
ISSN: 2229-6959 (ONLINE) ICTACT JOURNAL ON SOFT COMPUTING, JANUARY 2017, VOLUME: 07, ISSUE: 02

1381

FAULT TOLERANCE IN JOB SCHEDULING THROUGH FAULT MANAGEMENT

FRAMEWORK USING SOA IN GRID

V. Indhumathi1 and G.M. Nasira2
1Department of Computer Science, Periyar University, India

E-mail: sabarishindhu@gmail.com
2Department of Computer Science, Chikkanna Government Arts College, India

E-mail: nasiragm99@yahoo.com

Abstract

The rapid development in computing resources has enhanced the

recital of computers and abridged their costs. This accessibility of low

cost prevailing computers joined with the fame of the Internet and

high-speed networks has leaded the computing surroundings to be

mapped from dispersed to grid environments. Grid is a kind of dispersed

system which supports the allotment and harmonized exploit of

geographically dispersed and multi-owner resources, autonomously

from their physical form and site, in vibrant practical organizations

that carve up the similar objective of decipher large-scale applications.

Thus any type of failure can happen at any point of time and job

running in grid environment might fail. Therefore fault tolerance is an

imperative and demanding concern in grid computing as the steadiness

of individual grid resources may not be guaranteed. In order to build

computational grids more effectual and consistent fault tolerant system

is required. In order to accomplish the user prospect in terms of recital

and competence, the Grid system desires SOA Fault Management

Framework for the sharing of tasks with fault tolerance. A Fault

Management Framework endeavor to pick up the response time of

user’s proposed applications by ensures maximal exploitation of

obtainable resources. The main aim is to avert, if probable, the

stipulation where some processors are congested by means of a set of

tasks while others are flippantly loaded or even at leisure.

Keywords:

Resource Allocation, Job Scheduling, Load Sharing Algorithm, Fault

Tolerance, Grid Environment

1. INTRODUCTION

 In distributed job computing location, data communiqué

among contribute cluster may become a most important recital

hold-up [4]. However, mainstream of the client be unsuccessful to

attain flush a small part of the hypothetical hustle guarantee by

means of system owed to problem, at the same time as suboptimal

TCP amendment, disk recital hold-up lying on the conveyance

and/or acceptance ending, and server workstation restrictions.

This mean that comprise elevated swiftness networks in position

is significant, except not adequate [5][6]. Being capable to

efficiently utilize these elevated swiftness interrelate is flattering

gradually more vital to attain elevated recital various-task

computing in a broadly spread surroundings. In fact, some data

grids have been effectively put into practice and worn to supply a

policy intended for data relocate in the set of connections and

computing at the closing stage sites. It have be usually familiar to

facilitate distributed set of connections be outlay effectual way to

sustain statistics transfers in this category of data exhaustive

submission [7][8].

Center of attention on the subject of how to stipulation an

application-specific policy to facilitate for using by a client

toward scuttle a dispersed computing job, on the same time as

gathering the task requirements and SLAs. To provision proposed

baseline for a task, it have got to assign suitable computing and

associated resources together. This type of architecture have a

(logical) topology parallel with the aim of the assignment graph

on behalf of that task with the exception of probably with

supplementary boundaries and nodes for fault tolerance, make use

of devoted but possibly possessions, in addition to are

accomplished of energetic configuration to convene the dynamic

necessities of the function. One of the foremost confront to

survive deal with is verdict an optimal record commencing a chore

graph to the set of connections to convene the application’s

necessity for resource network correlation [9]. Consequently,

encompass a mutual trouble of task assignment development used

for the statistics dispensation, and job implementation for the data

transfer [10].

Further the capability for program keep back resources in

move ahead, it is too necessary for scheduler to malfunction turn

into proposed system economically efficiently obtain into

deliberation failure as an important element of the energetic

provisioning. This aptitude of improving from feasible for various

serious applications, such work is reviewed, in segment 3,

modeling of the Proposed as medical, financial, and homeland

refuge applications.

