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Abstract 

Today, the requirement of controllers in the field of engineering and 
process industries is going to be increased in order to control. Among 
all controllers, Proportional Integral Derivative (PID) controllers are 
widely used due to its easy implementation. The practical system is 
composed by the combination of sub-systems which exhibits the 
nonlinear behavior and conventional PID controllers are not so 
successful from stability point of view. In order to control those systems, 
in this paper, the Fractional Order PID (FOPID) controller has been 
used effectively instead of conventional PID controllers for those 
system which show the nonlinear behavior. Further, the control ability 
of the FOPID controller for the nonlinear environment has also been 
enhanced using Fuzzy Logic Control (FLC) concept with FOPID. Use 
of FLC concept with FOPID for nonlinear system has been abbreviated 
as NFL-FOPID (Nonlinear Fuzzy Logic- Fractional Order PID). 
Analysis and results verify that the proposed controller improves the 
efficiency as well as the stability of system. 
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1. INTRODUCTION 

Despite the development of various modern or post-modern 
control theories, such as LQG or LQR, optimal control, control 
analysis and synthesis, classical proportional-plus-integral (PI) or 
proportional-plus-integral-derivative (PID) controllers. Because of 
the relatively simple structure, the industry is being widely used, 
hand-drawn implementation and perhaps easy understanding [1]. 
Therefore, it is often a matter of fact that PID controllers are 
considered for the first time in practical applications, unless the 
evidence shows that they are insufficient to meet the 
specifications. Due to the popularity of PID controllers in the real 
world, several methods have been developed to determine the 
parameters of PID controllers. In the early days of the 1940s, 
Ziegler and Nichols proposed the first systematic tuning method 
for PID parameters, then Cohen-Koon method, integral full error 
(IAE) optimal method, integral time-weighted full error (ITAE) 
Optimal method came in popular forms such as internal model 
control (IMC) method and relay auto-tuning method [2]. It was 
announced that all previous tuning methods were only suitable for 
linear systems and introduced a fuzzy modeling approach for non-
linear characters, but some articles have presented a strong self-
tuning PID controllers for non-static systems [3] - [5]. Control 
theory has been used for addressing the navigation and control of 
the unmanned aerial vehicle (UAVs). Globally several researches 
have focused their work on the design of the flight control systems 
for UAVs [5]. Fractional Order system is Partial order system 
which characterized by partial-order differential equations. 
Fractional calculus considers a real number for derivatives and 
unipairs. FOPID controller is an extension of traditional integer-
order PID controller based on fractional calculus [6]. 

Fractional Order PID (FOPID) Controller is linear and 
especially symmetric; and has difficulties in the presence of non-
linearity. To solve this problem using a fractional-order PID 
controller. A FOPID controller is presented below [2]: 
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There are several ways to calculate partial order and calculate 
a partial order PID controller [3] [4]. 
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Fig.1. Generalization of the FOPID controller: from point to 
plane 

Fractional Calculus is a branch of mathematics that is related 
to the actual number of differential or integral operator. It 
generalizes the general concepts of derivative and integral. In all 
the different definitions, the definition offered by the room and 
level is the most common. The definition is as follows [1]: 
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The general definition of D(derivative) is given by Eq.(2): 

   

 
   

 
 

1

0

0

0

x

c

c x

n n
c x

x t
f t dt if

D f x f x if

D D f x if














 



 


 
 
     




  (3) 

   min ,n K K     

where n is the well-known Euler’s gamma function. 

 Function  F s s   (4) 

The Function in Eq.(4) is not just a simple partial order 
transfer function which can be seen, but it is also very important 
for applications, as it will be seen later, we analyze our timing and 
frequency response. 
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1.1 TIME RESPONSE 

The derivatives of the exponential function are given by, 

   , , 0
ate

c x tD t E v a t      (5) 

For negative orders, from definition Eq.(3) we have: 
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By means of the substitution x = t - ξ, in the first place, and of 
the substitution ax = y, in the second place, we obtain [8] [9] 
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For positive orders, the same definition gives [10] [12]: 
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If υ = 0, we have: 
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which is the series development of eat. Finally, the Laplace 
transform of Et is [11]-[15]: 
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The Convolution theorem: 
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For negative orders, applying the convolution theorem Eq.(10) 
and Eq.(9) we obtain 
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For positive orders, applying the Laplace transform and we 
have: 
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and when υ = 0, we find [17] - [20]: 
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Partial order derivatives and integral estimates have many 
different approaches to making such assumptions, but 
unfortunately it is not possible to say that one of these is the best, 
because in relation some characteristics are better than other 
characteristics, the relative qualities are based on the order of 
approximation discrimination. 

