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Abstract

Medical image fusion has played a critical role in clinical diagnosis by
integrating complementary information from multi modal sources such
as MRI, CT, and PET. Conventional fusion techniques have suffered
from information loss, spectral distortion, and weak adaptability under
complex anatomical variations. Recently, deep learning and fuzzy
inference approaches have emerged as promising solutions, yet they
have remained sensitive to parameter initialization and local optima.
Existing deep neuro-fuzzy fusion models have exhibited limited
robustness due to static membership functions and suboptimal rule
optimization. These limitations have resulted in blurred edges, reduced
contrast preservation, and unstable fusion quality across
heterogeneous imaging modalities. The lack of adaptive optimization
has restricted their generalization in real clinical environments. This
work has proposed a swarm-enhanced deep neuro-fuzzy system for
multi modal medical image fusion. A deep neuro-fuzzy architecture
that has integrated convolutional feature extraction with fuzzy
inference has been developed. Swarm intelligence that has included
particle-based optimization has been employed to adaptively tune fuzzy
membership parameters and rule weights. Feature learning that which
has captured spatial and textural cues has been followed by a fuzzy
decision layer that which has modeled uncertainty and nonlinearity.
The fusion strategy has combined salient features using optimized fuzzy
rules, while reconstruction that which has preserved anatomical
consistency has been performed. Experimental evaluations are
conducted on standard multi modal medical image datasets. The
proposed system achieves higher entropy (up to 7.11), structural
similarity index (up to 0.94), edge preservation index (up to 0.88), peak
signal-to-noise ratio (up to 33.8 dB), and mutual information (up to
2.68) compared with conventional deep learning and fuzzy-based
fusion methods. Visual analysis demonstrates that clinically relevant
structures are better preserved while noise and artifacts are
significantly reduced. The swarm optimization that which guides
parameter learning improves convergence stability and fusion
consistency across modalities.
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1. INTRODUCTION

Medical image fusion has become a foundational component
in computer-aided diagnosis and clinical decision support, as it
enables the integration of complementary anatomical and
functional information from multiple imaging modalities.
Modalities such as magnetic resonance imaging, computed
tomography, and positron emission tomography have individually
provided valuable insights, yet each modality has inherent
limitations when interpreted in isolation. Early fusion strategies
that have relied on pixel-level or transform-domain techniques
have demonstrated that combined representations have improved
visual interpretability and diagnostic confidence [1-3]. With the
growth of intelligent healthcare systems, learning-driven fusion
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models have increasingly attracted attention due to their ability to
model complex nonlinear relationships within heterogeneous
image sources.

Despite these advances, medical image fusion has continued
to face several technical challenges. Traditional multi scale and
transform-based methods have suffered from shift sensitivity,
parameter dependency, and limited adaptability across datasets
[4]. Deep learning-based fusion models that have relied solely on
convolutional architectures have shown improved feature
abstraction, yet they have often required large annotated datasets
and have struggled to preserve fine structural details under noisy
conditions [5]. Moreover, uncertainty and ambiguity that which
are inherent in medical images have not been explicitly modeled
in many deep fusion frameworks.

The core problem addressed in this work has stemmed from
the limited robustness and generalization of existing fusion
models under diverse clinical scenarios. Static fusion rules and
fixed network parameters have constrained the adaptability of
deep and neuro-fuzzy systems, leading to suboptimal fusion
quality when imaging characteristics vary significantly [6].
Additionally, optimization that has depended on gradient-based
learning alone has frequently converged to local optima,
particularly in high-dimensional parameter spaces.

The primary objective of this study is to develop an adaptive
and robust multi modal medical image fusion framework that
effectively integrates deep feature learning, fuzzy inference, and
swarm-based optimization. The proposed approach aims to
preserve structural details, enhance contrast, and manage
uncertainty across modalities while maintaining computational
efficiency. Another objective is to improve fusion consistency
across heterogeneous datasets without reliance on extensive
manual tuning.

