keyword and appended into

Apriori file.

ii. The process continues till the end of file

Step 5: This procedure is repeated again with New Text files

containing mathematical functions.

Fig.1. Procedure of Fuzzy-Wuzzy based retrieval of

mathematical formulae

Algorithm Fuzzy-Wuzzy

Begin:

Step 1: Consider a Input File (FINPUT) with mathematical text

lines (I1, I2, I3,…,In)

Step 2: Consider a Apriori Math File (FAPRIORI) with

Predefined_Wordlist {Pw1,Pw2,Pw3,…,Pwn}

Step 3: Load Apriori Math File (FAPRIORI) in Append Mode (a+)

Step 4: Load Input File (FINPUT) in Read Mode (r)

Step 5: Read data and Preprocess (FINPUT)

Start

Load Apriori

Math File

Load Input File

(IINPUT)

Read Data and Preprocess

(FINPUT)
1. Split lines into a list of math

functions

2. Remove the Stop words

Apply fuzzy-wuzzy

partial ratio string

matching function

Check for

match if ≥
80

Skip to

the next

word

(I1, I2, I3,…., In)

Wordlist {fw1, fw2, fw3,....,fwn}

P
red

efin
ed

_
W

o
rd

list

{
P

w
1 , P

w
2 , P

w
3

,,P
w

n }

P
red

efin
ed

_
w

o
rd

list.in
sert(i,fw

i)

FFILTERED FAPRIORI

No

Yes

G APPA RAO, et al.: A PARTIAL RATIO AND RATIO BASED FUZZY-WUZZY PROCEDURE FOR CHARACTERISTIC MINING OF MATHEMATICAL FORMULAS FROM

DOCUMENTS

1730

Split (I1,I2,I3,…,In) into a list of math functions {f1, f2,

f3,…,fn}

listfrom File := (FINPUT).split(“ ”)

Remove the Stop words from {f1, f2, f3,...,fn}

stop_words :=set(stopwords.words(‘english’))

stop_words :=[x.lower() for x in stop_words]

return (FFILTERED) with wordlist {fw1, fw2, fw3,..., fwn})

Step 6: Apply function fuzz_partial_ratio (FAPRIORI, FFILTERED)

Match {Pw1, Pw2, Pw3,..., Pwn} with {fw1, fw2, fw3,...,fwn}

For fwi in FFILTERED:

For Pwi in FAPRIORI:

if (fuzz_partial_ratio(fwi,Pwi) > 75 && fwi.isalpha()

&& len(fwi) ≥ 3) :

if(fwi not in FAPRIORI) :

Append to FAPRIORI:=Predefined_wordlist.insert(i,

fwi)

i := i++

end if

else:

Skip fwi := fwi +1

end if

end loop

end loop

Step 7: Repeat Step 6 till satisfactory

End

4.2 TIME ANALYSIS OF TWO DIFFERENT

APPROACHES

Time analysis is the time taken to retrieve the matched

formula. The RAM and processor speed plays a major role in the

retrieval time. In this paper the experimentation for calculating the

retrieval time is performed with 4 GB RAM and I3 Processor

system.

Table.1. Time for retrieving matched formulae from the

document with Sequence Matcher, Fuzzy-Wuzzy (Partial ratio),

Fuzzy-Wuzzy (Ratio)

Number

of

formula

Sequence

Matcher

Levenshtein

Distance

Fuzzy-Wuzzy

(Partial ratio)

Fuzzy-

Wuzzy

(Ratio)

40 3.042 3.28 2.8 3.89

30 3.046 2.91 3.402 3.5028

30 3.23 3.34 3.15 3.474

30 7.23 3.35 1.632 2.774

20 2.7 6.76 2.731 3.822

20 2.61 2.84 3.15 3.4971

20 2.74 17.32 2.872 4.246

20 2.75 15.42 2.75 3.802

40 5.59 2.62 2.925 3.38

30 3.09 3.22 2.951 3.641

30 3.03 2.97 4.078 3.459

20 2.74 3.84 3.198 3.5

30 15.2 2.8 3.026 3.905

20 2.82 2.93 18.512 4

20 2.8 17.3 2.929 3.637

30 3.21 3.24 2.991 3.71

30 4.23 3.39 3.503 3.081

30 4.62 2.95 3.378 3.632

4.3 SENSITIVITY MEASURE

Sensitivity is used to measure the ratio of actual math

keywords that are exactly identified from the text file, supplied as

an input. This can be expressed as:

 Sensitivity (S) =

n Tp

n Tp n Fn
 (1)

where, n(Tp) is the number of True Positives and n(Fn) is the

number of False Negatives, where, n(r) is the number of formulae

retrieved, n(f) is the total number of formulae and n(Ur) is the

Number of unwanted formulae retrieved

Table.2. Over all Sensitivity Measure with Sequence Matcher,

Levenshtein Distance and Fuzzy-Wuzzy

Sequence

Matcher

Levenshtein

Distance
Fuzzy-Wuzzy

Samples with

20 formulae n
(T

p
)

n
(F

n
)

S

n
(T

p
)

n
(F

n
)

S

n
(T

p
)

n
(F

n
)

S

Permutations 19 1 95% 17 3 85% 20 0 100%

Limits 20 0 100% 17 3 85% 20 0 100%

Sigma 20 0 100% 16 4 80% 20 0 100%

Square 19 1 95% 16 4 80% 20 0 95%

Trigonometric 19 1 95% 17 3 85% 19 1 95%

Factorial 18 2 90% 17 3 85% 19 1 95%

Differentiation 18 2 90% 17 3 85% 19 1 95%

Exponential 14 6 70% 17 3 85% 19 1 95%

Integral 20 0 100% 18 2 90% 20 0 100%

Logarithmic 20 0 100% 20 0 100% 20 0 100%

Overall 187 13 93.5% 172 28 86% 196 4 98%

4.4 EFFICIENCY

Efficiency is measured as the number of formulae retrieved

from the number of the number of formulae in the training

document. The sequence matcher retrieves maximum number of

formulae in lesser time compared to Levenshtein Distance as it

retrieves more unwanted formulae. The Proposed Fuzzy-Wuzzy

method retrieves more number of related formulae from the test

document that are matched with training document. The

efficiency of proposed method Fuzzy-Wuzzy is more compared

to Sequence matcher and Levenshtein Distance. The efficiency

range with Fuzzy-Wuzzy method is almost from 95-100% as

shown in Table.3.

ISSN: 2229-6956 (ONLINE) ICTACT JOURNAL ON SOFT COMPUTING, JULY 2018, VOLUME: 08, ISSUE: 04

1731

Efficiency Measure (EM) is calculated using the below

equation:

100M

n r
E

n f
 (2)

Table.3. Overall Efficiency Measure with Sequence Matcher,

Levenshtein Distance and Fuzzy-Wuzzy

 Sequence Matcher
Levenshtein

Distance
Fuzzy-Wuzzy

Samples

with 20

formulae

n(r) n(Ur) EM n(r) n(Ur) EM n(r) n(Ur) EM

Permutati

ons
19 - 95% 17 3 85% 20 - 100%

Limits 20 - 100% 17 4 85% 20 - 100%

Sigma 20 - 100% 16 3 80% 20 - 100%

Square 19 - 95% 16 4 80% 20 - 100%

Trigonom

etric
19 - 95% 17 4 85% 19 - 95%

Factorial 18 2 90% 17 3 85% 19 1 95%

Differenti

ation
18 3 90% 17 3 85% 19 1 95%

Exponenti

al
14 - 70% 17 4 85% 19 1 95%

Integral 20 - 100% 18 3 90% 20 - 100%

Logarith

mic
20 - 100% 20 7

100

%
20 1 100%

5. COMPARATIVE STUDY

The recital of fuzzy-wuzzy is calculated in this section.

Primarily the string comparison is performed with only one

dataset file, after preprocessing and executing with fuzzy-wuzzy

a new dataset will be attained. The amount of the data set will

amplify after consecutive string comparisons. The planned

approach identifies math related keywords along with some

unnecessary words. If any math associated keyword is present in

the tested document it is dynamically inserted into our math

dataset if it does not exist before, next time while loading file the

recently updated dataset is used for string matching. The

efficiency of proposed approach is measured in terms of time

analysis. String comparison with fuzzy-wuzzy is accomplished

with exact matching and completed with less time than sequence

matcher and Levenshtein distance in terms of Time Analysis is

shown in Fig.2 and Fig.3. The Comparative study in terms of

Efficiency and Sensitivity is presented in Fig.4, and Fig.5.