2. MOTIVATION

Grid application recital is decisive in grid computing

environment so to realize high performance we have to recognize

the factors that can have an effect on the recital of an application

and Load Balancing is one of most imperative factor which affects

the overall recital of application. The Motivation is to reduce the

time required to complete all jobs; and the workload is distributed

evenly to all resources depending on the speed of that workload

assigned to the job. The main objective is to reduce average

response time and improve throughput.

3. LITERATURE REVIEW

 The user’s tasks negotiating with resource providers based on

their essential Quality of Service and on the equivalent price to

reach a Service Level Agreement using algorithm Quality Particle

Swarm Optimization (QPSO). Resource scheduling is carries out

using Application heuristics Execution meeting user deadline. It

implements above algorithm for mold and optimization of

resource prophecy models based on Deadline distribution and

planning distribution in V. Indhumathi proposed Particle Swarm

Narendra G
Typewritten Text

Narendra G
Typewritten Text
DOI: 10.21917/ijsc.2017.0191

V INDHUMATHI AND G M NASIRA: FAULT TOLERANCE IN JOB SCHEDULING THROUGH FAULT MANAGEMENT FRAMEWORK USING SOA IN GRID

1382

Optimization to improve the fault tolerance in Workload

execution over grid environment [1].

Major achievements includes the design and evaluation of

system architecture for grid resource monitoring and prediction

through Meta heuristic conditions in V. Indhumathi and G.M.

Nasira proposed meta heuristics for resource Monitoring and

prediction with fault tolerance in Grid Environment [2]. Develop

an approach for fault tolerance based on Platform LSF, to utilize

dynamic OS multi-boot to improve resource utilization. This

approach combines both a heterogeneous Platform Support &

advanced Self-Management with both dynamic prioritization and

dynamic scheduling in G.M. Nasira and V. Indhumathi achieved

fault tolerance in grid through platform LSF technique [3]. G.M.

Nasira and V. Indhumathi (2012) proposed fault tolerance within

grid environment using platform LSF. Handling faults depends on

resource changes [4].

R.P. Ishii and R.F. de Mello took the problem of energetic

scheduling of data-intensive mutiprocessor tasks. All jobs in need

of some amount of CPUs and some quantity of data to requests

limited storage space before starting the job. The achievement of

each job conveys some benefit (utility) to the system [12].

N.N. Dang and S.B. Lim, proposed attendant virtualization

that release the assortment of latest fangled potential for

datacenter management, throughout the accessibility of new

automation that can be subjugated to manage and observe tasks

running within systems. This tender not only innovative and more

supple be in charge of to the operative by means of a management

cheer up, other than that more authoritative to supple manage,

throughout executive software that keep the system in a preferred

status in the time of altering workload and insist [13].

S. Singh and R.K. Bawa, proposed task scheduling and

availability of resources provided by GIS decrease the probability

of faults, execution time and increase the execution rate [18].

W.A. Elrouf et al. proposed genetic algorithm to reach the best

solution faster i.e. decreasing the finishing time [19].

4. PROPOSED FAULT-TOLERANCE

FRAMEWORK IN GRID

The grid underneath deliberation is implicit to be a group of

service providers (nodes) each building up a discrete management

domain. Moreover, it is assumed that each node is proficient of

handling a service request that is either submitted by a user or

delegated by a peer, afforded that it hosts the necessary service

with enough capacity.

4.1 FAULT MANAGEMENT FRAMEWORK IN

SOA

 The challenging needs of the organized services are

supervised through mechanisms of reservation and allocations,

the running instances of the various implemented services may

surpass their allocated share of resource usage. In this

implementation, may be the running service occurrences are at

risk to failure earlier than completion of their tasks because of

unpredicted depletion of resources such as RAM or disk swap.

This would lead to introduce Fault Management Framework to

avoid the above said problem.

