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Abstract 

Medical image fusion has played a critical role in clinical diagnosis by 

integrating complementary information from multi modal sources such 

as MRI, CT, and PET. Conventional fusion techniques have suffered 

from information loss, spectral distortion, and weak adaptability under 

complex anatomical variations. Recently, deep learning and fuzzy 

inference approaches have emerged as promising solutions, yet they 

have remained sensitive to parameter initialization and local optima. 

Existing deep neuro-fuzzy fusion models have exhibited limited 

robustness due to static membership functions and suboptimal rule 

optimization. These limitations have resulted in blurred edges, reduced 

contrast preservation, and unstable fusion quality across 

heterogeneous imaging modalities. The lack of adaptive optimization 

has restricted their generalization in real clinical environments. This 

work has proposed a swarm-enhanced deep neuro-fuzzy system for 

multi modal medical image fusion. A deep neuro-fuzzy architecture 

that has integrated convolutional feature extraction with fuzzy 

inference has been developed. Swarm intelligence that has included 

particle-based optimization has been employed to adaptively tune fuzzy 

membership parameters and rule weights. Feature learning that which 

has captured spatial and textural cues has been followed by a fuzzy 

decision layer that which has modeled uncertainty and nonlinearity. 

The fusion strategy has combined salient features using optimized fuzzy 

rules, while reconstruction that which has preserved anatomical 

consistency has been performed. Experimental evaluations are 

conducted on standard multi modal medical image datasets. The 

proposed system achieves higher entropy (up to 7.11), structural 

similarity index (up to 0.94), edge preservation index (up to 0.88), peak 

signal-to-noise ratio (up to 33.8 dB), and mutual information (up to 

2.68) compared with conventional deep learning and fuzzy-based 

fusion methods. Visual analysis demonstrates that clinically relevant 

structures are better preserved while noise and artifacts are 

significantly reduced. The swarm optimization that which guides 

parameter learning improves convergence stability and fusion 

consistency across modalities. 
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1. INTRODUCTION 

Medical image fusion has become a foundational component 

in computer-aided diagnosis and clinical decision support, as it 

enables the integration of complementary anatomical and 

functional information from multiple imaging modalities. 

Modalities such as magnetic resonance imaging, computed 

tomography, and positron emission tomography have individually 

provided valuable insights, yet each modality has inherent 

limitations when interpreted in isolation. Early fusion strategies 

that have relied on pixel-level or transform-domain techniques 

have demonstrated that combined representations have improved 

visual interpretability and diagnostic confidence [1–3]. With the 

growth of intelligent healthcare systems, learning-driven fusion 

models have increasingly attracted attention due to their ability to 

model complex nonlinear relationships within heterogeneous 

image sources. 

Despite these advances, medical image fusion has continued 

to face several technical challenges. Traditional multi scale and 

transform-based methods have suffered from shift sensitivity, 

parameter dependency, and limited adaptability across datasets 

[4]. Deep learning-based fusion models that have relied solely on 

convolutional architectures have shown improved feature 

abstraction, yet they have often required large annotated datasets 

and have struggled to preserve fine structural details under noisy 

conditions [5]. Moreover, uncertainty and ambiguity that which 

are inherent in medical images have not been explicitly modeled 

in many deep fusion frameworks. 

The core problem addressed in this work has stemmed from 

the limited robustness and generalization of existing fusion 

models under diverse clinical scenarios. Static fusion rules and 

fixed network parameters have constrained the adaptability of 

deep and neuro-fuzzy systems, leading to suboptimal fusion 

quality when imaging characteristics vary significantly [6]. 

Additionally, optimization that has depended on gradient-based 

learning alone has frequently converged to local optima, 

particularly in high-dimensional parameter spaces. 

The primary objective of this study is to develop an adaptive 

and robust multi modal medical image fusion framework that 

effectively integrates deep feature learning, fuzzy inference, and 

swarm-based optimization. The proposed approach aims to 

preserve structural details, enhance contrast, and manage 

uncertainty across modalities while maintaining computational 

efficiency. Another objective is to improve fusion consistency 

across heterogeneous datasets without reliance on extensive 

manual tuning. 

The novelty of this work lies in the synergistic integration of 

swarm intelligence with a deep neuro-fuzzy architecture for 

medical image fusion. Unlike conventional neuro-fuzzy models 

that have used static membership functions, the proposed 

framework employs swarm optimization that which dynamically 

tunes fuzzy parameters and rule weights based on fusion quality 

metrics. This adaptive learning strategy has enabled the system to 

balance feature saliency and uncertainty modeling in a unified 

manner. 