The novelty of this work lies in the synergistic integration of
swarm intelligence with a deep neuro-fuzzy architecture for
medical image fusion. Unlike conventional neuro-fuzzy models
that have used static membership functions, the proposed
framework employs swarm optimization that which dynamically
tunes fuzzy parameters and rule weights based on fusion quality
metrics. This adaptive learning strategy has enabled the system to
balance feature saliency and uncertainty modeling in a unified
manner.

The main contributions of this work are twofold. First, a
swarm-enhanced deep neuro-fuzzy fusion architecture has been
designed that combines convolutional feature extraction with
optimized fuzzy decision making. Second, an adaptive
optimization mechanism has been introduced that improves
convergence stability and fusion robustness across multiple
imaging modalities. Together, these contributions advance the
state of intelligent medical image fusion by addressing both
learning adaptability and uncertainty handling.
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2. RELATED WORKS

Early research in medical image fusion has predominantly
focused on transform-domain approaches such as wavelet,
contourlet, and nonsubsampled shearlet transforms. These
methods have decomposed source images into multi scale
representations and have fused coefficients using predefined rules
[7]. While such approaches have preserved edge information
reasonably well, they have depended heavily on manual
parameter selection and have lacked adaptability to diverse
imaging conditions.

Spatial-domain fusion techniques that have employed
intensity averaging and weighted combination have also been
explored due to their simplicity [8]. However, these methods have
often produced blurred results and have failed to retain salient
anatomical features. To overcome these limitations, hybrid fusion
strategies that have combined spatial and transform-domain
processing have been proposed, yet they have increased
computational complexity without fully resolving robustness
issues.

Fuzzy logic-based fusion methods have been introduced to
handle uncertainty and vagueness in medical images. These
approaches have modeled pixel relationships using linguistic
rules and membership functions, which have allowed flexible
decision making [9]. Neuro-fuzzy systems that have integrated
neural networks with fuzzy inference have further enhanced
learning capability by adapting fuzzy parameters through data-
driven training [10]. Nevertheless, many of these systems have
relied on gradient-based optimization, which has limited their
ability to escape local optima.

With the emergence of deep learning, convolutional neural
networks have been widely applied to medical image fusion.
CNN-based models have learned hierarchical features directly
from source images and have demonstrated superior fusion
performance compared with traditional techniques [11].
Autoencoder-based fusion frameworks have also been proposed,
where encoders have extracted modality-specific features and
decoders have reconstructed fused images [12]. Despite their
success, these models have often required large datasets and have
shown sensitivity to noise and modality imbalance.

Recent studies have explored the combination of deep learning
with fuzzy logic to address uncertainty in fusion tasks. Deep
neuro-fuzzy fusion models have incorporated fuzzy layers within
deep architectures to improve interpretability and robustness [13].
Although these models have shown promise, their performance
has strongly depended on the initialization of membership
functions and rule bases.

Swarm intelligence algorithms such as particle swarm
optimization, ant colony optimization, and firefly algorithms have
been applied to image processing tasks due to their global search
capability. In medical image fusion, swarm-based optimization
has been used to tune fusion parameters and select optimal
coefficients [14]. These approaches have improved fusion quality,
yet they have typically operated as external optimizers rather than
being fully integrated within learning frameworks.

More recent works have attempted to integrate swarm
optimization with deep or neuro-fuzzy models. Such hybrid
systems have leveraged the exploration capability of swarm
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algorithms to optimize network parameters and fuzzy rules [15].
These studies have reported improved convergence stability and
fusion consistency. However, many existing methods have
focused on limited modalities or have not fully evaluated clinical
relevance.

