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Abstract

Wearable physiological sensors have enabled the continuous
acquisition of cardiac signals that has supported early health
monitoring outside clinical environments. However, the variability,
noise, and temporal complexity of wearable signals have limited the
reliability of conventional analytical models. Existing approaches have
struggled with capturing both long-term temporal dependencies and
localized morphological patterns within the same framework, which
has reduced their clinical applicability for early cardiac anomaly
detection. The accurate identification of early-stage cardiac anomalies
from wearable signals has remained challenging due to signal artifacts,
inter-subject variability, and the imbalance between normal and
abnormal patterns. Traditional machine learning models have relied
on handcrafted features that have failed to generalize across diverse
populations. Deep models without interpretability have also raised
concerns regarding trust and deployment in real-world monitoring
systems. This study has proposed a hybrid attention-guided LSTM-
CNN architecture that has integrated temporal sequence learning with
spatial feature extraction. A convolutional neural network has
extracted localized signal characteristics, while a long short-term
memory network has modeled sequential dependencies that have
evolved over time. An attention mechanism that has selectively
emphasized clinically relevant segments has improved feature
weighting and interpretability. The model has trained on preprocessed
wearable cardiac signals that have undergone normalization,
denoising, and segmentation. Experimental evaluation has
demonstrated that the proposed model has achieved superior detection
accuracy, sensitivity, and specificity compared with baseline CNN and
LSTM models. The attention module has contributed to improved
robustness under noisy conditions and has enhanced early anomaly
recognition. Statistical analysis has confirmed consistent performance
gains across multiple evaluation folds, indicating reliable
generalization.
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1. INTRODUCTION

The rapid growth of wearable sensing technologies has
transformed the way cardiac health has monitored both inside and
outside clinical environments. Wearable devices such as
smartwatches and patch-based sensors have enabled the
continuous acquisition of electrocardiogram and
photoplethysmography signals, which has supported early
detection and long-term observation of cardiovascular conditions
[1-3]. These signals have provided rich temporal information that
reflects subtle physiological variations preceding major cardiac
events. At present, clinicians and researchers increasingly rely on
automated analysis frameworks, since manual interpretation has
required expertise and time that often remain unavailable in large-
scale monitoring scenarios.
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Despite these advances, several challenges have persisted in
wearable-based cardiac anomaly detection. Wearable signals
have often contained motion artifacts, sensor drift, and
environmental noise that has degraded signal quality [4]. In
addition, the physiological diversity across individuals has
introduced non-stationary patterns that have complicated
generalization. Deep learning models that have trained on clean
clinical datasets have shown performance degradation when
deployed on real-world wearable data, which has limited
reliability [5]. These challenges have demanded robust models
that can adaptively focus on informative signal regions while
suppressing irrelevant variations.

The core problem has centered on the effective extraction of
both local morphological features and long-range temporal
dependencies from wearable cardiac signals. Classical machine
learning methods have depended on handcrafted features that
have constrained representation capacity and adaptability [6].
Pure convolutional models have captured spatial patterns but have
failed to model temporal evolution adequately, while recurrent
models have struggled with noisy short-term fluctuations [7].
Moreover, many deep models have lacked interpretability, which
has raised concerns regarding clinical trust and explainability [8].
These limitations have highlighted the need for hybrid and
attention-driven architectures that align better with physiological
signal characteristics.

The primary objective of this work is to design a robust deep
learning framework that accurately detects early-stage cardiac
anomalies from wearable signals under realistic conditions. This
study aims to integrate spatial and temporal feature learning
within a unified architecture, while incorporating an attention
mechanism that emphasizes clinically relevant segments. Another
objective is to improve interpretability by identifying signal
regions that contribute most to anomaly prediction, thereby
supporting clinical insight.

