
ISSN: 2229-6956 (ONLINE)

DOI: 10.21917/ijsc.2016.0155
 ICTACT JOURNAL ON SOFT COMPUTING, JANUARY 2016, VOLUME: 06, ISSUE: 02

1117

OPTIMIZED PARTICLE SWARM OPTIMIZATION BASED DEADLINE

CONSTRAINED TASK SCHEDULING IN HYBRID CLOUD

Dhananjay Kumar1, B. Kavitha2, M. Padmavathy3, B. Harshini4, E. Preethi5 and P. Varalakshmi6

1,3,4,5Department of Information Technology, Anna University, MIT Campus, Chennai, India

E-mail: 1dhananjay@annauniv.edu, 3padmit93@gmail.com, 4mail2harshipriya@gmail.com, 5preethi1381995@gmail.com
2,6Department of Computer Technology, Anna University, MIT Campus, Chennai, India

E-mail: 2sridhar.kavitha@gmail.com, 6varanip@gmail.com

Abstract

Cloud Computing is a dominant way of sharing of computing resources

that can be configured and provisioned easily. Task scheduling in

Hybrid cloud is a challenge as it suffers from producing the best QoS

(Quality of Service) when there is a high demand. In this paper a new

resource allocation algorithm, to find the best External Cloud provider

when the intermediate provider’s resources aren’t enough to satisfy the

customer’s demand is proposed. The proposed algorithm called

Optimized Particle Swarm Optimization (OPSO) combines the two

metaheuristic algorithms namely Particle Swarm Optimization and Ant

Colony Optimization (ACO). These metaheuristic algorithms are used

for the purpose of optimization in the search space of the required

solution, to find the best resource from the pool of resources and to

obtain maximum profit even when the number of tasks submitted for

execution is very high. This optimization is performed to allocate job

requests to internal and external cloud providers to obtain maximum

profit. It helps to improve the system performance by improving the

CPU utilization, and handle multiple requests at the same time. The

simulation result shows that an OPSO yields 0.1% - 5% profit to the

intermediate cloud provider compared with standard PSO and ACO

algorithms and it also increases the CPU utilization by 0.1%.

Keywords:

Hybrid Cloud, Particle Swarm Optimization, Ant Colony Optimization,

Task Scheduling

1. INTRODUCTION

Cloud computing system is capable of lending infrastructure

as a service to customers in such a way that both the provider and

customer are equally benefitted [1]. The problem faced by the

cloud providers is the need to cater to peak demands at any given

instance. A solution to this problem is the use of hybrid cloud

framework where private cloud providers can get the help of

public cloud providers. The issue is how to allocate resources with

maximum profit while guaranteeing QoS. The use of real

infrastructures such as Amazon EC2, limits the scale of the

infrastructure, and makes the reproduction of results an extremely

difficult undertaking. The main reason for this condition

prevailing in the Internet based environments is beyond the

control of developers. This problem can be solved using an

evolutionary concept of execution of Particle Swarm Algorithm.

PSO can also be helpful when there are more than two datacenters

exists or mapping of VMs are required [2]. It considers each

variable as a particle and searches through the problem space to

find an optimal solution.

The PSO algorithm has a strong ability to find the most

optimistic result but it suffers from converging to local optimum.

In self-adaptive learning PSO (SLPSO), four updating strategies

are used to adaptively update the velocity of each particle

considered thereby finding optimal solution. Experimental result

[3] shows that, SLPSO can improve a cloud provider’s profit by

0.25%-11.56% compared with standard PSO. However in SLPSO

overhead occurs when the runtime of tasks is far from normal

rates. Another metaheuristic algorithm, Ant colony optimization

(ACO) can also be used for scheduling of resources. An ant is a

simple computational agent in the ant colony optimization

algorithm. It iteratively constructs a solution for the problem at

hand. The intermediate solutions are referred to as solution states.