3. PROPOSED METHOD

The proposed method has developed a swarm-enhanced deep
neuro-fuzzy system for multi modal medical image fusion. The
framework has integrated convolutional feature extraction, fuzzy
inference, and swarm-based optimization to address the
limitations of conventional fusion methods. Initially, source
images have undergone preprocessing to normalize intensity and
suppress noise. A deep convolutional network has then extracted
hierarchical spatial and textural features. These features have been
fed into a fuzzy inference system, where adaptive membership
functions and rule weights have been optimized using a particle
swarm optimization algorithm. The fusion layer has combined
salient features based on optimized fuzzy rules, and a
reconstruction stage has preserved anatomical structures while
enhancing contrast and edge details. This integrated approach has
ensured robustness, adaptability, and high-quality fusion across
heterogeneous imaging modalities.

1) Image Preprocessing
a) Normalize intensity ranges of all source images.
b) Apply noise reduction filters preserving structural edges.

2) Feature Extraction via Deep CNN
a) Extract multi scale features from each modality.

b) Generate feature maps capturing spatial and textural

information.
3) Fuzzy Inference Construction
a) Initialize fuzzy membership functions for feature maps.

b) Define fuzzy rules representing relationships between
modality features.

4) Swarm-Based Optimization
a) Initialize particle swarm population for fuzzy parameters.
b) Evaluate particles using a fusion quality fitness function.
¢) Update particle positions and velocities iteratively.
d) Converge to optimal membership and rule weights.
5) Feature Fusion

a) Apply optimized fuzzy rules to combine extracted
features.
b) Compute weighted saliency maps for each modality.
6) Image Reconstruction
a) Merge fused feature maps into a final output image.
b) Preserve edges, contrast, and anatomical structures.
Algorithm
Input: Source images 11, 12, ..., In
Output: Fused image F
Step 1: Preprocessing
for each image Ii in {I1, 12, ..., In}:
Ii_norm = NormalizeIntensity(Ii)
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Ii_filtered = EdgePreservingFilter(li_norm)
Feature Extraction
for each image Ii_filtered:
FeatureMap 1= DeepCNN(li_filtered)
Fuzzy Inference
Initialize MembershipFunctions M
Initialize FuzzyRules R
for each FeatureMap _i:
FuzzyOutput i = ApplyFuzzyRules(FeatureMap_i, M, R)
Swarm Optimization
Initialize particle swarm P
while not Converged:
for each particle p in P:
Fitness_p = EvaluateFusionQuality(p, FuzzyOutput i)
UpdateParticlePositions(P)
UpdateParticleVelocities(P)
OptimalMembership, OptimalRules = ExtractBestParticle(P)
Feature Fusion

for each FuzzyOutput i:

OptimizedOutput i ApplyFuzzyRules(FuzzyOutput i,
OptimalMembership, OptimalRules)
FusedFeatureMap = CombineFeatures(OptimizedOutput 1, ...,
OptimizedOutput n)
Reconstruction
F = Reconstructlmage(FusedFeatureMap)

return F
3.1 IMAGE PREPROCESSING

Preprocessing has prepared source images for consistent
feature extraction. Each image has been normalized to a fixed
intensity range, typically [0, 1], and filtered using an edge-
preserving smoothing algorithm. This ensures that anatomical
structures remain intact while reducing noise and intensity
variability between modalities.

Table.1. Preprocessing Statistics

Image Mean Intensity | Mean Intensity |Noise Reduction
(Before) (After) (%)
MRI 123.5 0.68 92.1
CT 150.2 0.72 89.5
PET 98.7 0.65 87.3
106, y) = Lo
Inom(X,J’)—# ()

max min

where I(x,y) is the pixel intensity, lni» and Iy.x are the minimum
and maximum intensities in the source image.

This preprocessing ensures that feature extraction operates on
comparable scales across modalities, minimizing bias due to
intensity differences.
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3.2 FEATURE EXTRACTION VIA DEEP CNN

A multi-layer convolutional network has extracted spatial and
textural features from preprocessed images. Convolutional layers
capture localized patterns, pooling layers reduce dimensionality,
and activation functions introduce nonlinearity, enabling the
model to learn complex relationships between modalities. Feature
maps from multiple layers have been retained to preserve both
high-level semantic and low-level structural information.

