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Abstract

The rapid urbanization that has occurred across the globe has
intensified the demand for energy-efficient infrastructures in the smart
city domain. Conventional control strategies have struggled to address
the dynamic, nonlinear, and uncertain nature of urban energy systems.
Intelligent controllers that have combined learning capability with
human-like reasoning have therefore attracted increasing attention for
sustainable city development. Despite notable progress, many existing
energy management frameworks have remained limited by single-
objective optimization and rigid control logic. These limitations have
reduced adaptability under fluctuating demand, heterogeneous data
streams, and conflicting performance goals such as energy efficiency,
stability, and operational cost. An effective solution has required a
controller that has balanced multiple objectives while maintaining
interpretability and robustness. This study has proposed a multi-
objective neuro-fuzzy controller that has integrated fuzzy inference
with neural learning for smart city energy management. The controller
architecture has incorporated adaptive membership functions and rule
bases that have evolved through multi-objective optimization. Energy
consumption, system stability, and response efficiency have been jointly
optimized using a Pareto-based learning mechanism that has guided
parameter tuning. The simulation framework has modeled urban
energy scenarios that have included variable loads, renewable
integration, and stochastic demand patterns. The experimental
evaluation demonstrates that the proposed controller achieves
significant improvements over conventional methods. Energy
consumption reduces to 360 kWh compared with 430 kWh (FLC), 410
kWh (ANN), and 395 kWh (SONFC). Stability index increases to 0.93,
and response time decreases to 1.2 s. Energy savings reach 21.9% at
peak loads, while control efficiency improves to 93%, confirming the
controller’s adaptability and superior performance under dynamic
urban energy scenarios.
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1. INTRODUCTION

The rapid expansion of urban populations has increased the
pressure on energy infrastructures that support transportation,
buildings, communication networks, and public services. Smart
city paradigms have therefore emerged as an integrated solution
that has leveraged sensing, communication, and intelligent
control to improve urban sustainability and quality of life [1-3].
In this context, energy management has remained a central
concern, since inefficient control strategies have directly
contributed to excessive consumption, higher operational costs,
and environmental degradation. Intelligent controllers that have
combined adaptability with decision interpretability have
increasingly been viewed as suitable candidates for complex
urban energy systems.
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Despite these advances, several challenges have persisted in
smart city energy control. Urban energy environments have
exhibited high nonlinearity due to the interaction between
renewable sources, storage units, and variable loads. Moreover,
uncertainty that has arisen from human behavior, weather
conditions, and distributed generation has limited the
effectiveness of conventional rule-based or model-driven
controllers [4,5]. Scalability and real-time responsiveness have
also posed difficulties, particularly when multiple performance
objectives must be addressed simultaneously.

The core problem has therefore centered on the lack of control
frameworks that have effectively balanced conflicting objectives
such as energy efficiency, system stability, and fast response
under dynamic conditions [6,7]. Many existing approaches have
optimized a single metric, which has resulted in performance
degradation when operating conditions have changed.
Furthermore, black-box learning models have often lacked
transparency, which has reduced trust and practical adoption in
urban governance systems.

To address these limitations, this work has focused on the
design of a multi-objective neuro-fuzzy controller for smart city
energy management. The primary objectives have included
minimizing energy consumption, maintaining system stability,
and improving adaptability under uncertain demand. By
integrating neural learning with fuzzy inference, the proposed
approach has aimed to exploit the learning capability of neural
networks while preserving the interpretability of fuzzy logic.

The novelty of this study has resided in the simultaneous
optimization of multiple objectives within a neuro-fuzzy
framework that has adapted its membership functions and rule
parameters dynamically. Unlike traditional controllers, the
proposed model has incorporated a Pareto-based learning
mechanism that has guided the trade-offs among competing goals.
This integration has allowed the controller to respond effectively
to heterogeneous urban energy scenarios.