The main contributions of this work are twofold. First, a 

swarm-enhanced deep neuro-fuzzy fusion architecture has been 

designed that combines convolutional feature extraction with 

optimized fuzzy decision making. Second, an adaptive 

optimization mechanism has been introduced that improves 

convergence stability and fusion robustness across multiple 

imaging modalities. Together, these contributions advance the 

state of intelligent medical image fusion by addressing both 

learning adaptability and uncertainty handling. 
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2. RELATED WORKS 

Early research in medical image fusion has predominantly 

focused on transform-domain approaches such as wavelet, 

contourlet, and nonsubsampled shearlet transforms. These 

methods have decomposed source images into multi scale 

representations and have fused coefficients using predefined rules 

[7]. While such approaches have preserved edge information 

reasonably well, they have depended heavily on manual 

parameter selection and have lacked adaptability to diverse 

imaging conditions. 

Spatial-domain fusion techniques that have employed 

intensity averaging and weighted combination have also been 

explored due to their simplicity [8]. However, these methods have 

often produced blurred results and have failed to retain salient 

anatomical features. To overcome these limitations, hybrid fusion 

strategies that have combined spatial and transform-domain 

processing have been proposed, yet they have increased 

computational complexity without fully resolving robustness 

issues. 

Fuzzy logic-based fusion methods have been introduced to 

handle uncertainty and vagueness in medical images. These 

approaches have modeled pixel relationships using linguistic 

rules and membership functions, which have allowed flexible 

decision making [9]. Neuro-fuzzy systems that have integrated 

neural networks with fuzzy inference have further enhanced 

learning capability by adapting fuzzy parameters through data-

driven training [10]. Nevertheless, many of these systems have 

relied on gradient-based optimization, which has limited their 

ability to escape local optima. 

With the emergence of deep learning, convolutional neural 

networks have been widely applied to medical image fusion. 

CNN-based models have learned hierarchical features directly 

from source images and have demonstrated superior fusion 

performance compared with traditional techniques [11]. 

Autoencoder-based fusion frameworks have also been proposed, 

where encoders have extracted modality-specific features and 

decoders have reconstructed fused images [12]. Despite their 

success, these models have often required large datasets and have 

shown sensitivity to noise and modality imbalance. 

Recent studies have explored the combination of deep learning 

with fuzzy logic to address uncertainty in fusion tasks. Deep 

neuro-fuzzy fusion models have incorporated fuzzy layers within 

deep architectures to improve interpretability and robustness [13]. 

Although these models have shown promise, their performance 

has strongly depended on the initialization of membership 

functions and rule bases. 

Swarm intelligence algorithms such as particle swarm 

optimization, ant colony optimization, and firefly algorithms have 

been applied to image processing tasks due to their global search 

capability. In medical image fusion, swarm-based optimization 

has been used to tune fusion parameters and select optimal 

coefficients [14]. These approaches have improved fusion quality, 

yet they have typically operated as external optimizers rather than 

being fully integrated within learning frameworks. 

More recent works have attempted to integrate swarm 

optimization with deep or neuro-fuzzy models. Such hybrid 

systems have leveraged the exploration capability of swarm 

algorithms to optimize network parameters and fuzzy rules [15]. 

These studies have reported improved convergence stability and 

fusion consistency. However, many existing methods have 

focused on limited modalities or have not fully evaluated clinical 

relevance. 

3. PROPOSED METHOD 

The proposed method has developed a swarm-enhanced deep 

neuro-fuzzy system for multi modal medical image fusion. The 

framework has integrated convolutional feature extraction, fuzzy 

inference, and swarm-based optimization to address the 

limitations of conventional fusion methods. Initially, source 

images have undergone preprocessing to normalize intensity and 

suppress noise. A deep convolutional network has then extracted 

hierarchical spatial and textural features. These features have been 

fed into a fuzzy inference system, where adaptive membership 

functions and rule weights have been optimized using a particle 

swarm optimization algorithm. The fusion layer has combined 

salient features based on optimized fuzzy rules, and a 

reconstruction stage has preserved anatomical structures while 

enhancing contrast and edge details. This integrated approach has 

ensured robustness, adaptability, and high-quality fusion across 

heterogeneous imaging modalities. 

1) Image Preprocessing 

a) Normalize intensity ranges of all source images. 

b) Apply noise reduction filters preserving structural edges. 

2) Feature Extraction via Deep CNN 

a) Extract multi scale features from each modality. 

b) Generate feature maps capturing spatial and textural 

information. 

3) Fuzzy Inference Construction 

a) Initialize fuzzy membership functions for feature maps. 

b) Define fuzzy rules representing relationships between 

modality features. 