At each iteration of the algorithm, each ant moves from a state x

to state y, corresponding to a more complete intermediate

solution. They have an advantage over simulated annealing and

genetic algorithm approaches of similar problems when the graph

may change dynamically. They can be run continuously and adapt

to changes in real time. ACO also has the disadvantage of

converging to local optimum in addition to convergence being

complex. This paper proposes an optimized particle swarm

optimization algorithm in combination with ant colony algorithm

which can be used for the scheduling problem.

The first part makes use of the fast convergence of PSO to

search the particles optimum position and make it as the start

position of ants. The second part makes use of the merit of

positive feedback and structure of solution set to search the

global optimum scheduling. The results obtained have shown

the proposed approach is feasible and effective for job

scheduling problem. An issue faced in the use of hybrid cloud

framework is the need for federation among cloud providers

which in turn needs a framework or a set of policies to be

established.To address those concerns, a hybrid cloud

computing model which users may adopt as a cost-saving

methodology to make use of public cloud services along with

their privately-owned data centres is being used. As the core of

this model, an intelligent workload factoring service is designed

for proactive workload management. It enables federation

between on-and-off premise infrastructures for hosting Internet-

based applications. It involves segregation of baseworkload and

flash crowdworkload, the two naturally different components

composing the application workload. The core technology of the

intelligent workload factoring service is a fast frequent data item

detection algorithm, which enables factoring incoming requests,

upon changing application data popularity [4].Here the

disadvantages include lack of security management, consistency

management and data replication. This paper avoids the

necessity of cloud federation and allows the private cloud

providers to directly outsource their requests to public cloud

providers without any inter cloud agreement. It also aims to

improve CPU utilization and reduce runtime for high range of

tasks.

mailto:1dhananjay@
mailto:Padmit93@gmail.com
mailto:mail2harshipriya@gmail.com

DHANANJAY KUMAR et al.: OPTIMIZED PARTICLE SWARM OPTIMIZATION BASED DEADLINE CONSTRAINED TASK SCHEDULING IN HYBRID CLOUD

1118

2. PSO ALGORITHM

Particle swarm optimization (PSO) [13] is an optimization

algorithm which simulates the movement and flocking of birds.

PSO shares many similarities with evolutionary computation

techniques such as Genetic Algorithms (GA). The system is

initialized with a population of random solutions and searches for

optima by updating generations. However, unlike GA, PSO has no

evolution operators such as crossover and mutation. In PSO, the

potential solutions called particles fly through the problem space by

following the current optimum particles. PSO optimizes a problem

by iteratively trying to improve a candidate solution with regard to

a given measure of quality. PSO optimizes a problem by having a

population of candidate solutions, particles, and moving these

particles around in the search-space according to simple

mathematical formulae over the particle's position and velocity.

Each particle's movement is influenced by its local best known

position but, is also guided toward the best known positions in the

search-space, which are updated as better positions are found by

other particles. This is expected to move the swarm toward the best

solutions. The choice of PSO parameters can have a large impact

on optimization performance. Selecting PSO parameters that yield

good performance has therefore been the subject of much research.

In standard PSO, each individual in the swarm is treated as a

particle in a D-dimensional search space, and represented by a

three tuple {Xi, Vi, Pi}, where Xi = (xi1, xi2, ... , xiD) and Vi = (vi1 ,

vi2 , ... , viD) denote the position and velocity of particle i,

respectively, and Pi = (pi1, pi2, ... , piD) represents the personal best

(pbest) of particle i (that is, the best position achieved by particle

i). G = (g1, g2, ... , gd) denotes the global best (gbest), namely the

best position tracked by the entire swarm. The value of each

element in the vector Vi can be clamped to the range of [-vmax,

vmax] to control the excessive roaming of particle outside the

search, and updated by

 Vid(t + 1) = ωVid(t)+c1r1[Xid(t)-pid(t)] + c2r2[Xid(t)-gd(t)] (1)

where, i = 1, 2, … , M denotes the number of particles and d = 1,

2, ... , D is the dimension of particles. r1 and r2 are the uniformly

distributed random number whose range is [0, 1]. c1 and c2 are

learning factors. c1 is the individual cognition component,

representing the search ability of the particle itself, and is the

social communication component representing the influence from

the social environment. ω is the inertia weight to avoid unlimited

growth of particle’s velocity. The particle flies toward a new

position, and each value of the new position should not exceed the

range of [min X, max X].