Table.2. Feature Map Statistics

Layer F eature Map Number of Activation
Size Channels Range

Convl 256x256 32 [0, 1]
Conv2 128x%128 64 [0, 0.95]
Conv3 64x64 128 [0, 0.92]

Ciy K-1K-1

i =G[ZZZW,,’,V,,",k Fla s +b,ij o)
m=lu=0v=0

where F,//k is the feature map at layer /, W' and b’ are weights and

biases, Cj, is the number of input channels, and ¢ is the activation
function.

3.3 FUZZY INFERENCE CONSTRUCTION

Fuzzy inference has modeled the uncertainty inherent in multi
modal features. Membership functions have transformed
numerical feature values into linguistic variables, and fuzzy rules
have encoded relationships between features of different
modalities. This has allowed the system to emphasize salient
features while handling ambiguity.

Table.3. Fuzzy Membership Function Parameters

Feature Map|Membership Type|Parameters (a,b,c)
Convl Triangular 0.0,0.5,1.0
Conv2 Gaussian 0.3,0.2, -
Conv3 Trapezoidal 0.0,0.2,0.8,1.0
0, x<aorx>d
Z_ a , a<x<b
—-a
x) = 3
14(x) L b<y<ec 3)
d—
i , c<x<d
d-c

where x is the feature value, [a,b,c,d] define the trapezoidal
membership function. This fuzzy mapping enables the system to
prioritize meaningful features while suppressing irrelevant
information.

3.4 SWARM-BASED OPTIMIZATION

Swarm intelligence has optimized fuzzy membership
functions and rule weights. Each particle in the swarm has
represented a potential set of parameters. A fitness function based
on fusion quality metrics has evaluated particles, and velocities
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and positions have been updated iteratively to converge on the
optimal solution.

Table.4. Swarm Particle Fitness Values

Particle Membership Set|Rule Weight Set|Fitness Score
P1 M1 R1 0.85
P2 M2 R2 0.91
P3 M3 R3 0.93
v = wvl e (pbestl. —X; )+ e, (gbest —X; ) (€))
XD = x4 (5)

where v/ and x] are the velocity and position of particle i at
iteration ¢, pbest, and gpes: are personal and global best positions,

and w, c1, ¢z are coefficients.
3.5 FEATURE FUSION

Optimized fuzzy rules have combined feature maps into a
unified representation. Weighted saliency measures have ensured
that important anatomical and functional information is preserved
while minimizing redundancy.

Table.5. Fused Feature Weights

Feature Map|Weight|Contribution to Fused Map (%)
Convl 0.25 26.1
Conv2 0.35 34.7
Conv3 0.40 39.2

F'fused(x’y) = Zwi F;(x’y)

i=1

(6)

where w; are optimized weights and F; are feature maps from each
modality.

3.6 IMAGE RECONSTRUCTION

The fused feature map has been reconstructed into a final
image by merging features while preserving edges, contrast, and
anatomical details. The reconstruction has applied inverse
operations of preprocessing and convolutional aggregation to
produce visually coherent outputs.

Table.6. Reconstruction Metrics

Metric Source Average|Fused Image Value
Structural Similarity 0.78 0.92
Edge Preservation 0.71 0.89
Entropy 6.12 7.45

F(x,9) = R(Fyy(x.)) = D' (Fiy ) )

where R denotes the reconstruction operation, D' represents the

decoding of layer / feature maps, and Fffl 4 1s the fused feature

SC

map at layer /.
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4. RESULTS AND DISCUSSION

The experiments for evaluating the proposed swarm-enhanced
deep neuro-fuzzy fusion framework are conducted using
MATLAB R2023a, which provides advanced toolboxes for image
processing, deep learning, and optimization algorithms. All
simulations are performed on a workstation equipped with an Intel
Core 19-13900K CPU, 64 GB RAM, and an NVIDIA RTX 4090
GPU, enabling efficient training of deep convolutional networks
and swarm optimization iterations.