Estimates are available in both S-domains and z-domains. In 
the past, now the frequency domain will be called constant 
estimates or estimates; Estimates of these estimated methods, 
discrete estimates, or partial sequence derivatives and integral in 
the field of time [7]. 

Between the integer high order periods, the integer dimension, 
the fractional amplitude, the Fractional Order Calculus (FOC) 
between the integer order spline, between the “partial order 
splices” between logic and fuzzy logic, there are non-integers 
between integers. FOC has created mathematical branches which 
work with discrimination and integration under the arbitrary order 
of operation, that is, there can be any real or complex numbers, not 
just an integer. Although contemporary theoretical research and its 
great results in real-world applications have been widely discussed 
relatively recently, the idea of non-integer derivation was first 
mentioned in the research of Lebanese in hospital in 1695 [10]. 
Later, the major works related to the FOC extend into personalities 
such as Euler, Fourier, Abel, Jewell or Riemann. Absence of 
simple geometric interpretation, absence of solution methods for 
partial order, R differential equation and most problems, the 
adequacy of the Integer Order Calculus (IOC) is visible, however, 
the situation is getting better now a days and FOC provides 
efficient equipment for many issues related to the fractional 
dimension, “eternal memory”, chaotic behavior etc. In this way, 
FOCs are already available in engineering fields such as 
Bioengineering, Viscoelastic, Electronics, Robotics, Control 
Theory and Signal Processing [16]-[18]. 

2. PID CONTROLLER 

A closed loop control system with controller has been shown 
in Fig.2 in which r(t) is the reference signal in time domain, e(t) 
is the error signal, u(t) is the controller’s output or actuating 
signal, c(t) is the controlled variable or actual output. 

Controller Process
+

-

Reference
input

r(t) e(t)
error

u(t) e(t)

output

 

Fig.2. Closed loop system with single input and single output 
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The controller may be any type such as: PI, I, PI, PD, PID, 
FOPID, IDD, PIDD and many more. But among all controllers, 
PID controller is most widely applicable controllers in industries. 
The output of PID Controller u(t) can be expressed in terms of 
e(t); error signal as [9]: 
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The transfer function of the controller is given as: 
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where, Kp = Proportional Gain, τd = Derivative Time, and τi = 
Integral Time. 

For the sake of simplicity, the first order transfer function of 
the plant without delay in Fig.2 is defined as [17]: 
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The effect of KP, KI and KD on the time response parameters, 
steady state error and stability have been shown in Table.1 [12]. 
In Table.1, the abbreviations are as follow: RT = Rise Time, ST = 
Settling Time and SSE = Steady State Error. 

Table.1. Effect of KP, KI and KD on the time response 
parameters, steady state error and stability 

 RT Overshoot ST SSE Stability 

Increase 
in KP 

Decrease Increase 
Small 

Increase 
Decrease Degrade 

Increase 
in KI 

Small 
Decrease 

Increase Increase 
Large 

Decrease 
Degrade 

Increase 
in KD 

Small 
Decrease 

Decrease Decrease 
Minor 

Change 
Improve 
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An operator has to tune the parameters of PID controllers 
finely in order to achieve the enhance performance of the system 
otherwise it may cause instability in closed loop systems. The 
advantages and limitations of PID controller are given in Table.2. 

Table.2. Advantage of different parameters of PID controller 

Parameters Advantages Limitations 

KP 
Adjustment of 

Controller output 
May cause instability 

KI 
Produces zero 

steady state error 
Slow dynamic Response and 

Instability 

KD 
Provides rapid 

system response 
Sensitive to Noise and non-

zero offset 

3. FUZZY LOGIC CONTROLLER FOR PID 

Apart from the freedom provided at partial rate of error in the 
design of traditional FLC-based PID controllers in the current 
study, it is logical that partial rate of error introduces some 
additional flexibility in PLC’s input variable and is given input. 

The output scaling factor, such as the FLC, can also be increased 
in the size and membership function (MF) size. To prevent 
advanced loop performance, the better performance of the 
proposed Fuzzy FOPID controller is tested in comparison to 
classical PID, Fuzzy PID and FOPID. Controller in current study. 

