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Abstract 

Cloud Computing is a dominant way of sharing of computing resources 

that can be configured and provisioned easily. Task scheduling in 

Hybrid cloud is a challenge as it suffers from producing the best QoS 

(Quality of Service) when there is a high demand. In this paper a new 

resource allocation algorithm, to find the best External Cloud provider 

when the intermediate provider’s resources aren’t enough to satisfy the 

customer’s demand is proposed. The proposed algorithm called 

Optimized Particle Swarm Optimization (OPSO) combines the two 

metaheuristic algorithms namely Particle Swarm Optimization and Ant 

Colony Optimization (ACO). These metaheuristic algorithms are used 

for the purpose of optimization in the search space of the required 

solution, to find the best resource from the pool of resources and to 

obtain maximum profit even when the number of tasks submitted for 

execution is very high. This optimization is performed to allocate job 

requests to internal and external cloud providers to obtain maximum 

profit. It helps to improve the system performance by improving the 

CPU utilization, and handle multiple requests at the same time. The 

simulation result shows that an OPSO yields 0.1% - 5% profit to the 

intermediate cloud provider compared with standard PSO and ACO 

algorithms and it also increases the CPU utilization by 0.1%. 
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1. INTRODUCTION

Cloud computing system is capable of lending infrastructure 

as a service to customers in such a way that both the provider and 

customer are equally benefitted [1]. The problem faced by the 

cloud providers is the need to cater to peak demands at any given 

instance. A solution to this problem is the use of hybrid cloud 

framework where private cloud providers can get the help of 

public cloud providers. The issue is how to allocate resources with 

maximum profit while guaranteeing QoS. The use of real 

infrastructures such as Amazon EC2, limits the scale of the 

infrastructure, and makes the reproduction of results an extremely 

difficult undertaking. The main reason for this condition 

prevailing in the Internet based environments is beyond the 

control of developers. This problem can be solved using an 

evolutionary concept of execution of Particle Swarm Algorithm. 

PSO can also be helpful when there are more than two datacenters 

exists or mapping of VMs are required [2]. It considers each 

variable as a particle and searches through the problem space to 

find an optimal solution.  

The PSO algorithm has a strong ability to find the most 

optimistic result but it suffers from converging to local optimum. 

In self-adaptive learning PSO (SLPSO), four updating strategies 

are used to adaptively update the velocity of each particle 

considered thereby finding optimal solution. Experimental result 

[3] shows that, SLPSO can improve a cloud provider’s profit by 

0.25%-11.56% compared with standard PSO. However in SLPSO 

overhead occurs when the runtime of tasks is far from normal 

rates. Another metaheuristic algorithm, Ant colony optimization 

(ACO) can also be used for scheduling of resources. An ant is a 

simple computational agent in the ant colony optimization 

algorithm. It iteratively constructs a solution for the problem at 

hand. The intermediate solutions are referred to as solution states. 

At each iteration of the algorithm, each ant moves from a state x 

to state y, corresponding to a more complete intermediate 

solution. They have an advantage over simulated annealing and 

genetic algorithm approaches of similar problems when the graph 

may change dynamically. They can be run continuously and adapt 

to changes in real time. ACO also has the disadvantage of 

converging to local optimum in addition to convergence being 

complex. This paper proposes an optimized particle swarm 

optimization algorithm in combination with ant colony algorithm 

which can be used for the scheduling problem.  

The first part makes use of the fast convergence of PSO to 

search the particles optimum position and make it as the start 

position of ants. The second part makes use of the merit of 

positive feedback and structure of solution set to search the 

global optimum scheduling. The results obtained have shown 

the proposed approach is feasible and effective for job 

scheduling problem. An issue faced in the use of hybrid cloud 

framework is the need for federation among cloud providers 

which in turn needs a framework or a set of policies to be 

established.To address those concerns, a hybrid cloud 

computing model which users may adopt as a cost-saving 

methodology to make use of public cloud services along with 

their privately-owned data centres is being used. As the core of 

this model, an intelligent workload factoring service is designed 

for proactive workload management. It enables federation 

between on-and-off premise infrastructures for hosting Internet-

based applications. It involves segregation of baseworkload and 

flash crowdworkload, the two naturally different components 

composing the application workload. The core technology of the 

intelligent workload factoring service is a fast frequent data item 

detection algorithm, which enables factoring incoming requests, 

upon changing application data popularity [4].Here the 

disadvantages include lack of security management, consistency 

management and data replication. This paper avoids the 

necessity of cloud federation and allows the private cloud 

providers to directly outsource their requests to public cloud 

providers without any inter cloud agreement. It also aims to 

improve CPU utilization and reduce runtime for high range of 

tasks. 
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2. PSO ALGORITHM 

Particle swarm optimization (PSO) [13] is an optimization 

algorithm which simulates the movement and flocking of birds. 