 Xid(t + 1) = Xid(t) + Vid(t + 1) (2)

In Eq.(1) and Eq.(2), the ω (moment of inertia) which takes

value of 0.4 and the two cognition learning factors c1, c2 takes the

value of 2.0. At the beginning, the position and velocity of each

particle in the swarm are initialized randomly. Then, each particle

is led by its own flying experience (pbest) and the best particle

(gbest), i.e., updated by Eq.(1) and Eq.(2). This process is

repeated until a user-defined stopping criterion is reached. The

steps of standard PSO is as follows:

Step 1: Randomly initialize position and velocity of all particles.

Step 2: Evaluate the profit of all particles; let each particle’s

pbest be its current position; let gbest be the best one

among all particles.

Step 3: Updated each particle’s velocity and position using

Eq.(1) and Eq.(2).

Step 4: Calculate the profit values of all particles.

Step 5: Update pbest. For each particle, if the profit value of its

new position is better than that of its pbest, then replace

its pbest by the new position.

Step 6: Update gbest. For each particle, if the profit value of its

new position is better than that of the gbest, then replace

the gbest by the new position.

Step 7: If all the iterations gets completed or the profit obtained

for all task is maximum or if solution for all tasks

converges for at least two generations, then output gbest

and its profit value; otherwise, go to Step 3.

3. ANT COLONY OPTIMIZATION

Ant colony optimization (ACO) [14] takes inspiration from

the foraging behaviour of some ant species. These ants deposit

pheromone on the ground in order to mark some favourable path

that should be followed by other members of the colony. Ant

colony optimization exploits a similar mechanism for solving

optimization problems. In ACO, a number of artificial ants build

solutions to the considered optimization problem at hand and

exchange information on the quality of these solutions via a

communication scheme that is reminiscent of the one adopted by

real ants. Ants are social insects. They live in colonies and their

behaviour is governed by the goal of colony survival rather than

being focused on the survival of individuals. The behaviour that

provided the inspiration for ACO is the ant’s foraging behaviour,

and in particular, how ants can find shortest paths between food

sources and their nest. When searching for food, ants initially

explore the area surrounding their nest in a random manner. While

moving, ants leave a chemical pheromone trail on the ground.

Ants can smell pheromone. When choosing their way, they

tend to choose, in probability, paths marked by strong pheromone

concentrations. As soon as an ant finds a food source, it evaluates

the quantity and the quality of the food and carries some of it back

to the nest. During the return trip, the quantity of pheromone that

an ant leaves on the ground may depend on the quantity and

quality of the food. The pheromone trails will guide other ants to

the food source. The indirect communication between the ants via

pheromone trails known as stigmergy enables them to find

shortest paths between their nest and food sources. The main

differences between the behaviour of the real ants and the

behaviour of the artificial ants are as follows:

1. While real ants move in their environment in an

asynchronous way, the artificial ants are synchronized, i.e.

at each iteration of the simulated system; each of the

artificial ants moves from the nest to the food source and

follows the same path back.

2. While real ants leave pheromone on the ground whenever

they move, artificial ants only deposit artificial pheromone

on their way back to the nest.

3. The foraging behaviour of real ants is based on an implicit

evaluation of a solution (i.e., a path from the nest to the

food source). By implicit solution evaluation we mean the

fact that shorter paths will be completed earlier than longer

ones, and therefore they will receive pheromone

ISSN: 2229-6956 (ONLINE) ICTACT JOURNAL ON SOFT COMPUTING, JANUARY 2016, VOLUME: 06, ISSUE: 02

1119

reinforcement more quickly. In contrast, the artificial ants

evaluate a solution with respect to some quality measure

which is used to determine the strength of the pheromone

reinforcement that the ants perform during their return trip

to the nest.