The main contributions of this work have been summarized as
follows:

* A multi-objective neuro-fuzzy control architecture that has
addressed energy efficiency, stability, and responsiveness in
a unified framework;

* An adaptive optimization strategy that has enhanced
robustness and interpretability for smart city energy
applications.

2. RELATED WORKS

Previous research has extensively explored intelligent control
techniques for energy management in smart cities. Early studies
have primarily relied on fuzzy logic controllers due to their ability
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to incorporate expert knowledge and handle uncertainty. Several
works have demonstrated that fuzzy-based energy management
systems have improved consumption efficiency in buildings and
microgrids by encoding heuristic rules derived from human
expertise [8,9]. However, these systems have often required
manual tuning of membership functions, which has limited
adaptability under dynamic conditions.

To overcome this limitation, neural network-based controllers
have been introduced for urban energy optimization. These
approaches have learned complex nonlinear mappings between
system states and control actions from historical data. Studies
have reported improved prediction accuracy and faster response
compared with traditional methods [10,11]. Nevertheless, purely
neural approaches have suffered from a lack of interpretability,
since the learned parameters have not provided explicit reasoning
pathways. This drawback has restricted their acceptance in safety-
critical urban infrastructures.

Hybrid neuro-fuzzy systems have subsequently emerged to
combine the strengths of both paradigms. Researchers have
proposed adaptive neuro-fuzzy inference systems that have
automatically tuned fuzzy rules using neural learning algorithms.
These models have achieved better generalization and
adaptability in energy management scenarios such as smart
buildings and distributed grids [12,13]. Despite these advantages,
most existing neuro-fuzzy approaches have focused on single-
objective optimization, typically minimizing energy consumption
alone.

Multi-objective optimization techniques have later been
introduced to address conflicting goals in smart city energy
systems. Evolutionary algorithms and Pareto-based methods have
been employed to balance objectives such as cost, emissions, and
reliability. Several studies have shown that multi-objective
frameworks have provided more realistic and flexible solutions
compared with single-metric optimization [14,15]. However,
when combined with intelligent controllers, these techniques have
often resulted in high computational complexity, which has
affected real-time applicability.

Recent works have attempted to integrate multi-objective
optimization with intelligent control for urban energy
management. Some studies have applied multi-objective neural
networks, while others have embedded optimization layers within
fuzzy systems. Although these approaches have improved overall
performance, they have frequently relied on static rule bases or
offline training procedures [16,17]. As a result, adaptability to
rapidly changing urban conditions has remained limited.

3. PROPOSED METHOD

The proposed method has developed a multi-objective neuro-
fuzzy controller (MONFC) for smart city energy management,
which has integrated fuzzy logic inference with adaptive neural
network learning to address the challenges of nonlinear,
uncertain, and dynamic urban energy systems. The controller has
aimed to optimize multiple conflicting objectives simultaneously,
including energy efficiency, system stability, and response time.
The architecture has included an input fuzzification layer, a rule
evaluation layer, an adaptive neural learning mechanism for
parameter tuning, and a defuzzification layer to generate control
actions. A Pareto-based optimization strategy has guided the
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adaptation of membership functions and rule weights, allowing
the controller to respond efficiently to varying demand patterns
and heterogeneous energy sources. The method has been
evaluated under simulated smart city scenarios, including variable
renewable energy integration and fluctuating urban loads,
demonstrating superior performance over conventional single-
objective or static neuro-fuzzy approaches.

Algorithm

1. Initialize energy system data, fuzzy membership functions,
neural weights

2. For each time step t in simulation:
3. Read system inputs: load(t), generation(t), storage(t)

4.  Fuzzify inputs into fuzzy sets

5. For each fuzzy rule:

6. Compute rule activation strength

7. Evaluate control action contribution

8. End For

9. Aggregate rule outputs

10.  Neural network adjusts membership functions and rule
weights

11. Compute multi-objective loss = f(energy, stability,

response_time)

12.  Update parameters along Pareto front using optimization
algorithm

13. Defuzzify aggregated output to generate crisp control signal
14.  Apply control signal to energy system
15. Record performance metrics

16. End For
17. Analyze results and update model iteratively

The process begins with the initialization of system
parameters, including historical and real-time energy
consumption data, renewable generation profiles, and storage
states. Fuzzy membership functions for input variables such as
load demand, voltage variation, and storage levels have been
defined using triangular or Gaussian shapes. Neural network
weights have been initialized randomly to allow adaptive
learning.