 The attitude of the Fault Management Framework is to give

error handling that is peripheral to SOA. The structure is engaged

through guidelines distinct in XML. These guidelines are reusable

over components plus preserve to hold runtime faults. On one

occasion a fault is caught, the procedure describes events that can

be utilized for the SOA instance such as resource failure, retry,

human intervention, rethrow fault, abort, and etc.

 In Fig.1, the first step is Fault Management Framework

identifies faults if it is available in Service request generated by

user. The second step is match the policy of appropriate fault

which is defined by SOA .The third step is identifies the actions

which are required to correct the fault. Based on the action, our

proposed system executes the given user task without fault.

Fig.1. Proposed Fault Management Framework

4.1.1 Algorithm for Workload Distribution:

Loop

 Wait for service request from User, Collect all services as

Set,

 S = {S1,S2...,S∞} (1)

Apply Quick sort to the set S, it divide the service to all nodes

Calculate average load of the service as:

   1

n

n

S

Avg s
n






 (2)

Identify fault of each service

If (activity occurs)

Call fault policy, it catch the fault and take necessary action

Else task is executed based on workload

Iterates over all services offered by user

Executes the action

identified

Service Request

from User

Fault Management

Framework

capture all Faults

Identifies Fault

policy via Fault

bindings

associated with

SOA

Identifies the

action required for

Fault from Fault

policy

ISSN: 2229-6959 (ONLINE) ICTACT JOURNAL ON SOFT COMPUTING, JANUARY 2017, VOLUME: 07, ISSUE: 02

1383

Return the results to user

End Loop

Fig.2. Fault Policies Framework

In Fig.2, the Fault policy contains more than one fault policy

definitions, fault definitions and action. Fault policy identifies

fault name located by different nodes. Then it calls condition

element to validate faults, after that it calls action element from

XML define what the action definition will do and the ids are used

as references. Finally it returns result to user.

The structure of fault policies is

Fig.3. Structure of Fault policy

In Fig.3, fault policies tag contains one or more fault policy

definitions, fault definitions (include conditions) and action. By

using the <faultPolicy> Element, describe each and every faults

connected through the policy enfolded in a <Conditions>

Element. All policy name description is required for fault

identification by using Query name plus a related action reference.

4.2 RESOURCE ALLOCATION

Case 1: Resource Discovery

 Resource discovery involve influential which resources are

accessible to a given user. At the start of this case, the set of

resources is the empty set; at the end of this case the set of

resources is having some values.

Case 2: System Selection

A single resource must be selected to schedule the job from

given set of possible resources.

Table.1. Average turnaround times (sec.) for speed = (1, 5, 5, 2,

9) and load = (7, 6, 7, 6, 2)

Total

Grid
Site1 Site2 Site3 Site4 Site5

Resource

Allocation
8583 2430 1816 1080 1056 67

Normal Load

Sharing
3860 1943 296 983 1589 230

Practicable

Load Sharing
4023 1945 299 990 1598 67

Table.2. Average turnaround times (sec.) for speed = (1, 2, 3, 4,

5) and load = (4, 4, 4, 4, 4)

Total

Grid
Site1 Site2 Site3 Site4 Site5

Resource

Allocation
7832 579 5550 6789 10563 1536

Normal Load

Sharing
4089 175 5210 4185 4234 339

Practicable

Load Sharing
4150 175 5220 4231 4317 339

Case 3: Job Submission

To estimate speed intervals amongst the contributed sites we

describe parameter for speed = (s1, s2, s3, s4, s5) to describe the

computing speed for all five sites in grid, in which have the value

of S1 is the compute speed resulting in job implementation time

in the baseline workload. In addition S2 is the increasing average

job execution time of the baseline workload. We define load

parameter as positive real numbers are (lp1, lp2, lp3, lp4, lp5) to

describe the load distribution in grid.

The Table.1 and Table.2 evaluates the effects of the possible

load sharing with different speed and load in heterogeneous Grid.