In general, the ACO approach attempts to solve an

optimization problem by iterating the following:

1. Candidate solutions are constructed using a pheromone

model, that is, a parameterized probability distribution

over the solution space.

2. The candidate solutions are used to modify the pheromone

values in a way that is deemed to bias future sampling

towards high-quality solutions. The pheromone update

aims to concentrate the search in regions of the search

space containing high-quality solutions. It implicitly

assumes that good solutions consist of good solution

components.

3.1 ALGORITHM

Step 1: Set parameters; initialize pheromone trails.

Step 2: Check whether number of iterations has exceeded or has

obtained the maximum profit.

Step 3: If Step 2 conditions are not met, then

i. Construct the Ant Solutions by using Eq.(3)

ii. Apply the Local Search by using Eq.(1) and Eq.(2)

iii. Update Pheromones.

Step 4: Else terminate the algorithm by displaying the allocated

task to thefeasible resource.

In the construction of a solution, ants select the following node

to be visited through a stochastic mechanism. When ant k is in

node i and has so far constructed a partial solution, the probability

of going to node j is given by:

otherwise

, if

1

p
ij

sNc ijij

ijij

k
ij

sNc
p

p
i

 (3)

where,

N(sp) - set of feasible components

α and β control the relative importance of pheromone

 - pheromone concentration

The heuristic information ij

ij = 1/dij

dij - profit obtained

4. OPSO ALGORITHM

The OPSO algorithm is a combination of ACO algorithm with

PSO algorithm, which can solve many optimization problems.

But both have the disadvantage of converging at local optimum.

This OPSO algorithm combines both algorithms to find optimum

solution in global search space. The proposed algorithm updates

the global pheromone, pbest and gbest at each iteration. Stopping

criteria are if maximum number of iterations is achieved or when

the optimum solution has appeared.

4.1 PROBLEM PARAMETERS

The OPSO algorithm uses the Eq.(4), Eq.(5), Eq.(6), Eq.(7) to

initialize and update the pheromone.

1. CPU pheromone

 ic(0) = ((n * c)/(n0 * c0)) * 100% (4)

2. Memory pheromone

 im(0) = (m/m0) * 100% (5)

3. External memory pheromone

 ie(0) = e/e0 * 100% (6)

 ij(0) = aic(0) + bie(0) + cim(0) (a + b + c =1) (7)

where,

n = number of CPU

c(MIPS) = processing power

m = memory capacity

mmax = m0, nmax = n0, cmax = c0, emax = e0

4.2 ALGORITHM

Step 1: Initialize the hardware pheromone of node using Eq.(4),

Eq.(5), Eq.(6). The total pheromone in each node is

calculated by Eq.(7).

Step 2: Put ‘a’ number of ants on ‘n’ nodes randomly and

calculate the profit value for each ant.

Step 3: Calculate the pbest and gbest for epoch 0. The velocity

of each particle is updated by using Eq.(1) and the

solution is updated by using strategy given in Eq.(2).

Step 4: Move to the next resource j according to the probability

Pij which is given by Eq.(3).

Step 5: Update the velocity, position and pheromone at each

epoch and find pbest and gbest for each ant and choose

the next resource based on Step 4.

Step 6: If pbest for all the ants converges or if no. of iterations

reaches the maximum the algorithm stops.

Step 7: Output the optimal solution or resource allocated for

each task.

The algorithm initializes the fitness function (maximizing the

profit) and concentration of pheromone initially in each resource.

Randomly assign the profit for each task as position and velocity.

Evaluate profit for next resource and based upon the probability

move to next resource. Finally update the pheromone for each

resource, update the new profit obtained for each task and update

velocity and position. Check whether the iteration count has been

exceeded its limit or the solution found converges for at least two

iterations or the fitness function is satisfied. If yes then terminate

the algorithm, else continue the same process until the best

feasible solution with high profit is obtained.