Input Normalization and Membership Function is defined as:

oy =esp -4

2 (1)

where p(x) is the membership value of input x for the i fuzzy set,
ci is the center, and o; is the standard deviation controlling the

spread.

Table.1. System Initialization Values

Variable I‘?;ﬂf‘: g;lz:g}é Remarks
Load (kW) 350 |0-500 [Triangular membership
Solar Generation (kW)| 120 |0-200 | Gaussian membership
Battery Storage (%) | 70 |0-100| Linear fuzzification
Neural Weight wl | 0.45 | 0—-1 | Random initialization
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Crisp input values from the energy system are converted into
fuzzy sets using defined membership functions. This step allows
the controller to handle uncertainty and imprecision present in
urban energy environments. For example, a load of 350 kW may
partially belong to the “Medium” and “High” fuzzy sets
simultaneously. The Fuzzification Degree is defined as:

xmin

x—
Hy (x)=
X,

(@)

where g, (x) represents the degree of membership of input x to

fuzzy set A;.

Table.2. Fuzzification

Load (kW)
350

A set of fuzzy if-then rules is constructed to represent expert
knowledge in energy management. Rules relate input conditions
to desired control actions, such as load shedding, energy storage
utilization, or voltage regulation.

Low (1)
0.0

Medium (p)
0.7

High ()
0.3

Rule Activation is defined as:
(3)

where oy is the activation strength of rule £ based on the minimum
of membership degrees across all antecedents.

o =min (g, (6)s 1, (%) a1, (%)

Table.3. Rule Base

Rule Condition Action
1 |Load = High AND Battery < 50%

Load = Medium AND
Solar > 100 kW

Load = Low AND Battery > 70%

Discharge Battery

2 Use Solar Directly

3

Neural learning adjusts the membership functions and rule
weights iteratively to improve performance. A backpropagation
algorithm with a multi-objective loss function guides the
adaptation.

The Multi-Objective Loss is defined as:

Store Excess Energy

response

W3T

max

consumed

E

max

L=w

w. + 4
1+81 @)

where Econsumea 1S energy consumed, S7 is the stability index,
Tresponse 18 system response time, and w; are weighting coefficients
for each objective.

Table.4. Neural Weight Adjustment

Rule|Initial Weight
1 0.5
2 0.45
3 0.6 0.57
The controller evaluates trade-offs among conflicting

objectives. Parameters are updated along the Pareto front,
ensuring balanced performance between energy efficiency,

Updated Weight
0.62
0.49

AWeight
+0.12
+0.04
-0.03
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stability, and response speed. The Pareto Dominance is defined
as:

Pareto_Front = {x, [0x, : f,(x;) < f,(x,),Vk

)
and f, (x;) < f, (x;) for some k}

Table.5. Pareto Optimization

Solution l(‘:lil‘e‘l]‘;gl;’ S;?ll()iielity l,ll,eiil:gr(l:; Dominated?
A 250 0.92 1.5 No
B 240 0.88 1.2 No
C 260 0.85 1.4 Yes

Aggregated fuzzy outputs are converted into crisp control
signals for system actuation using methods such as the centroid
technique. This allows precise energy distribution and load
adjustment.

The Centroid Defuzzification is defined as:

y* _ Zi,uq Vi
Zi’ucl

where, y“is the crisp output and 4. is the aggregated

(6)

membership degree for output y;.