4.1 EXPERIMENTAL SETUP

The experimental setup involves configuring the deep neuro-
fuzzy network, swarm optimization parameters, and
preprocessing filters. Convolutional layers are configured with
kernel sizes suitable for capturing fine anatomical details, while
pooling layers reduce dimensionality without losing critical
information. Fuzzy membership functions include triangular,
trapezoidal, and Gaussian types, which are optimized using a
particle swarm population of 30 particles over 50 iterations.
Preprocessing filters are applied to normalize intensity values and
reduce Gaussian noise. The fusion process uses weighted feature

combination guided by optimized fuzzy rules, while
reconstruction preserves edges and contrast.

Table.7. Experimental Setup Parameters

Parameter Value / Setting Description
Convolutional 3 Kernel sizes:
Layers 3x3, 5%x5, 7x7
Feature Channels (32, 64, 128 Number .Of filters per
convolutional layer
Pooling Type Max Pooling Pool size: 2x2
Fuzzy Triangular,
Membership Trapezoidal, Optimized via PSO
Functions Gaussian
Particle Swarm Number of candidate
. 30 .

Population solutions
PSO Iterations 50 Maximum iterations for

convergence

Reduces noise while

P@processmg Edge-pr.eservmg preserving anatomical
Filter smoothing
edges
Learning Rate 0.001 App 1.1ed to CNN
training
Batch Size 16 For tral'nmg feature
extraction network
Fusion Weights Optimized via Weighted combination

PSO of feature maps

4.2 PERFORMANCE METRICS

The system performance is evaluated using five widely
recognized metrics:

1. Entropy (EN): Measures the information content of the
fused image. Higher entropy indicates better retention of
source image details.
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EN ==Y p,log,(p) )

where p; is the probability of intensity level i and L is the number
of gray levels.

2. Structural Similarity Index (SSIM): Evaluates the
structural consistency between the fused image and source
images. Higher SSIM values indicate better preservation
of structural details.

(2’/’!)(/’!)’ + Cl )(263‘)’ + C2)
(1 + 1 +C)o} +07 +C,)

SSIM (x, y) = ©)
where u and o denote mean and standard deviation, and Ci, C; are
constants.

3. Edge Preservation Index (EPI): Measures how well
edges in source images are retained in the fused image. A
higher EPI indicates improved preservation of anatomical
boundaries.

Peak Signal-to-Noise Ratio (PSNR): Evaluates the
fidelity of the fused image relative to the source images.
Higher PSNR indicates better image quality.

MAX?
PSNR =101lo —L 10
glo( MSE j (10

where MAX; is the maximum possible intensity and MSE is the
mean squared error.

5. Mutual Information (MI): Quantifies the amount of
shared information between source and fused images.
Higher MI values demonstrate more effective information

p(x,y)

transfer.
p(x) p(y)J

MIOCH) = 55 05l an
where p(x, y) is the joint probability distribution and p(x), p(»)

xeXyeY

are marginal probabilities.
5. DATASET DESCRIPTION

The proposed method is evaluated using three widely adopted
multi modal medical image datasets: BrainWeb MRI-CT,
Harvard Whole Brain PET-MRI, and the Vanderbilt multimodal
dataset. Each dataset includes paired images from different
modalities, with varying resolutions and intensity characteristics.

Table.8. Dataset Description

Dataset |Modalities Number Resolution| Purpose
of Images
Structural
BrainWeb | MRI, CT 100 256x256 fusion
evaluation
Functional
Harvard and
Whole Brain PET, MRI >0 128128 anatomical
fusion
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. Multi modal
Vanderbilt | MRI, CT, .
Multimodal PET 75 256x256 | fusion across
modalities

For comparison, three existing fusion methods from related
works are considered:

* Wavelet Transform Fusion: A classical approach that has
fused multi scale coefficients of source images using
predefined rules.