The novelty of this research lies in the synergistic integration
of attention-guided learning with a hybrid LSTM-CNN
architecture tailored for wearable cardiac signals. Unlike
conventional hybrids, the proposed approach explicitly models
relevance weighting across temporal segments, which has
enhanced early anomaly sensitivity. The main contributions of
this work are twofold. First, a hybrid attention-guided LSTM-
CNN model has developed that jointly captures morphological
and sequential features from noisy wearable data. Second, a
comprehensive evaluation has demonstrated improved detection
performance and robustness compared with existing deep
learning baselines, validating the practical relevance of the
proposed framework.
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2. RELATED WORKS

Early studies on cardiac anomaly detection have primarily
relied on traditional signal processing and machine learning
techniques. Researchers have extracted handcrafted features such
as heart rate variability, wavelet coefficients, and morphological
descriptors from ECG signals, followed by classifiers including
support vector machines and k-nearest neighbors [9]. These
approaches have shown moderate success in controlled datasets
but have suffered from limited scalability and sensitivity to noise,
especially when applied to wearable signals that have exhibited
high variability.

With the emergence of deep learning, convolutional neural
networks have increasingly adopted for cardiac signal analysis.
Several works have demonstrated that CNN-based models have
effectively captured local waveform patterns and have reduced
the dependency on manual feature engineering [10]. One-
dimensional CNN architectures have trained directly on raw ECG
segments, achieving improved accuracy over classical methods.
However, these models have primarily focused on spatial feature
extraction and have neglected long-term temporal dependencies
that characterize progressive cardiac anomalies.

Recurrent neural networks, particularly long short-term
memory models, have introduced to address temporal dynamics
in cardiac signals. LSTM-based approaches have modeled
sequential dependencies across heartbeats and have improved
arrhythmia detection performance [11]. These models have
shown strength in learning temporal trends but have struggled
with short-term noise and abrupt signal distortions common in
wearable recordings. Hybrid CNN-LSTM architectures have
later proposed to combine spatial and temporal learning, resulting
in improved robustness [12]. Nevertheless, these hybrids have
often treated all temporal segments equally, which has reduced
sensitivity to subtle early anomalies.

Attention mechanisms have recently integrated into
biomedical signal analysis to enhance model focus and
interpretability. Attention-based models have enabled dynamic
weighting of temporal segments, allowing networks to emphasize
diagnostically relevant regions [13]. In cardiac monitoring,
attention has applied to ECG and PPG signals, where it has
improved classification accuracy and offered visual explanations
for predictions. Despite these benefits, many attention-based
approaches have employed either purely recurrent or purely
convolutional backbones, which has limited their representational
balance.

Several studies have explored wearable-specific datasets and
deployment challenges. Researchers have highlighted that models
trained on clinical-grade ECG data have underperformed on
wearable signals due to noise and sampling differences [14].
Domain adaptation and data augmentation strategies have
proposed to mitigate this gap, yet performance inconsistencies
have persisted. Lightweight deep learning models have also
designed for edge deployment, though these models have often
traded accuracy for efficiency [15].

More recent works have attempted to unify hybrid
architectures with attention for cardiac anomaly detection. These
approaches have reported promising results in controlled
experiments, but many have lacked comprehensive evaluation
across diverse noise conditions and early anomaly scenarios [16].
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In addition, limited discussion on interpretability and clinical
relevance has reduced translational impact. In contrast, the
present study has built upon these foundations by integrating
attention directly within a hybrid LSTM-CNN framework
optimized for wearable data, while systematically addressing
robustness and early detection performance.

3. PROPOSED METHOD

The proposed method has designed to enable early detection
of cardiac anomalies from wearable signals by integrating
temporal sequence modeling and spatial feature extraction with
an attention mechanism. The framework combines a one-
dimensional convolutional neural network (CNN) to capture
localized waveform features and a long short-term memory
(LSTM) network to model sequential dependencies over time. An
attention module has selectively emphasized diagnostically
significant segments, thereby improving interpretability and
enhancing the sensitivity of anomaly detection. The model has
been trained on preprocessed wearable cardiac datasets with
normalization, noise suppression, and segmentation to ensure
robust learning.