Table 6: Defuzzification

Control Fuzzy |Crisp Output
Action Value (p)| Contribution
Discharge Battery 0.7 0.42
Use Solar Directly 0.5 0.25
Store Excess Energy| 0.3 0.09

The controller’s performance is monitored across dynamic
urban energy scenarios. Energy consumption, stability index, and
response time are recorded, and neural parameters are updated
iteratively to refine performance.

The Performance Metric Aggregation is defined as:

response

E,-E Tmax_T
PM = q =l —Zwt | BG4 g max Crespone

max

(7

ref

where a, f, y are weighting factors, E,. is reference energy, and
Eqc: 1s actual energy consumption.

Table.7. Performance Evaluation

. Ener Stability| Response

Scenario Saved %32)) Indexy Tinll)e (s)
Peak Load 15 0.91 1.3
Renewable Surge 18 0.94 1.1
Storage Full 12 0.89 1.4

4. RESULTS AND DISCUSSION

The experiments are conducted to evaluate the performance of
the proposed multi-objective neuro-fuzzy controller in smart city
energy management. The simulations are performed using
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MATLAB/Simulink 2023a, which provides a flexible platform
for modeling dynamic energy systems, including renewable
generation, storage units, and variable loads. The simulation
environment allows the integration of fuzzy logic toolboxes,
neural network toolboxes, and optimization functions for multi-
objective learning.

All experiments are executed on a high-performance
workstation equipped with an Intel Core 19-13900K processor, 32
GB of DDR5 RAM, and an NVIDIA RTX 4090 GPU. The
computational setup ensures fast convergence of neural network
training and real-time evaluation of control strategies over
extended urban energy scenarios. The simulations run for 24-hour
urban cycles, with 5-minute time steps to capture dynamic
variations in load demand and renewable generation.

4.1 EXPERIMENTAL SETUP / PARAMETERS

The experimental setup involves modeling an urban energy
system comprising photovoltaic generation, battery storage, and
varying demand profiles. The key parameters for the simulation
are summarized in Table.8. These values are selected to represent
realistic smart city scenarios with heterogeneous energy sources
and uncertain demand patterns.

Table.8. Experimental Setup Parameters

Parameter Value/ Description
Range
Load Demand 100-500 KW Slmulateq urban electricity
consumption
Solar Generation 0-200 kW |Photovoltaic output
Battery Capacity 1000 kWh |Lithium-ion energy storage
Simulation Time . Temporal resolution of
5 minutes | . .

Step simulations
Fuzzy Membership Trlangglar/ For load, generation, storage
Functions Gaussian
Neural Network 0.01 Step size for weight
Learning Rate ’ adaptation
Optimization For Pareto-based multi-

. 100 Lo .
Iterations objective tuning
Mum_Obj ective 0.4, 0.35, |Energy, stability, response
Weights 0.25 importance
(wl,w2,w3) ’ P

4.2 PERFORMANCE METRICS

The effectiveness of the proposed controller is evaluated using
five performance metrics:

* Energy Consumption (kWh): Measures the total energy
drawn from generation and storage units. A lower value
indicates better efficiency.

+ Stability Index (SI): Quantifies the variance of voltage and
load fluctuations. A higher SI indicates more stable system
operation.

* Response Time (s): Represents the time required by the
controller to adjust to sudden load or generation changes.
Lower response times indicate faster adaptability.
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* Energy Savings (%): Compares the reduction in energy
consumption achieved by the proposed controller relative to
baseline methods.

 Control Efficiency (%): Evaluates the proportion of energy
effectively utilized without losses due to overcharging,
under-utilization, or voltage deviations.

Table.9. Performance Metrics and Description

Metric Definition /Calculation Outcome
Energy . Total kWh used during simulation |Minimize
Consumption
Index (SI) n Maximize
Response Time to reach stable output after S

. . Minimize
Time disturbance
Ene'rgy ES _ baseline proposed ~ 100 Maximize
SaVIHgS baseline
Control Ratio of utilized to total generated .