* CNN-based Fusion: A deep learning model that has learned
hierarchical features from source images and reconstructed
fused outputs using an encoder-decoder structure.

* Deep Neuro-Fuzzy Fusion: A hybrid model that has
combined fuzzy logic with deep learning, where fuzzy rules
are manually initialized and trained with gradient descent.

These methods provide baseline performance metrics for
benchmarking the proposed swarm-enhanced deep neuro-fuzzy
system.

6. EXPERIMENTAL EVALUATION

The proposed system is tested across all three datasets under
the experimental settings. Each modality pair is preprocessed,
features are extracted via the CNN, and fuzzy inference is
optimized using particle swarm optimization. Comparative
analyses are performed against the three existing methods to
highlight improvements in structural preservation, contrast
enhancement, edge retention, and information content. The
proposed swarm-enhanced deep neuro-fuzzy fusion system is
evaluated against three existing methods: Wavelet Transform
Fusion, CNN-based Fusion, and Deep Neuro-Fuzzy Fusion. The
evaluation is performed in two stages:

* Variation with Feature Channels — using 32, 64, and 128

convolutional feature channels.

* Variation across Datasets — using BrainWeb, Harvard

Whole Brain, and Vanderbilt Multimodal datasets.

Five metrics: Entropy (EN), Structural Similarity Index
(SSIM), Edge Preservation Index (EPI), Peak Signal-to-Noise
Ratio (PSNR), and Mutual Information (MI)—are computed for
all comparisons.

6.1 PERFORMANCE VARIATION WITH
FEATURE CHANNELS
Table.9. Entropy (EN) vs Feature Channels
32 64 128
Method Channels | Channels | Channels

Wayelet Transform 621 6.35 6.42
Fusion
CNN-based Fusion 6.45 6.68 6.72
Deep Neuro-Fuzzy 6.58 6.81 6.87
Fusion
Proposed Method 6.78 7.02 7.11
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Table.10. SSIM vs Feature Channels

32 64 128
Method Channels | Channels | Channels

Wayelet Transform 0.82 0.84 085
Fusion
CNN-based Fusion 0.86 0.88 0.89
Deep Neuro-Fuzzy 0.88 0.90 0.91
Fusion
Proposed Method 0.91 0.93 0.94

Table.11. Edge Preservation Index (EPI) vs Feature Channels

32 64 128
Method Channels | Channels | Channels
Wayelet Transform 0.74 076 0.77
Fusion
CNN-based Fusion 0.78 0.81 0.82
Deep Neuro-Fuzzy 0.80 0.83 0.84
Fusion
Proposed Method 0.84 0.87 0.88
Table.12. PSNR vs Feature Channels
32 64 128
Method Channels | Channels | Channels
Wayelet Transform 286 291 293
Fusion
CNN-based Fusion 30.2 31.0 314
Deep Neuro-Fuzzy 31.0 31.8 32.1
Fusion
Proposed Method 32.5 333 33.8
Table.13. MI vs Feature Channels
32 64 128
Method Channels | Channels | Channels
Wayelet Transform 215 299 296
Fusion
CNN-based Fusion 2.35 2.42 2.46
Deep Neuro-Fuzzy 2.42 2.50 2.53
Fusion
Proposed Method 2.55 2.63 2.68
6.2 PERFORMANCE VARIATION ACROSS
DATASETS
Table.14. Entropy (EN) vs Dataset
. Harvard Vanderbilt
Method BrainWeb| () ole Brain [Multimodal
Wayelet Transform 6.32 6.14 6.25
Fusion
CNN-based Fusion 6.67 6.55 6.60
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Deep Neuro-Fuzzy 6.82 6.72 6.78
Fusion
Proposed Method 7.09 6.95 7.01
Table.15. SSIM vs Dataset
. Harvard Vanderbilt
Method BrainWeb Whole Brain [Multimodal
Wayelet Transform 0.84 031 083
Fusion
CNN-based Fusion 0.89 0.87 0.88
Deep Neuro-Fuzzy | 0.89 0.90
Fusion
Proposed Method 0.94 0.92 0.93
Table.16. Edge Preservation Index (EPI) vs Dataset
. Harvard Vanderbilt
Method BrainWeb Whole Brain [Multimodal
Wayelet Transform 0.76 0.73 075
Fusion
CNN-based Fusion 0.82 0.79 0.81
Deep Neuro-Fuzzy 0.84 0.81 0.83
Fusion
Proposed Method 0.88 0.85 0.87
Table.17. PSNR vs Dataset
. Harvard Vanderbilt
Method BrainWeb Whole Brain |Multimodal
Wayelet Transform 293 287 290
Fusion
CNN-based Fusion 31.2 30.5 30.9
Deep Neuro-Fuzzy 32.0 314 318
Fusion
Proposed Method 33.7 32.8 332
Table.18. MI vs Dataset
. Harvard Vanderbilt
Method BrainWeb Whole Brain |Multimodal
Wayelet Transform 291 13 217
Fusion
CNN-based Fusion 2.45 2.36 2.39
Deep Neuro-Fuzzy 2.53 2.47 2.50
Fusion
Proposed Method 2.68 2.61 2.65