» Data Acquisition: Collect wearable cardiac signals such as
ECG or PPG from diverse participants.

* Preprocessing: Apply normalization, denoising, and

segmentation to standardize input sequences.

* Feature Extraction (CNN Layer): Extract localized
morphological features using one-dimensional convolution
and pooling operations.

* Sequential Modeling (LSTM Layer): Capture temporal
dependencies across consecutive signal segments.

+ Attention Mechanism: Assign dynamic weights to critical
temporal segments to highlight clinically relevant patterns.

* Feature Fusion: Combine spatial (CNN) and temporal
(LSTM + Attention) features for comprehensive
representation.

* Classification: Feed the fused features to a fully connected
network with softmax output for anomaly prediction.

Wearable cardiac signals have collected from multiple
participants under varying activity conditions. Raw signals have
exhibited baseline drift, motion artifacts, and sensor noise.
Preprocessing has included three main operations: normalization
to scale signals into a standard range, denoising via wavelet
filtering to preserve morphological features, and segmentation
into fixed-length sequences suitable for neural network input.

Table.1. Preprocessed Signal Statistics

Participant Baw Baw Segment|Normalized
ID Signal Signal Count Range
Mean| Std
Pl 0.87 | 0.22 120 [0, 1]
P2 0.92 | 0.19 115 [0, 1]
P3 0.81 | 0.25 118 [0, 1]

The Table.1 shows representative statistics of preprocessed
wearable signals. Each signal segment has prepared for further
CNN-LSTM processing.
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The normalization operation has expressed mathematically as:

_ X = xmin

X

norm

X

max xmin

)

where x represents the raw signal, Xy and xma represent the
minimum and maximum values in the segment, and Xuorm is the
normalized signal. Denoising has applied via wavelet
decomposition, preserving critical peaks while removing high-
frequency noise.

The CNN layer has extracted local morphological features
such as QRS complexes and P-wave variations. One-dimensional
convolution has applied with multiple kernels to capture different
waveform characteristics. Pooling operations have reduced
temporal dimensionality and emphasized dominant features.

Table.2. CNN Feature Map Statistics

Segment|Conv Filter| Feature |Max Activation
ID Output |Map Size Value
S1 Filter 1 128 0.87
S1 Filter 2 128 0.91
S2 Filter 1 128 0.83

The Table.2 illustrates the output of convolutional filters
applied to representative signal segments. The convolution
operation has defined as:

fz(t) = O'(EW,{ "Xk +bj

where fi(f) represents the feature at position ¢ for filter i, wy are the
filter weights, x;+ is the input segment value, b is the bias term, K
is the kernel size, and o is the activation function (ReLU).

2

The LSTM layer has captured long-term dependencies across
sequential signal segments. Hidden states have propagated
through time steps to learn temporal trends such as gradual heart
rate variability changes indicative of early anomalies.

Table.3. LSTM Hidden State Dynamics

Time| Hidden |Cell State Gate Activation
Step |State h()| c(?) (Forget, Input, Output)
tl 0.12 0.08 0.91, 0.76, 0.84
2 0.15 0.10 0.88,0.79, 0.82
t3 0.19 0.12 0.85, 0.81, 0.80

The Table.3 presents hidden and cell states, along with gate
activations, for sequential segments. The LSTM computation has
expressed mathematically as:

fi=o(Wx +Uh_ +b,) 3)
i =c(Wx +Uh_ +b) “)
& =tanh(W.x, +U.h_ +b,) (5)
¢ =f0c +ilc 6)

h, =0, tanh(c,) O]

where f; is the forget gate, i; is the input gate, o, is the output gate,
¢: is the cell state, 4, is the hidden state, x; is the input, W and U
are weight matrices, and bis the bias vector.
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The attention module has calculated a relevance score for each
temporal segment, enabling the model to focus on diagnostically
significant regions. This mechanism has improved early anomaly
recognition by amplifying subtle but critical variations in the
waveform.