5. IMPLEMENTATION AND RESULTS

The required cloud environment is set up in cloudsim software

[17]. The Hybrid cloud is set up using a private cloud with a

datacentre consisting of three virtual machines and three public

cloud providers with a datacentre each. Each of the public cloud

provider has different system configuration and different VM

DHANANJAY KUMAR et al.: OPTIMIZED PARTICLE SWARM OPTIMIZATION BASED DEADLINE CONSTRAINED TASK SCHEDULING IN HYBRID CLOUD

1120

types. Each public cloud provider has three types of VM one is

small, one is medium and the other one is large. The Table.1 list

the prices in rupees of external cloud provider [3] which is used

to create cloudsim simulation environment. Each VM in the

public cloud are assigned cost and price.

The Table.2 specifies the cost and price in rupees for the

internal/private cloud [3] used in implementation of Hybrid cloud.

The VM’s in private cloud ranges between small, medium and

large.

The configuration specifications for each type of VM used in

implementation of the Hybrid cloud is listed in Table.3 [3]. The

small, medium, and large VM types has different configuration of

CPU (MIPS) and memory.

Table.1. Price of external cloud provider

Size of VM EC A EC B EC C

Small 0.085 0.070 0.100

Medium 0.34 0.30 0.40

Large 0.68 0.70 0.72

Table.2. Cost and price of internal cloud provider

 Small Medium Large

Cost 0.03 0.12 0.24

Price 0.08 0.32 0.64

Table.3. VM configuration specifications

 CPU(MIPS) Memory(GB)

Small 20 40

Medium 512 1024

Large 1024 2048

After the required environment has been set up the proposed

algorithm optimized PSO (OPSO) algorithm is run in this

environment and the result obtained is noted. The proposed

algorithm is run with different number of tasks, 50, 100, 1000

tasks and with varying amount of runtime of tasks. The same

number of tasks is run using Particle Swarm Optimization

algorithm, Ant colony Optimization, Self-adaptive Learning

Particle Swarm Optimization and the performance is recorded.

5.1 PERFORMANCE ANALYSIS

The proposed OPSO algorithm is deployed in hybrid cloud in

cloudsim environment [17] and performance measure of

respective approaches were observed. The parameter measured

for performance analysis are the profit, CPU utilization, average

runtime. The simulation were run for several iterations on an Intel

Pentium dual core in a windows 8 environment. The OPSO

algorithm yield 0.1% - 5% profit to the cloud provider compared

with standard PSO and ACO algorithms and it also increases the

CPU utilization by 0.1%.

The net profit were computed while executing ACO, PSO,

SLPSO and ACOPSO algorithms for 50 numbers of tasks (Fig.1).

ACOPSO algorithm outperforms the other algorithm in obtaining

high profit for intermediate cloud provider. For smaller number

of tasks it’s easy to find the best resource as the OPSO algorithm

converges at a faster rate. The solution search space scope is

widened by ACO algorithm and the best solution in the search

space is found out by the PSO algorithm.

Fig.1. Profit for 50 tasks

The Profit computation was again repeated for 100 and 1000

number of tasks (Fig.2). ACOPSO algorithm gives a better profit

when compared with other algorithm for larger number of tasks.

The profit increases as the utilization of CPU increases; more

number of tasks gets completed within a given time. Search space

gets widened by ACO algorithm and more optimal solution is

found at a faster pace.

The average CPU utilization were calculated while executing

ACO, PSO, SLPSO and ACOPSO algorithms for 50, 100 and

1000 number of tasks (Fig.3). The average CPU utilization

computation reveals that the ACOPSO algorithm increases the

CPU utilization rate by 0.1% when compared with other

algorithms. Due to the high convergence rate the number of tasks

gets completed in a unit time increases. The CPU ideal time

decreases which results in decrease of tasks runtime.