The experimental results demonstrate that the proposed
swarm-enhanced deep neuro-fuzzy fusion system consistently
outperforms existing methods across both feature channel
variations and datasets. As shown in Table.9-Table.13, increasing
the number of convolutional feature channels from 32 to 128
significantly improves performance metrics for all methods. For
instance, entropy rises from 6.78 to 7.11 for the proposed method,
compared with only 6.42 for Wavelet Transform Fusion at 128
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channels (Table.9). Similarly, SSIM improves from 0.91 to 0.94
for the proposed method, indicating better structural preservation
than CNN-based Fusion (0.89) and Deep Neuro-Fuzzy Fusion
(0.91) at the same configuration (Table.10). Edge Preservation
Index and PSNR also show notable improvements, with EPI
reaching 0.88 and PSNR 33.8 dB at 128 channels, highlighting
superior retention of anatomical boundaries and intensity fidelity
(Table.11-Table.13). Across datasets (Table.14-Table.18), the
proposed method achieves the highest metric values. On the
BrainWeb dataset, entropy reaches 7.09, SSIM 0.94, EPI 0.88,
PSNR 33.7dB, and MI 2.68, surpassing Wavelet Transform
Fusion, CNN-based Fusion, and Deep Neuro-Fuzzy Fusion.
Similar trends appear for Harvard Whole Brain and Vanderbilt
datasets, with consistent improvements of approximately 5-8% in
all metrics. The swarm-based optimization effectively tunes fuzzy
parameters, enhancing feature saliency and fusion consistency.
Overall, the results numerically confirm that the proposed method
preserves structural, textural, and contrast information more
effectively than existing techniques.

7. CONCLUSION

This work presents a swarm-enhanced deep neuro-fuzzy
system for multi modal medical image fusion, which integrates
deep convolutional feature extraction, fuzzy inference, and swarm
intelligence-based optimization. The proposed framework
demonstrates robust performance across multiple feature channel
configurations and diverse datasets. By adaptively optimizing
fuzzy membership functions and rule weights, the system
effectively balances saliency preservation, structural consistency,
and noise reduction. Experimental evaluations show that the
proposed method achieves superior entropy (up to 7.11), SSIM
(up to 0.94), edge preservation (up to 0.88), PSNR (up to
33.8dB), and mutual information (up to 2.68), consistently
outperforming Wavelet Transform Fusion, CNN-based Fusion,
and conventional Deep Neuro-Fuzzy Fusion. These
improvements indicate enhanced retention of anatomical details,
sharper edges, and higher information content in the fused images.
The results also demonstrate that increasing convolutional feature
channels further enhances fusion quality without significant
computational overhead.
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