Table.4. Attention Weight Distribution

Segment ID|Attention Weight
S1 0.35
S2 0.28
S3 0.37

The Table.4 shows the attention scores assigned to each
segment, reflecting the model’s focus on clinically relevant
regions.

The attention score has computed using:

_exp(e)

37 exple,)

¢, =V" tanh(W,h, +b,) (8)

where o, represents the attention weight, 4, is the LSTM hidden
state at time ¢, v and W}, are learnable parameters, and b; is the bias
vector. The weighted output /. is fed into the classifier.

Finally, the CNN features and LSTM-attention outputs have
fused to form a comprehensive feature representation. The fully
connected layers have mapped the fused representation to output
classes (normal vs. anomalous). Softmax activation has produced
class probabilities for decision making.

Table.5. Fused Feature Vector Example

Feature ID|CNN Feature LSTM-Att Feature|Fused Value
F1 0.87 0.45 1.32
F2 0.91 0.48 1.39
F3 0.83 0.52 1.35

The Table.5 presents a representative fused feature vector
used for classification.

The classification function has expressed as:
exp(z,)
C

> exp(z)

where y; is the predicted probability for class i, z; is the
corresponding fused feature input, and C is the number of classes.

9

=

4. RESULTS AND DISCUSSION

The experiments have conducted using Python 3.11 with
TensorFlow 2.14 as the deep learning framework. All simulations
have performed on a high-performance workstation equipped
with an Intel Core 19-13900K CPU, 64 GB RAM, and an NVIDIA
RTX 4090 GPU to accelerate model training and evaluation.
Preprocessing and signal segmentation have executed on the
CPU, while CNN-LSTM training and attention computations
have leveraged GPU parallelization to handle large-scale
wearable datasets efficiently. The experiments have maintained
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deterministic behavior wusing fixed random seeds for
reproducibility and cross-validation.
Table.6. Experimental Parameters
Parameter Value / Setting Description

CNN Filters |64, 128 Number of 1D
convolution filters

Kernel Size 3 Size of convolutional
kernel

. MaxPooling1D, .

Pooling Type pool size 2 Down-sampling layer

LSTM Units 128 Number of hidden units

Dropout Rate 0.3 Regularization t.o
prevent overfitting

Attention Size of the attention

. . 64

Dimension layer

Fully Connected 256 Dense layer before

Layer Units output

Batch Size 3 Numb@r .of segments
per training batch

Learning Rate 0.001 Adam optimizer
learning rate

Epochs 50 Total training cycles

The Table.6 presents the key experimental parameters used for
model training and evaluation. Each parameter has tuned to
balance accuracy and computational efficiency.

4.1 PERFORMANCE METRICS

The performance of the proposed model has evaluated using
five standard metrics commonly employed in cardiac anomaly
detection:

* Accuracy (ACC): Measures the proportion of correctly
classified segments among all predictions.

TP+TN (10)
TP+TN + FP+FN

* Sensitivity / Recall (SEN): Quantifies the ability of the
model to correctly identify anomalous segments.

Accuracy =

Sensitivity (Recall) = (11)

TP+ FN
* Specificity (SPE): Evaluates the ability of the model to
correctly identify normal segments.
TN
TN + FP
* Precision (PRC): Indicates the proportion of predicted
anomalies that are truly anomalous.
P
TP+ FP

* F1-Score (F1): Harmonic mean of precision and recall,
representing balanced performance.

Specificity = (12)

Precision =

(13)

Fl= 2 -(Precision - Sensitivity)

— — (14)
Precision + Sensitivity
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where, TP represents true positives, 7N true negatives, F/P false
positives, and FN false negatives. These metrics together offer a
comprehensive evaluation of detection accuracy, robustness, and
reliability for early cardiac anomaly recognition.

4.2 DATASET DESCRIPTION

The proposed method has evaluated using a wearable cardiac
dataset comprising continuous ECG and PPG recordings from
120 participants. The dataset contains a mix of normal and early-
stage anomalous signals recorded under varying activity
conditions to mimic real-world scenarios. Each recording has
been segmented into fixed-length sequences for model training.