3.1 FUZZY FRACTIONAL ORDER CONTROLLER 

Here the structure of fuzzy PID is a combination of Fuzzy PI 
and Fuzzy PD controllers (Fig.3). Fuzzy PID controller in integer 
order, error and error in the input are derived and the FLC output 
is multiplied by scaling factor and its integral unit multiplies with 
B and then the total controller is expressed to give output is. But 
in the current case, the FLC is replaced by the integer sequence 
rate of error on the input of its partial order equivalent (μ). In 
addition, the sequence of integral is replaced by a partial order (λ) 
on the output of the FLC, which represents a partial order 
conference (integration) of the FLC output [6]. 

kp

kd

Fuzzy 
Logic 

Controller

a

b Plant
r(t) +

-
+

+

 

Fig.3. Structure of the Fuzzy Fractional Order PID controller 

3.2 FUZZY MEMBERSHIP FUNCTION AND RULE 
BASE 

The proposed FLC based FOPID controller uses two-
dimensional linear rule base (Table.3) for error, and partial rate of 
change of error and FLC output and mammary type infringing 
with standard triangular membership functions [8]. Triangular 
membership work is chosen from other types such as Gaussian, 
trapezoidal, bell shaped, P-shaped etc. Because it is easy to 
implement in practical hardware. In Fig.4, fuzzy linguistic 
variables with NB, NS, Z, PS, and PB range Negative large, 
negative, small, zero, positive, small and positive respectively 
represent larger. The FLC output is determined by using the center 
of the gravitational method. 

 

Fig.4. Membership functions for error, fractional rate of error 
and FLC output 

Table.3. Rule base 

     E 
DE 

NB NS Z PS PB 

NB   NB NS  

NS  NB NS Z  

Z NB NS Z PS PB 

PS  Z PS PB  

PB  PS    
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4. MODELLING OF PROPOSED SYSTEM 

The proposed system is designed MALAB or Simulink and 
programming. Initially, the proposed system is validated using 
programming output waveforms for different parameters of P-I-D 
through comparison. 

The Eq.(19) corresponds in time domain to the fractional 
differential equation of the form [9]: 

        0 0P i t d tu t K e t T D e t T D e t     (19) 

where, λ =1 and δ =1 for obtaining a classical PID controller. 

After the traditional structure of non-linear PID controller, 
well known in literature, it can write a new formula for non-linear 
Fractional order PIλDδ Controller (NFOC): 

          0 0P i t d tu t f e K e t T D e t T D e t       (20) 

where f(e) is nonlinear function of variable e. various definitions 
of the nonlinear function f(e) can be used, for instance [10]: 

 

Fig.5. Output analysis of non-linear PID controller with 
parameters from Table.4 

A widely used nonlinear function can have the form: 

 f(e) = K0+ (1-K0)|e(t)|, K0  〈0,1〉 (21) 

When K0 =1 in Eq.(21) obtain a classical form of the linear 
fractional-order controller Eq.(19). For K0=1 we have a 6 degrees 
of freedom controller. 

For K0 = 0 within interval (el, eh) the output of the controller 
does not change and therefore the actuator behavior is much more 
smooth. The Eq.(19) and Eq.(20) are used for analysis for linear 
and nonlinear systems with variable values of PID as shown in 
Table.3. In addition, output waveforms for comparison are 
represented in Fig.5 and Fig.6. 

 

Fig.6. Output analysis of non-linear PI controller with 
parameters from Table.4 

 

Fig.7. Output of NLS with PID and PI controller for data of u1 

 

Fig.8. Output of NLS with PID and PI controller for data of u2 

Dataset used for analysis are shown in Table.3 taken for 
comparison [9]-[16]. 

Table.4. Dataset used for Analysis for PID Controller 

S.No. Ts Kp Ti Td Lambda delta K 

u1 0.01 20.5 100 11.31 1 0.82 1200 

u2 0.01 5.1 4.6 7.8 0.5 0.9 1200 

u3 0.01 6.2359 1.785 1.964 0.1236 0.924 1200 

u4 0.01 1.148 0.936 0.683 0.962 0.438 1200 

u5 0.01 1.5193 0.483 0.337 0.798 0.987 1200 

u34 0.01 50.4 55.6 18.20 0.070 0.922 1200 

 

Fig.9. Output of NLS with PID and PI controller for data of u3 

 

Fig.10. Output of NLS with PID and PI controller for data of u4 
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Fig.11.Output of NLS with PID and PI controller for data of u5 

 

Fig.12. Output of NLS with PID and PI controller for data of 
u34 

As per Fig.7 to Fig.12, the output on non-linear controller 
gives better output gain with PI controller by ignoring derivative 
component for specified equation of u(t). 

4.1 MODELLING OF NONLINEAR FRACTIONAL 
ORDER PID CONTROLLER 

The nonlinear fractional order PID controller is designed from 
Eq.(20) as shown in Fig.13, where Ko is taken unity and varies as 
feedback gain varies. 