PSO shares many similarities with evolutionary computation 

techniques such as Genetic Algorithms (GA). The system is 

initialized with a population of random solutions and searches for 

optima by updating generations. However, unlike GA, PSO has no 

evolution operators such as crossover and mutation. In PSO, the 

potential solutions called particles fly through the problem space by 

following the current optimum particles.  PSO optimizes a problem 

by iteratively trying to improve a candidate solution with regard to 

a given measure of quality. PSO optimizes a problem by having a 

population of candidate solutions, particles, and moving these 

particles around in the search-space according to simple 

mathematical formulae over the particle's position and velocity. 

Each particle's movement is influenced by its local best known 

position but, is also guided toward the best known positions in the 

search-space, which are updated as better positions are found by 

other particles. This is expected to move the swarm toward the best 

solutions. The choice of PSO parameters can have a large impact 

on optimization performance. Selecting PSO parameters that yield 

good performance has therefore been the subject of much research. 

In standard PSO, each individual in the swarm is treated as a 

particle in a D-dimensional search space, and represented by a 

three tuple {Xi, Vi, Pi}, where Xi = (xi1, xi2, ... , xiD) and Vi = (vi1 , 

vi2 , ... , viD) denote the position and velocity of particle i, 

respectively, and Pi = (pi1, pi2, ... , piD) represents the personal best 

(pbest) of particle i (that is, the best position achieved by particle 

i ). G = (g1, g2, ... , gd) denotes the global best (gbest), namely the 

best position tracked by the entire swarm. The value of each 

element in the vector Vi can be clamped to the range of [-vmax, 

vmax] to control the excessive roaming of particle outside the 

search, and updated by 

 Vid(t + 1) = ωVid(t)+c1r1[Xid(t)-pid(t)] + c2r2[Xid(t)-gd(t)]   (1) 

where, i = 1, 2, … , M denotes the number of particles and d = 1, 

2, ... , D is the dimension of particles. r1 and r2 are the uniformly 

distributed random number whose range is [0, 1].  c1 and c2 are 

learning factors. c1 is the individual cognition component, 

representing the search ability of the particle itself, and is the 

social communication component representing the influence from 

the social environment. ω is the inertia weight to avoid unlimited 

growth of particle’s velocity. The particle flies toward a new 

position, and each value of the new position should not exceed the 

range of [min X, max X]. 

 Xid(t + 1)  =  Xid(t) + Vid(t + 1)              (2) 

In Eq.(1) and Eq.(2), the ω (moment of inertia) which takes 

value of 0.4 and the two cognition learning factors c1, c2 takes the 

value of 2.0. At the beginning, the position and velocity of each 

particle in the swarm are initialized randomly. Then, each particle 

is led by its own flying experience (pbest) and the best particle 

(gbest), i.e., updated by Eq.(1) and Eq.(2). This process is 

repeated until a user-defined stopping criterion is reached. The 

steps of standard PSO is as follows: 

Step 1: Randomly initialize position and velocity of all particles. 

Step 2: Evaluate the profit of all particles; let each particle’s 

pbest be its current position; let gbest be the best one 

among all particles. 

Step 3: Updated each particle’s velocity and position using 

Eq.(1) and Eq.(2). 

Step 4: Calculate the profit values of all particles. 

Step 5: Update pbest. For each particle, if the profit value of its 

new position is better than that of its pbest, then replace 

its pbest by the new position. 

Step 6: Update gbest. For each particle, if the profit value of its 

new position is better than that of the gbest, then replace 

the gbest by the new position. 