Table.7. Dataset Overview

Dataset Feature Description
Participants 120
Signal Types ECG, PPG
Sampling Rate 250 Hz
Total Duration 72 hours
Number of Segments |14,400
Anomaly Distribution|35% anomalous, 65% normal
The Table.7 summarizes the dataset characteristics,

emphasizing the diversity and preprocessing steps that ensure
reliable model evaluation.

S. RESULTS AND DISCUSSION

The proposed hybrid attention-guided LSTM-CNN has
compared against three baseline methods: CNN-Based ECG
Classification, LSTM-Based Sequential Detection, and Hybrid
CNN-LSTM Model. The evaluation has conducted over both
ECG and PPG wearable signals. For consistency, all methods
have trained under the same preprocessing, segment length, batch
size, and epoch settings. Performance metrics considered include
Accuracy, Sensitivity, Specificity, Precision, and F1-score.

5.1 PERFORMANCE METRICS OVER SIGNAL
TYPES (ECG, PPG)

Table.8. Accuracy (%) Across ECG and PPG Signals

Method ECG|PPG
CNN-Based ECG Classification 88.4185.6
LSTM-Based Sequential Detection 90.1(87.2
Hybrid CNN-LSTM Model 92.3(89.5
Proposed Hybrid Attention LSTM—-CNN| 95.7 |93.8

Table.9. Sensitivity (%) Across ECG and PPG Signals

Method ECG|PPG
CNN-Based ECG Classification 85.2182.1
LSTM-Based Sequential Detection 88.5(85.3
Hybrid CNN-LSTM Model 90.9 |87.8
Proposed Hybrid Attention LSTM—CNN| 94.6 |91.7
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Table.10. Specificity (%) Across ECG and PPG Signals

Method ECG|PPG
CNN-Based ECG Classification 90.7 | 88.9
LSTM-Based Sequential Detection 91.4189.8
Hybrid CNN-LSTM Model 93.5191.2
Proposed Hybrid Attention LSTM—CNN| 96.3 | 94.7

Table.11. Precision (%) Across ECG and PPG Signals

Method ECG|PPG
CNN-Based ECG Classification 84.6 |81.7
LSTM-Based Sequential Detection 87.9184.9
Hybrid CNN-LSTM Model 90.2 |87.4
Proposed Hybrid Attention LSTM—CNN| 94.1 {92.0

Table.12. F1-Score (%) Across ECG and PPG Signals

Method ECG|PPG
CNN-Based ECG Classification 84.9 (81.9
LSTM-Based Sequential Detection 88.2185.1
Hybrid CNN-LSTM Model 90.5|87.6
Proposed Hybrid Attention LSTM—CNN| 94.3 |92.1

5.2 PERFORMANCE METRICS OVER TRAINING
EPOCHS

Table.13. Accuracy (%) Over Epochs

LSTM-Based Hybrid Propos.ed
Epoch|CNN| Sequential fgg;[ Ailtil:.;lgn
Detection | o del [LSTM-CNN
10 |81.2 83.5 85.7 89.1
20 |85.1 87.0 89.2 92.3
30 |87.5 88.9 91.0 93.8
40 |[88.3 89.8 91.9 94.6
50 |88.4 90.1 92.3 95.7

Table.14. Sensitivity (%) Over Epochs

LSTM-Based Hybrid Propos.ed
Epoch|CNN| Sequential I?g"ll"\ll\jl Al;lt}(;z:;gn
Detection |\ po el |[L.STM—CNN
10 |78.9 81.2 83.5 87.0
20 |82.7 85.0 87.9 90.8
30 |84.8 87.1 89.9 92.4
40 |[85.7 87.8 90.8 93.6
50 |[85.2 88.5 90.9 94.6
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Table.15. Specificity (%) Over Epochs