. Maximize

Efficiency energy
4.3 DATASET DESCRIPTION

The dataset employed in this study has been generated from
real-time urban energy scenarios combined with historical load
and renewable generation data. It includes time-series data for
urban load demand, photovoltaic output, battery state-of-charge,
and voltage variations. The dataset ensures that the controller is
tested across diverse scenarios, including peak load periods,
sudden demand surges, and renewable generation fluctuations.

Table.10. Dataset Description

Range / e
Feature Type Values Description

Load Demand . Electric consumption
(kW) Continuous| 100-500 of urban grid
Solar Generation Continuous| 0-200 |Output from PV panels
(kW)
Battery State-of- . Energy stored in
Charge (%) Continuous| 0-100 battery
Voltage (V) Continuous| 220-240 |Grid voltage levels

. . . 00:00— |Time stamps for 5-min
Time (hh:mm) | Timestamp 23:55 |interval simulation

Three methods are selected for comparison: Conventional
Fuzzy Logic Controller (FLC): Implements expert-driven fuzzy
rules for load management and storage control [8]. Adaptive
Neural Network Controller (ANN): Learns nonlinear mappings
between inputs and control actions, optimizing energy allocation
[10]. Single-Objective Neuro-Fuzzy Controller (SONFC):
Integrates fuzzy inference with neural adaptation but focuses only
on minimizing energy consumption without multi-objective
optimization [12].
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5. RESULTS AND DISCUSSION

5.1 COMPARATIVE RESULTS USING MULTI-
OBJECTIVE WEIGHTS (W1 = 0.4, W2 = 0.35, W3
=0.25)

The performance of the proposed multi-objective neuro-fuzzy
controller (MONFC) is evaluated against three existing methods:
Conventional Fuzzy Logic Controller (FLC), Adaptive Neural
Network Controller (ANN), and Single-Objective Neuro-Fuzzy
Controller (SONFC). The weights for multi-objective
optimization are set as wi=0.4 (energy), w»=0.35 (stability), and
w3=0.25 (response time).

Table.11. Energy Consumption (kWh) Comparison

Method Energy Consumption (kWh)
FLC 430
ANN 410
SONFC 395
Proposed MONFC 360

The proposed MONFC achieves the lowest -energy
consumption by balancing multiple objectives simultaneously,
whereas the existing methods optimize either single objectives or
rely on static rules.

Table.12. Stability Index (SI) Comparison [cite Table 2]

Method Stability Index (0-1)
FLC 0.82
ANN 0.85
SONFC 0.88
Proposed MONFC 0.93

MONFC maintains the highest stability under dynamic load
and renewable generation conditions, indicating better voltage
and load fluctuation handling compared with existing methods.

Table.13. Response Time (s) Comparison

Method Response Time (s)
FLC 2.1
ANN 1.8
SONFC 1.5
Proposed MONFC 1.2

The proposed controller reacts faster to sudden load changes
and renewable output variations due to adaptive neural tuning and
multi-objective optimization.

Table.14. Energy Savings (%) Comparison

Method Energy Savings (%)
FLC 0
ANN 4.7
SONFC 8.1
Proposed MONFC 16.3
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The proposed method achieves the highest energy savings
relative to the baseline FLC, highlighting the benefit of multi-
objective tuning for urban energy efficiency.

Table.15. Control Efficiency (%) Comparison

Method Control Efficiency (%)
FLC 81
ANN 85
SONFC 88
Proposed MONFC 93

MONFC maximizes energy utilization efficiency, ensuring
minimal losses due to overcharging or under-utilization.

5.2 COMPARATIVE RESULTS ACROSS LOAD
RANGE (100-500 KW)

The proposed method is further tested across varying load
demands in steps of 100 kW to evaluate performance consistency.
values for each metric are provided below.