Step 7: If all the iterations gets completed or the profit obtained 

for all task is maximum or if solution for all tasks 

converges for at least two generations, then output gbest 

and its profit value; otherwise, go to Step 3. 

3. ANT COLONY OPTIMIZATION 

Ant colony optimization (ACO) [14] takes inspiration from 

the foraging behaviour of some ant species. These ants deposit 

pheromone on the ground in order to mark some favourable path 

that should be followed by other members of the colony. Ant 

colony optimization exploits a similar mechanism for solving 

optimization problems. In ACO, a number of artificial ants build 

solutions to the considered optimization problem at hand and 

exchange information on the quality of these solutions via a 

communication scheme that is reminiscent of the one adopted by 

real ants. Ants are social insects. They live in colonies and their 

behaviour is governed by the goal of colony survival rather than 

being focused on the survival of individuals. The behaviour that 

provided the inspiration for ACO is the ant’s foraging behaviour, 

and in particular, how ants can find shortest paths between food 

sources and their nest. When searching for food, ants initially 

explore the area surrounding their nest in a random manner. While 

moving, ants leave a chemical pheromone trail on the ground. 

Ants can smell pheromone. When choosing their way, they 

tend to choose, in probability, paths marked by strong pheromone 

concentrations. As soon as an ant finds a food source, it evaluates 

the quantity and the quality of the food and carries some of it back 

to the nest. During the return trip, the quantity of pheromone that 

an ant leaves on the ground may depend on the quantity and 

quality of the food. The pheromone trails will guide other ants to 

the food source. The indirect communication between the ants via 

pheromone trails known as stigmergy enables them to find 

shortest paths between their nest and food sources. The main 

differences between the behaviour of the real ants and the 

behaviour of the artificial ants are as follows: 

1. While real ants move in their environment in an 

asynchronous way, the artificial ants are synchronized, i.e. 

at each iteration of the simulated system; each of the 

artificial ants moves from the nest to the food source and 

follows the same path back. 

2. While real ants leave pheromone on the ground whenever 

they move, artificial ants only deposit artificial pheromone 

on their way back to the nest. 

3. The foraging behaviour of real ants is based on an implicit 

evaluation of a solution (i.e., a path from the nest to the 

food source). By implicit solution evaluation we mean the 

fact that shorter paths will be completed earlier than longer 

ones, and therefore they will receive pheromone 
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reinforcement more quickly. In contrast, the artificial ants 

evaluate a solution with respect to some quality measure 

which is used to determine the strength of the pheromone 

reinforcement that the ants perform during their return trip 

to the nest. 

In general, the ACO approach attempts to solve an 

optimization problem by iterating the following: 

1. Candidate solutions are constructed using a pheromone 

model, that is, a parameterized probability distribution 

over the solution space. 

2. The candidate solutions are used to modify the pheromone 

values in a way that is deemed to bias future sampling 

towards high-quality solutions. The pheromone update 

aims to concentrate the search in regions of the search 

space containing high-quality solutions. It implicitly 

assumes that good solutions consist of good solution 

components. 

3.1 ALGORITHM 

Step 1: Set parameters; initialize pheromone trails. 

Step 2: Check whether number of iterations has exceeded or has 

obtained the maximum profit. 

Step 3: If Step 2 conditions are not met, then 

i. Construct the Ant Solutions by using Eq.(3) 

ii. Apply the Local Search by using Eq.(1) and Eq.(2) 

iii. Update Pheromones. 

Step 4: Else terminate the algorithm by displaying the allocated 

task to thefeasible resource. 

In the construction of a solution, ants select the following node 

to be visited through a stochastic mechanism. When ant k is in 

node i and has so far constructed a partial solution, the probability 

of going to node j is given by: 
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where, 

N(sp) - set of feasible components 

α and β control the relative importance of pheromone 

 - pheromone concentration 

The heuristic information ij 

ij = 1/dij 

dij - profit obtained  

4. OPSO ALGORITHM 

The OPSO algorithm is a combination of ACO algorithm with 

PSO algorithm, which can solve many optimization problems. 

But both have the disadvantage of converging at local optimum. 

This OPSO algorithm combines both algorithms to find optimum 

solution in global search space. The proposed algorithm updates 

the global pheromone, pbest and gbest at each iteration. Stopping 

criteria are if maximum number of iterations is achieved or when 

the optimum solution has appeared. 