The Load Sharing Algorithm (LSA) is used to evaluate the

practicable load Sharing. The result shows that not all sites would

lead to impracticable Grid computing where some sites get tainted

performance after joining in the grid.

5. EXPERIMENTAL EVALUATION

The makespan and Average resource utilization are the

performance metrics, which measured in our experimental

evaluation through the Fault Management Framework. The

performance metrics such as makespan, average Resource

utilization are used to show balanced resource allocation and

makespan and it also defined in following sections.

5.1 MAKESPAN

The makespan is total amount of time required to complete

group of jobs. So it is calculated by using the following formula.

Fault Policy

Identifies Fault

name

Apply conditional

testing to solve the

Fault

Return the results to

User

<Fault policies>

 <Fault policy>

 <Fault name>

 <Condition>

 <test>

 <Action>

 <retry>………. </retry>

 </Action>

 </test>

 </Condition>

 </Fault name>

 </Fault policy>

</Fault policies>

V INDHUMATHI AND G M NASIRA: FAULT TOLERANCE IN JOB SCHEDULING THROUGH FAULT MANAGEMENT FRAMEWORK USING SOA IN GRID

1384

Makespan = Time of completion of last job - Starting time of the

first job

The makespan values of the various algorithms are compared

with our LSA algorithm. The results show that our proposed

method has minimized makespan than the other algorithms as

shown in Fig.4.

5.2 AVERAGE RESOURCE UTILIZATION

The average resource utilization of the algorithms such as

LSA, Min-min, FTMM, BSA and LBFT are shown in Fig.5 and

the results shows that the proposed LSA relatively has high

resource utilization.

Fig.4. Makespan comparisons of various algorithms with FMF

Fig.5. Average Resource utilization comparison of different

algorithms with FMF

6. CONCLUSION

In order to consider user satisfaction, Fault tolerance, Load

balancing and Resource allocation our proposed LSA algorithm

implemented. This provide efficiency with resource allocation,

Job scheduling with fault tolerance and it also dynamic sharing of

the resource configuration has produced the resource contention

in the grid computing, it has been resolved through job scheduling

through Timely acquiring resource status information. Hence the

fault tolerance of the resource in job scheduling has carried out

with static multidimensional condition which updates the global

manager of the grid resource. But as a whole, it has a prominent

improvement in makespan which proves improved system

performance.

REFERENCES

[1] V. Indhumathi, “Improved Fault Tolerant in Workload

Execution through Quality Particle Swarm Optimization for

Grid Environment”, Proceedings of International IEEE

Conference on Computing for Sustainable Global

Development, pp. 5040-5045, 2016.

[2] V. Indhumathi and G.M. Nasira, “Resource Monitoring and

Prediction with Fault Tolerance in Grid Environment

through Meta heuristics”, International Journal of Applied

Engineering Research, Vol. 10, No. 24, pp. 43993-44000,

2015.

[3] G.M. Nasira and V. Indhumathi, “Fault Tolerance within

Grid Environment using Platform LSF”, Proceedings of

National Conference on Soft Computing, 2012.

[4] G.M. Nasira and V. Indhumathi, “Fault Tolerance within

Grid Environment using Platform LSF”, Proceedings of

National Conference on Advances in Computer

Applications, 2012.

[5] Elvin Sindrilaru, Alexandru Costan and Valentin Cristea,

“Fault Tolerance and Recovery in Grid Workflow

Management”, Proceedings of International Conference on

Complex, Intelligent and Software Intensive Systems, pp.

475-480, 2010.

[6] Yuzhong Sun and Zhiwei Xu, “Grid Replication coherence

Protocol”, Proceedings of 18th International Symposium on

Parallel and Distributed Processing, pp. 232-239, 2004.

[7] Wei Luo, Xiao Qin, Xian-Chun Tan, Ke Qin and Adam

Manzanare, “Exploiting Redundancies to Enhance

Schedulability in Fault-Tolerant and Real-Time Distributed

Systems”, IEEE Transactions on Systems, Man, and

Cybernetics - Part A: Systems and Humans, Vol. 39, No. 3,

pp. 626-639, 2009.