Fig.2. Comparison between Sequence Matcher, Fuzyy-Wuzzy

(Partial Ratio) and Fuzzy-Wuzzy (Ratio) in terms of Time

analysis

Fig.3. Comparison between Levenshtein Distance, Fuzyy-

Wuzzy (Partial Ratio) and Fuzzy-Wuzzy (Ratio) in terms of

Time analysis

0 5 10 15 20

40

30

30

30

20

20

20

20

40

30

30

20

30

20

20

30

30

30

Time Analysis

N
o

 o
f

F
o

r
m

u
la

e

Fuzzy-Wuzzy(Ratio)
Fuzzy-Wuzzy(Partial ratio)
Sequence matcher

0 5 10 15 20

40

30

30

30

20

20

20

20

40

30

30

20

30

20

20

30

30

30

Time Analysis

N
o

 o
f

F
o

r
m

u
la

e

Fuzzy-Wuzzy(Ratio)
Fuzzy-Wuzzy(Partial ratio)
Levenshtein Distance

G APPA RAO, et al.: A PARTIAL RATIO AND RATIO BASED FUZZY-WUZZY PROCEDURE FOR CHARACTERISTIC MINING OF MATHEMATICAL FORMULAS FROM

DOCUMENTS

1732

Fig.4. Comparison between Levenshtein Distance, Fuzyy-

Wuzzy and Sequence Matcher in terms of Efficiency

Fig.5. Comparison between Levenshtein Distance, Fuzyy-

Wuzzy and Sequence Matcher in terms of Sensitivity

6. CONCLUSION

In this article we have made an evaluation of three different

string matching algorithms namely, Levenshtein, Sequence

Matcher and Fuzzy-Wuzzy to retrieve approximate matches of

Mathematical formulae from texts. There are four variants of

Fuzzy-Wuzzy of which two variants are found applicable to this

study. The partial ratio based fuzzy-wuzzy retrieves the string

exactly and in lesser time than ratio based Fuzzy-Wuzzy

technique. Through our observations, we found that sequence

matcher does not retrieve all strings, Levenshtein’s distance

retrieves false negatives whereas fuzzy-wuzzy partial ratio

retrieves most of the mathematical formulae from the text. To

assert this, we have made a comparison taking into regard,

efficiency measure, sensitivity measure and Time series

exploration. Fuzzy-Wuzzy performed better on efficiency

measure and sensitivity measure and Sequence matcher scored

high on time series exploration.

REFERENCES

[1] Kai Ma, Siu Cheung Hui and Kuiyu Chang, “Feature

Extraction and Clustering-based Retrieval for Mathematical

Formulas, Proceedings of 2nd International Conference on

Software Engineering and Data Mining, pp. 372-377, 2010.

[2] Sidath Harshanath Samarasinghe and Siu Cheung Hui,

“Mathematical Document Retrieval for Problem Solving”,

Proceedings of International Conference on Computer

Engineering and Technology, pp. 583-587, 2009.

[3] J. Misutka and L. Galambos, “Mathematical Extension of

Full Text Search Engine Indexer”, Proceedings of 3rd

International Conference on Information and

Communication Technologies: From Theory to

Applications, pp. 1-6, 2008.

[4] B.R. Miller and A. Youssef, “Technical Aspects of the

Digital Library of Mathematical Functions”, Annals of

Mathematics and Artificial Intelligence, pp. 121-136, 2003.

[5] H. Zhang and M.S. Lin, “An Evolutionary K-means

Algorithm for Clustering Time Series Data”, Proceedings of

International Conference on Machine Learning and

Cybernetics, pp. 1282-1287, 2004.

[6] M. Kohlhase. “Markup for Mathematical Knowledge”,

Proceedings of an Open Markup format for Mathematical

Documents, pp. 13-23, 2006.

[7] G. Appa Rao, K. Venkata Rao, P.V.G.D. Prasad Reddy and

T. Lava Kumar, “An Efficient Procedure for Characteristic

Mining of Mathematical Formulas from Document”,

International Journal of Engineering Science and

Technology, Vol. 10, No. 3, pp. 152-157, 2018.

[8] G. Appa Rao, G. Srinivas, K. Venkata Rao and P.V.G.D.

Prasad Reddy, “Characteristic Mining of Mathematical

Formulas from Document-A Comparative Study on

Sequence Matcher and Levenshtein Distance Procedure”,

International Journal of Computer Sciences and

Engineering, Vol. 6, No. 4, pp. 400-403, 2018.

0% 50% 100%

20 (more in permutations)

20 (more in limit)

20 (more in sigma)

20 (more in square)

20 (more in trigonometric)

20 (more in factorial)

20 (more in differentiation)

20 (more in exponential)

20 (more in integral)

20 (more in logarithmic)

Efficiency

N
o

 o
f

F
o

r
m

u
la

e

Fuzzy-wuzzy
Levenshtein
Sequence Matcher

0% 50% 100%

20 (more in permutations)

20 (more in limit)

20 (more in sigma)

20 (more in square)

20 (more in trigonometric)

20 (more in factorial)

20 (more in differentiation)

20 (more in exponential)

20 (more in integral)

20 (more in logarithmic)

Sensitivity

N
o

 o
f

F
o

r
m

u
la

e

Levenshtein Distance
Sequence matcher
Fuzzy-Wuzzy