4.1 PROBLEM PARAMETERS 

The OPSO algorithm uses the Eq.(4), Eq.(5), Eq.(6), Eq.(7) to 

initialize and update the pheromone. 

1. CPU pheromone 

 ic(0) = ((n * c)/(n0 * c0)) * 100%                   (4) 

2. Memory pheromone 

 im(0) = (m/m0) * 100% (5) 

3. External memory pheromone 

 ie(0) = e/e0 * 100%               (6) 

 ij(0) =  aic(0) + bie(0) + cim(0) (a + b + c =1)  (7) 

where,  

n = number of CPU 

c(MIPS) = processing power 

m = memory capacity 

mmax = m0, nmax = n0, cmax = c0, emax = e0 

4.2 ALGORITHM 

Step 1: Initialize the hardware pheromone of node using Eq.(4), 

Eq.(5), Eq.(6). The total pheromone in each node is 

calculated by Eq.(7).  

Step 2: Put ‘a’ number of ants on ‘n’ nodes randomly and 

calculate the profit value for each ant.  

Step 3: Calculate the pbest and gbest for epoch 0. The velocity 

of each particle is updated by using Eq.(1) and the 

solution is updated by using strategy given in Eq.(2).  

Step 4: Move to the next resource j according to the probability 

Pij which is given by Eq.(3). 

Step 5: Update the velocity, position and pheromone at each 

epoch and find pbest and gbest for each ant and choose 

the next resource based on Step 4. 

Step 6: If pbest for all the ants converges or if no. of iterations 

reaches the maximum the algorithm stops. 

Step 7: Output the optimal solution or resource allocated for 

each task. 

The algorithm initializes the fitness function (maximizing the 

profit) and concentration of pheromone initially in each resource. 

Randomly assign the profit for each task as position and velocity. 

Evaluate profit for next resource and based upon the probability 

move to next resource. Finally update the pheromone for each 

resource, update the new profit obtained for each task and update 

velocity and position. Check whether the iteration count has been 

exceeded its limit or the solution found converges for at least two 

iterations or the fitness function is satisfied. If yes then terminate 

the algorithm, else continue the same process until the best 

feasible solution with high profit is obtained. 

5. IMPLEMENTATION AND RESULTS 

The required cloud environment is set up in cloudsim software 

[17]. The Hybrid cloud is set up using a private cloud with a 

datacentre consisting of three virtual machines and three public 

cloud providers with a datacentre each. Each of the public cloud 

provider has different system configuration and different VM 
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types. Each public cloud provider has three types of VM one is 

small, one is medium and the other one is large. The Table.1 list 

the prices in rupees of external cloud provider [3] which is used 

to create cloudsim simulation environment. Each VM in the 

public cloud are assigned cost and price. 

The Table.2 specifies the cost and price in rupees for the 

internal/private cloud [3] used in implementation of Hybrid cloud. 

The VM’s in private cloud ranges between small, medium and 

large. 

The configuration specifications for each type of VM used in 

implementation of the Hybrid cloud is listed in Table.3 [3]. The 

small, medium, and large VM types has different configuration of 

CPU (MIPS) and memory. 

Table.1. Price of external cloud provider 

Size of VM EC A EC B EC C 

Small 0.085 0.070 0.100 

Medium 0.34 0.30 0.40 

Large 0.68 0.70 0.72 

Table.2. Cost and price of internal cloud provider 

 Small Medium Large 

Cost 0.03 0.12 0.24 

Price 0.08 0.32 0.64 

Table.3. VM configuration specifications 

 CPU(MIPS) Memory(GB) 

Small 20 40 

Medium 512 1024 

Large 1024 2048 

After the required environment has been set up the proposed 

algorithm optimized PSO (OPSO) algorithm is run in this 

environment and the result obtained is noted. The proposed 

algorithm is run with different number of tasks, 50, 100, 1000 

tasks and with varying amount of runtime of tasks. The same 

number of tasks is run using Particle Swarm Optimization 

algorithm, Ant colony Optimization, Self-adaptive Learning 

Particle Swarm Optimization and the performance is recorded. 