Fig.2. Profit for 100 and 1000 tasks

0

5

10

15

20

25

30

ACO PSO SLPSO ACOPSO

P
ro

fi
t

in
 R

u
p

ee
s

2100

2150

2200

2250

2300

2350

2400

2450

ACO PSO SLPSO ACOPSO

P
ro

fi
t

in
 R

u
p

ee
s

Algorithm

100 1000

ISSN: 2229-6956 (ONLINE) ICTACT JOURNAL ON SOFT COMPUTING, JANUARY 2016, VOLUME: 06, ISSUE: 02

1121

Fig.3. CPU utilization of ACO, PSO, ACOPSO and SLPSO

The average runtime were computed while executing ACO,

PSO, SLPSO and ACOPSO algorithms for 50, 100 and 1000

number of tasks (Fig.4). The average runtime obtained for

ACOPSO algorithm decreases to a greater extent when compared

to other algorithms. The run time decreases, because the more

effective solution is found out by the Optimised PSO algorithm

from the solution search space. The waiting time and turnaround

time of each task is reduced to a greater extent.

Fig.4. Runtime of simulation

6. CONCLUSION

Cloud services are being widely used in different domains.

Hence the cloud service providers are increasingly facing high

demand of requests from customers. They are forced to maintain

quality of service while meeting peak demands.

A solution to this problem is the use of hybrid cloud

framework where private cloud providers can outsource their

requests to public cloud providers. The proposed OPSO algorithm

allocates the requests to private cloud providers and public cloud

providers such that maximum profit is obtained in both the cases.

An optimized PSO which is a combination of ACO and PSO

approach has been formulated in order to effectively allocate

resources. Optimized PSO yielded 0.1% - 5% profit to the cloud

provider compared with standard PSO and ACO algorithms and

it also increases the CPU utilization by 0.1%. The average runtime

for the proposed algorithm has a drastic decrease compared to

other algorithms. The proposed solution is designed to guarantee

user level QoS and improve IaaS provider’s credibility and

economic benefit.

The proposed work can be further extended to improve the

efficiency of the OPSO approach by combining with a

Hypergraph [4] clustering or k means type clustering [18] of

requests and resources before applying the OPSO approach in

order to further increase the speed of OPSO.

ACKNOWLEDGEMENT

We would like to express our sincere thanks and deep sense of

gratitude to the Department of Information Technology, Anna

University, MIT Campus, Chennai for providing necessary

infrastructure and support to complete our research work.

REFERENCES

[1] Rajkumar Buyya, Chee Shin Yeo, Srikumar Venugopal,

James Broberg and Ivona Brandic, “Cloud Computing and

Emerging IT Platforms: Vision, Hype and Reality for

Delivering Computing as the 5th Utility”, Future

Generation Computer Systems, Vol. 25, No. 6, pp. 599-616,

2009.

[2] S. Bhardwaj, L. Jain and S. Jain, “Cloud Computing: A

Study of Infrastructure as a Service (IaaS)”, International

Journal of Engineering and Information Technology, Vol. 2,

No. 1, pp. 60-63, 2010.

[3] Xingquan Zuo, Guoxiang Zhang and Wei Tan, “Self-

Adaptive Learning PSO-Based Deadline Constrained Task

Scheduling for Hybrid IaaS Cloud”, IEEE Transactions on

Automation Science and Engineering, Vol. 11, No. 2, pp.

564-573, 2014.

[4] Hui Zhang, Guofei Jiang, Kenji Yoshihira and Chen

Haifeng, “Proactive Workload Management in Hybrid

Cloud Computing”, IEEE Transactions on Network and

Service Management, Vol. 11, No. 1, pp. 90-100, 2014.

[5] Li Li, Wang Keqi and Zhou Chunnan, “An Improved Ant

Colony Algorithm Combined with Particle Swarm

Optimization Algorithm for Multi-objective Flexible Job

Shop Scheduling Problem”, Proceedings of International

Conference on Machine Vision and Human-Machine

Interface, pp. 88-91, 2010.