 

Fig.13. Matlab model for fractional order PIλDδ controller 

 

Fig.14. Matlab model for conventional PID controller 

The input for PID controller as P-I-D are given from output 
generated from FLC. Input to FLC are error and error % and 
output are Kp, Kd and alpha, using these parameters KI is designed 
and given as input signals to PID controller. 

 

Fig.15. Matlab model for nonlinear FOPID controller with fuzzy 
logic controller 

4.2 FUZZY LOGIC CONTROLLER DESIGN 

There are three components of FIS controller as: 

• Input membership functions 

• Output membership functions 

• Rules 

 

Fig.16. Fuzzy Logic Controller design bock diagram 

Input membership function: 

 

Fig.17. Input membership function for error input 

 

Fig.18. Input membership function for error percentage input 
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Output membership Functions: 

 

Fig.19. Output membership function for Kp 

 

Fig.20. Output membership function for Kd 

 

Fig.21. Output membership function for alpha 

5. RESULTS AND ANALYSIS 

This section describes the results and their analysis with 
nonlinear fractional order PID controller. Analysis is conducted 
with FOPID, conventional PID and Fuzzy implemented PID 
controller. 

5.1 IMPLEMENTATION OF PID 

 

Fig.22. Matlab model of comparison implemented on first 
system 

The proposed system with first order transfer function system 
is shown in Fig.22. In this system comparison of three modules 
can be seen as NFOC (Nonlinear Fractional order controller), PID 
(Conventional) and Fuzzy PID controller. 

First transfer function taken for analysis is: 

  
 2

1

1
G s

S



 (22) 

Table.5. Dataset used for analysis on First System for Fuzzy 
Input of Kp, Ki and Kd 

S.No. Ku Tu Kpmin Kpmax Kdmin Kdmax 

u1 45 3.1 14.4 27 11.16 20.925 

u2 2.2 3 0.704 1.32 0.528 0.99 

u3 9 6 2.88 5.4 4.32 8.1 

u4 11 1.2 3.52 6.6 1.056 1.98 

u5 2.8 1.3 0.896 1.68 0.2912 0.546 

u34 84 1.5 26.88 50.4 10.08 18.9 

For the calculation of Kpmin and Kpmax: 

Kpmin = 0.32*Ku; 

Kpmax = 0.6*Ku; 

Kdmin = 0.08*Ku*Tu; 

Kdmax = 0.15*Ku*Tu; 

where Ku and Tu are equality constants. 

Comparison of three modules according to the Table.5 dataset 
shown in Fig.(3)-Fig.(28): 

 

Fig.23. Comparative waveform for u1 dataset with first system 

 

Fig.24. Comparative waveform for u2 dataset with first system 
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Fig.25. Comparative waveform for u3 dataset with first system 

 

Fig.26. Comparative waveform for u4 dataset with first system 

 

Fig.27. Comparative waveform for u5 dataset with first system 

 

Fig.28. Comparative waveform for u34 dataset with first system 

Different analysis of nonlinear fractional order controller and 
fuzzy controller on basis of Table.5 dataset which shown in 
Fig.(29)-Fig.(32) : 

 

Fig.29. Comparative waveform for NFOC dataset with first 
system 

 

Fig.30. Comparative waveform for NFOC dataset with first 
system 

 

Fig.31. Comparative waveform for Fuzzy dataset with first 
system 

 

Fig.32. Comparative waveform for Fuzzy dataset with first 
system 

Comparison shows the result that fuzzy PID gives better 
responses and stability in the system than conventional PID and 
NFOC. This comparison also shows that stability and system’s 
linearity depends on values of Kp, Ki and Kd. 
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6. CONCLUSION 

For the solution of nonlinearity controlling controllers, 
fractional order PID controllers are used in this work. In FOPID 
a stability coefficient with integrator and differentiator is used to 
gain stability. These coefficients are lambda (λ) and delta (δ) as 
PIλDδ. These factors are used as multiplication factors. To 
improve the efficiency of this fractional order PID controller, this 
is further controlled with fuzzy logic controllers (FLC). 
Implementation of FLC improves the efficiency as well as the 
stability of system. In the propose work nonlinear fractional order 
PID controller(FOPID) is compared with conventional PID and 
Fuzzy Logic controller by implementing six conditions of Kp, Ki 
and Kd for first order transfer system (journal system). This 
validate the use of fuzzy logic controller for better quality output 
conditions and gives alternate method for non-linear system of 
controlling. 
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