[8] Malarvizhi Nandagopal and Rhymend V Uthariaraj,

“Hierarchical Status Information Exchange Scheduling and

Load Balancing for Computational Grid Environments”,

International Journal of Computer Science and Network

Security, Vol. 10, No. 2, pp. 177-185, 2011.

[9] Jasma Balasangameshwara and Nedunchezhian Raju, “A

Hybrid Policy for Fault Tolerant Load Balancing in Grid

Computing Environments”, Journal of Network and

Computer Applications, Vol. 3, No. 35, pp. 412-422, 2011.

[10] Jia Yu and Rajkumar Buyya, “A Taxonomy of Workflow

Management Systems for Grid Computing”, Journal of Grid

Computing, Vol. 3, No. 3, pp. 171-200, 2005.

[11] Aissatou Diasse and Foroski Kone, “Dynamic-Distributed

Load Balancing for Highly-Performance and

Responsiveness Distributed-GIS (D-GIS)”, Journal of

Geographic Information System, Vol. 3, pp. 128-139, 2011.

[12] Renato Porfirio Ishii and Rodrigo Fernandes de Mello, “An

Adaptive and Historical Approach to Optimize Data Access

in Grid Computing Environments”, Infocomp Journal of

Computer Science, Vol. 10, No. 2, pp. 26-43, 2011.

[13] Nhan Nguyen Dang and Sang Boem Lim, “Combination of

Replication and Scheduling in Data Grids”, International

0

10000

20000

30000

40000

50000

60000

70000

Min-Min BSA FTMM LBFT FMF

M
a

k
es

p
a

n
(s

ec
)

Cases

Case 1

case 2

case 3

case 4

0

20

40

60

80

100

120

Case 1 Case 2 Case 3 Case 4

P
er

ce
n

ta
g

e

Cases

Min-min
FTMM
BSA
LBFT
FMF

ISSN: 2229-6959 (ONLINE) ICTACT JOURNAL ON SOFT COMPUTING, JANUARY 2017, VOLUME: 07, ISSUE: 02

1385

Journal of Computer Science and Network Security, Vol. 7,

No. 3, pp. 304-308, 2007.

[14] Suriya and Prashanth, “Review of Load Balancing in Cloud

Computing”, International Journal of Computer

Applications, Vol. 10, No. 1, pp. 35-39, 2013.

[15] Dimple Juneja and Atul Garg, “Collective Intelligence based

Framework for Load Balancing of Web Servers”,

International Journal of Advancements in Technology, Vol.

3, No. 1, pp. 64-70, 2012.

[16] Abhijit and S.S. Apte, “A comparative Performance

Analysis of Load Balancing Algorithms in Distributed

Systems using Qualitative Parameters”, International

Journal of Recent Technology and Engineering, Vol. 1, No.

3, pp. 175-179, 2012.

[17] Ali M.Alakeel, “A Fuzzy Dynamic Load Balancing

Algorithm for Homogeneous Distributed Systems”, World

Academy of Science, Engineering and Technology, Vol. 6,

No. 1, pp. 7-10, 2012.

[18] Sarpeet Singh and R.K. Bawa, “Proactive Fault Tolerance

Algorithm for Job Scheduling in Computational Grid”,

International Journal of Grid and Distributed Computing,

Vol. 9, No. 3, pp. 135-144, 2016.

[19] Walaa Abd Elrouf, Adil Yousif and Mohammed bakri

Bashir, “High Exploitation Genetic Algorithm for Job

Scheduling on Grid Computing”, International Journal of

Grid and Distributed Computing, Vol. 9, No. 3, pp. 212-228,

2016.

[20] Harkiran Kaur and Mandeep Kaur, “Comparative Study of

Various Task Scheduling Algorithms in Grid Computing”,

International Journal of Advanced Research in Computer

and Communication Engineering, Vol. 5, pp. 843-844,

2016.