[6] Yu Wang, Bin Li, Thomas Weise, Jianyu Wang, Bo Yuan

and Qiongjie Tian, “SelfAdaptive Learning Based Particle

Swarm Optimization”, Information Sciences, Vol. 181, No.

20, pp. 4515-4538, 2011.

[7] Lu Huang, Hai-shan Chen and Ting-ting Hu, “Survey on

Resource Allocation Policy and Job Scheduling Algorithms

of Cloud Computing” Journal of Software, Vol. 8 , No. 2,

pp. 480-487, 2013.

[8] M.A. Tawfeek, A. ElSisi, A.E. Keshk and F.A. Torkey,

“Cloud Task Scheduling Based on Ant Colony

Optimization”, Proceedings of 8th International Conference

on Computer Engineering and Systems, pp. 64-69, 2013.

[9] D. Bruneo, “A Stochastic Model to Investigate Data Centre

Performance and Qos in IaaS Cloud Computing Systems”,

0

0.2

0.4

0.6

0.8

1

50 100 1000

C
P

U
 U

ti
li

z
a

ti
o

n

Number of Tasks

ACO PSO

ACOPSO SLPSO

0

2000

4000

6000

8000

10000

50 100 1000

A
v

e
r
a

g
e
 R

u
n

ti
m

e

Number of Tasks

ACO PSO

SLPSO ACOPSO

DHANANJAY KUMAR et al.: OPTIMIZED PARTICLE SWARM OPTIMIZATION BASED DEADLINE CONSTRAINED TASK SCHEDULING IN HYBRID CLOUD

1122

IEEE Transactions on Parallel and Distributed Systems,

Vol. 25, No. 3, pp. 560-569, 2014.

[10] N.D. Doulamis, P. Kokkinos and E. Varvarigos, “Resources

Selection for Task with Time Requirements Using Spectral

Clustering”, IEEE Transactions on Computers, Vol. 63, No.

2, pp. 461-474, 2014.

[11] Haiying Shen and Guoxin Liu, “An Efficient and

Trustworthy Resource Sharing Platform for Collaborative

Cloud Computing”, IEEE Transactions on Distributed and

Parallel Systems, Vol. 25, No. 4, pp. 862-875, 2014.

[12] Junwei Cao, Keqin Li and I. Stojmenovic, “Optimal Power

Allocation and Load Distribution for Multiple

Heterogeneous Multicore Server Processors across Clouds

and Data Centers”, IEEE Transactions on Computers, Vol.

63, No. 1, pp. 45-58, 2014.

[13] J. Kennedy and R. Eberhart, “Particle Swarm Optimization”,

Proceedings of IEEE International Conference on Neural

Networks, Vol. 4, pp. 1942-1948, 1995.

[14] M. Dorigo, M. Birattari and T. Stutzle, “Ant Colony

Optimization: Artificial Ants as a Computational

Intelligence Technique”, IEEE Computational Intelligence

Magazine, Vol. 1, No. 4, pp. 28-39, 2006.

[15] A. Ratnaweera, S. Halgamuge and H.C. Watson, “Self-

Organizing Hierarchical Particle Swarm Optimizer with

Time-Varying Acceleration Coefficients”, IEEE

Transactions on Evolutionary Computation, Vol. 8, No. 3,

pp. 240-255, 2004.

[16] Hu Xiaohui and R. Eberhart, “Multiobjective Optimization

using Dynamic Neighborhood Particle Swarm

Optimization”, Proceedings of Congress on Evolutionary

Computation, Vol. 2, pp. 1677-1681, 2002.

[17] Kavita Bhatt and Mahesh Bundele, “CloudSim Estimation

of a Simple Particle Swarm Algorithm”, International

Journal of Advanced Research in Computer Science and

Software Engineering, Vol. 3, No. 8, pp. 1279-1287, 2013.

[18] A. Ahmadyfard and H. Modares, “Combining PSO and K-

means to Enhance Data Clustering”, Proceedings of

International Symposium on Telecommunications, pp. 688-

691, 2008.