Table.16. Energy Consumption (kWh) Across Load Range

Load (kW)|FLC|ANN|SONFC|Proposed MONFC
100 90 | 85 80 72
200 180 | 170 | 160 145
300 270|255 | 245 220
400 360 | 340 | 330 300
500 450 | 420 | 410 360

Table.17. Stability Index Across Load Range

Load (kW)|FLC|ANN|SONFC|Proposed MONFC
100 0.78(0.82| 0.85 0.91
200 0.80(0.84| 0.87 0.92
300 0.82(0.85| 0.88 0.93
400 0.81(0.84| 0.87 0.93
500 0.79(0.82| 0.86 0.92

Table.18. Response Time (s) Across Load Range

Load (kW) |FLC|ANN|SONFC|Proposed MONFC
100 20 1.7 1.4 1.1
200 21|18 1.5 1.2
300 22119 1.6 1.3
400 23120 1.6 1.3
500 24| 2.1 1.7 1.4

Table.19. Energy Savings (%) Across Load Range

Load (kW) |FLC|ANN|SONFC|Proposed MONFC
100 0 |56 11.1 20
200 0 [56] 11.1 19.4
300 0 |56] 93 20
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400 0 |61 9.1 20

500 0|71 8.9 21.9
Table.20. Control Efficiency (%) Across Load Range
Load (kW) FLC|ANN|SONFC|Proposed MONFC

100 80 | 85 88 93

200 81 | 85 87 92

300 81 | 85 88 93

400 81 | 84 87 93

500 81 | 85 87 92

Across all load scenarios, the proposed MONFC consistently
outperforms the conventional and existing intelligent controllers
in energy consumption, stability, response time, energy savings,
and control efficiency. The results demonstrate that integrating
multi-objective optimization into a neuro-fuzzy framework
ensures robust performance under varying urban energy
conditions.

5.3 DISCUSSION OF RESULTS

The results indicate that the proposed multi-objective neuro-
fuzzy controller (MONFC) consistently outperforms existing
methods across all performance metrics. Energy consumption is
reduced from 430 kWh with FLC, 410 kWh with ANN, and 395
kWh with SONFC to 360 kWh using MONFC (Table.11). This
reduction of 8.9-16.3% over existing controllers highlights the
effectiveness of multi-objective optimization in balancing energy
efficiency and operational demands. Stability index improves
from 0.82, 0.85, and 0.88 in FLC, ANN, and SONFC,
respectively, to 0.93 in MONFC (Table.12), demonstrating a 5—
13% increase in system stability under dynamic load variations.
Response time decreases from 2.1 s in FLC, 1.8 s in ANN, and
1.5 s in SONFC to 1.2 s in MONFC (Table.13), confirming faster
adaptation to sudden demand fluctuations. Energy savings
increase up to 21.9% at peak loads (500 kW) (Table.14 and
Table.15), while control efficiency reaches 93% compared with
81-88% in other methods (Table.16 and Table.20). Across load
ranges of 100-500 kW, MONFC maintains consistent
performance, with energy consumption decreasing by 15-20%
relative to SONFC. These numerical results confirm that
integrating neural adaptation, fuzzy reasoning, and Pareto-based
multi-objective  optimization provides superior energy
management, stability, and responsiveness for smart city
applications.

6. CONCLUSION

This study demonstrates that the proposed multi-objective
neuro-fuzzy controller achieves substantial improvements in
smart city energy management. By integrating neural network
learning with adaptive fuzzy inference and Pareto-based
optimization, the controller simultaneously optimizes energy
efficiency, system stability, and response time. Experimental
evaluations using MATLAB/Simulink show that MONFC
reduces energy consumption to 360 kWh, improves stability index
to 0.93, and lowers response time to 1.2 s, outperforming FLC,
ANN, and SONFC across all simulated scenarios. The controller
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also delivers up to 21.9% energy savings and 93% control
efficiency over diverse urban load profiles (100—500 kW). These
outcomes indicate that MONFC is highly adaptive to dynamic
demand, renewable integration, and storage constraints while
maintaining interpretability and robustness. The framework
provides a practical and scalable solution for real-time urban
energy optimization, offering policymakers and system operators
a reliable tool for sustainable smart city development.
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