5.1 PERFORMANCE ANALYSIS 

The proposed OPSO algorithm is deployed in hybrid cloud in 

cloudsim environment [17] and performance measure of 

respective approaches were observed. The parameter measured 

for performance analysis are the profit, CPU utilization, average 

runtime. The simulation were run for several iterations on an Intel 

Pentium dual core in a windows 8 environment. The OPSO 

algorithm yield 0.1% - 5% profit to the cloud provider compared 

with standard PSO and ACO algorithms and it also increases the 

CPU utilization by 0.1%. 

The net profit were computed while executing ACO, PSO, 

SLPSO and ACOPSO algorithms for 50 numbers of tasks (Fig.1). 

ACOPSO algorithm outperforms the other algorithm in obtaining 

high profit for intermediate cloud provider. For smaller number 

of tasks it’s easy to find the best resource as the OPSO algorithm 

converges at a faster rate. The solution search space scope is 

widened by ACO algorithm and the best solution in the search 

space is found out by the PSO algorithm. 

 

Fig.1. Profit for 50 tasks 

The Profit computation was again repeated for 100 and 1000 

number of tasks (Fig.2). ACOPSO algorithm gives a better profit 

when compared with other algorithm for larger number of tasks. 

The profit increases as the utilization of CPU increases; more 

number of tasks gets completed within a given time. Search space 

gets widened by ACO algorithm and more optimal solution is 

found at a faster pace. 

The average CPU utilization were calculated while executing 

ACO, PSO, SLPSO and ACOPSO algorithms for 50, 100 and 

1000 number of tasks (Fig.3). The average CPU utilization 

computation reveals that the ACOPSO algorithm increases the 

CPU utilization rate by 0.1% when compared with other 

algorithms. Due to the high convergence rate the number of tasks 

gets completed in a unit time increases. The CPU ideal time 

decreases which results in decrease of tasks runtime. 

 

Fig.2. Profit for 100 and 1000 tasks 

0

5

10

15

20

25

30

ACO PSO SLPSO ACOPSO

P
ro

fi
t 

in
 R

u
p

ee
s

2100

2150

2200

2250

2300

2350

2400

2450

ACO PSO SLPSO ACOPSO

P
ro

fi
t 

in
 R

u
p

ee
s

Algorithm

100 1000



ISSN: 2229-6956 (ONLINE)                              ICTACT JOURNAL ON SOFT COMPUTING, JANUARY 2016, VOLUME: 06, ISSUE: 02 

1121 

 

Fig.3. CPU utilization of ACO, PSO, ACOPSO and SLPSO 

The average runtime were computed while executing ACO, 

PSO, SLPSO and ACOPSO algorithms for 50, 100 and 1000 

number of tasks (Fig.4). The average runtime obtained for 

ACOPSO algorithm decreases to a greater extent when compared 

to other algorithms. The run time decreases, because the more 

effective solution is found out by the Optimised PSO algorithm 

from the solution search space. The waiting time and turnaround 

time of each task is reduced to a greater extent. 

 

Fig.4. Runtime of simulation 

6. CONCLUSION 

Cloud services are being widely used in different domains. 

Hence the cloud service providers are increasingly facing high 

demand of requests from customers. They are forced to maintain 

quality of service while meeting peak demands.  

A solution to this problem is the use of hybrid cloud 

framework where private cloud providers can outsource their 

requests to public cloud providers. The proposed OPSO algorithm 

allocates the requests to private cloud providers and public cloud 

providers such that maximum profit is obtained in both the cases. 

An optimized PSO which is a combination of ACO and PSO 

approach has been formulated in order to effectively allocate 

resources. Optimized PSO yielded 0.1% - 5% profit to the cloud 

provider compared with standard PSO and ACO algorithms and 

it also increases the CPU utilization by 0.1%. The average runtime 

for the proposed algorithm has a drastic decrease compared to 

other algorithms. The proposed solution is designed to guarantee 

user level QoS and improve IaaS provider’s credibility and 

economic benefit. 

The proposed work can be further extended to improve the 

efficiency of the OPSO approach by combining with a 

Hypergraph [4] clustering or k means type clustering [18] of 

requests and resources before applying the OPSO approach in 

order to further increase the speed of OPSO. 
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