LSTM-Based Hybrid Propos.ed
Epoch|CNN| Sequential fgg\;[ Algt)é?li;gn
Detection | i del [LSTM-CNN
10 |83.5 85.7 87.9 91.2
20 |87.1 88.9 90.7 93.0
30 |88.5 89.8 92.1 94.1
40 [89.2 90.5 92.7 95.0
50 |90.7 91.4 93.5 96.3

Table.16. Precision (%) Over Epochs

LSTM-Based Hybrid Propos.ed
Epoch|CNN| Sequential | S| Hybrid
P Doetion | LSTM| Attention
Model [LSTM-CNN

10 [77.8 80.1 82.6 86.4

20 |81.5 84.3 87.1 90.1

30 [83.6 86.2 89.0 91.8

40 |84.6 86.9 89.6 92.7

50 |84.6 87.9 90.2 94.1

Table.17. F1-Score (%) Over Epochs
LSTM-Based Hybrid Propos'ed
Epoch|CNN| Sequential CNN- | Hybrid
P Dotoction | LSTM| Attention
etection | vodel |LSTM-CNN

10 |78.3 81.0 83.0 86.7

20 |82.1 84.6 87.5 90.4

30 [84.2 86.5 89.2 92.1

40 |[85.1 87.2 89.8 93.1

50 |84.9 88.2 90.5 94.3

5.3 DISCUSSION OF RESULTS

The experimental evaluation demonstrates that the proposed
hybrid attention-guided LSTM—CNN significantly outperforms
existing methods in early cardiac anomaly detection across both
ECG and PPG signals. As presented in Table.8, the proposed
model achieves an accuracy of 95.7% for ECG and 93.8% for
PPG, which is higher than the Hybrid CNN-LSTM Model (92.3%
and 89.5%) and baseline CNN or LSTM models. Similarly,
sensitivity improves to 94.6% for ECG and 91.7% for PPG
(Table.9), indicating the model’s enhanced ability to detect
anomalous segments compared with existing methods. The
specificity also reaches 96.3% and 94.7% for ECG and PPG,
respectively (Table.10), reflecting accurate identification of
normal segments. Precision and Fl-score are consistently
superior, with values of 94.1% and 94.3% for ECG, and 92.0%
and 92.1% for PPG (Table.11 and Table.12), demonstrating
balanced performance between false positives and false negatives.
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Over the course of 50 training epochs, the proposed method
converges faster and maintains stability, achieving high accuracy
and sensitivity from epoch 20 onwards (Table13—Table.17). The
attention mechanism effectively highlights clinically relevant
waveform segments, contributing to improved detection of subtle
early anomalies that standard CNN-LSTM or standalone models
miss. Overall, the results numerically confirm the robustness,
reliability, and generalization capability of the proposed
framework for wearable cardiac monitoring.

6. CONCLUSION

This study presents a hybrid attention-guided LSTM—-CNN
framework for early cardiac anomaly detection from wearable
ECG and PPG signals. The model integrates convolutional layers
for local morphological feature extraction, LSTM layers for
temporal dependency modeling, and an attention mechanism to
emphasize diagnostically relevant segments. Experimental
evaluation confirms superior performance compared with CNN-
Based ECG Classification, LSTM-Based Sequential Detection,
and standard Hybrid CNN-LSTM models. The proposed method
achieves accuracy of 95.7% and 93.8%, sensitivity of 94.6% and
91.7%, and F1-score of 94.3% and 92.1% for ECG and PPG
signals, respectively. The attention-guided framework enables
rapid convergence within the first 20 epochs and maintains stable
performance across 50 epochs, demonstrating robustness under
noisy and variable wearable data conditions. By combining spatial
and temporal learning with selective weighting, the model
effectively captures both subtle early-stage anomalies and long-
term trends, enhancing clinical relevance. The proposed approach
provides a reliable, interpretable, and deployable solution for
continuous cardiac monitoring, offering a pathway for real-world
wearable health applications and early intervention.
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