4) Swarm-Based Optimization 

a) Initialize particle swarm population for fuzzy parameters. 

b) Evaluate particles using a fusion quality fitness function. 

c) Update particle positions and velocities iteratively. 

d) Converge to optimal membership and rule weights. 

5) Feature Fusion 

a) Apply optimized fuzzy rules to combine extracted 

features. 

b) Compute weighted saliency maps for each modality. 

6) Image Reconstruction 

a) Merge fused feature maps into a final output image. 

b) Preserve edges, contrast, and anatomical structures. 

Algorithm 

Input: Source images I1, I2, ..., In 

Output: Fused image F 

Step 1: Preprocessing 

  for each image Ii in {I1, I2, ..., In}: 

      Ii_norm = NormalizeIntensity(Ii) 
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      Ii_filtered = EdgePreservingFilter(Ii_norm) 

Feature Extraction 

  for each image Ii_filtered: 

      FeatureMap_i = DeepCNN(Ii_filtered) 

Fuzzy Inference 

  Initialize MembershipFunctions M 

  Initialize FuzzyRules R 

  for each FeatureMap_i: 

      FuzzyOutput_i = ApplyFuzzyRules(FeatureMap_i, M, R) 

Swarm Optimization 

  Initialize particle swarm P 

  while not Converged: 

      for each particle p in P: 

          Fitness_p = EvaluateFusionQuality(p, FuzzyOutput_i) 

      UpdateParticlePositions(P) 

      UpdateParticleVelocities(P) 

  OptimalMembership, OptimalRules = ExtractBestParticle(P) 

Feature Fusion 

  for each FuzzyOutput_i: 

      OptimizedOutput_i = ApplyFuzzyRules(FuzzyOutput_i, 

OptimalMembership, OptimalRules) 

  FusedFeatureMap = CombineFeatures(OptimizedOutput_1, ..., 

OptimizedOutput_n) 

Reconstruction 

  F = ReconstructImage(FusedFeatureMap) 

  return F 

3.1 IMAGE PREPROCESSING 

Preprocessing has prepared source images for consistent 

feature extraction. Each image has been normalized to a fixed 

intensity range, typically [0, 1], and filtered using an edge-

preserving smoothing algorithm. This ensures that anatomical 

structures remain intact while reducing noise and intensity 

variability between modalities. 

Table.1. Preprocessing Statistics 

Image 
Mean Intensity 

(Before) 

Mean Intensity 

(After) 

Noise Reduction 

(%) 

MRI 123.5 0.68 92.1 

CT 150.2 0.72 89.5 

PET 98.7 0.65 87.3 

 min

norm

max min

( , )
( , )

I x y I
I x y

I I

−
=

−
 (1) 

where I(x,y) is the pixel intensity, Imin and Imax are the minimum 

and maximum intensities in the source image. 

This preprocessing ensures that feature extraction operates on 

comparable scales across modalities, minimizing bias due to 

intensity differences. 

3.2 FEATURE EXTRACTION VIA DEEP CNN 

A multi-layer convolutional network has extracted spatial and 

textural features from preprocessed images. Convolutional layers 

capture localized patterns, pooling layers reduce dimensionality, 

and activation functions introduce nonlinearity, enabling the 

model to learn complex relationships between modalities. Feature 

maps from multiple layers have been retained to preserve both 

high-level semantic and low-level structural information. 

Table.2. Feature Map Statistics 

Layer 
Feature Map 

Size 

Number of 

Channels 

Activation 

Range 

Conv1 256×256 32 [0, 1] 

Conv2 128×128 64 [0, 0.95] 

Conv3 64×64 128 [0, 0.92] 
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where 
, ,

l

i j kF is the feature map at layer l, Wl and bl are weights and 

biases, Cin is the number of input channels, and σ is the activation 

function. 

3.3 FUZZY INFERENCE CONSTRUCTION 

Fuzzy inference has modeled the uncertainty inherent in multi 

modal features. Membership functions have transformed 

numerical feature values into linguistic variables, and fuzzy rules 

have encoded relationships between features of different 

modalities. This has allowed the system to emphasize salient 

features while handling ambiguity. 

Table.3. Fuzzy Membership Function Parameters 

Feature Map Membership Type Parameters (a,b,c) 

Conv1 Triangular 0.0, 0.5, 1.0 

Conv2 Gaussian 0.3, 0.2, - 

Conv3 Trapezoidal 0.0, 0.2, 0.8, 1.0 
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where x is the feature value, [a,b,c,d] define the trapezoidal 

membership function. This fuzzy mapping enables the system to 

prioritize meaningful features while suppressing irrelevant 

information. 

3.4 SWARM-BASED OPTIMIZATION 

Swarm intelligence has optimized fuzzy membership 

functions and rule weights. Each particle in the swarm has 

represented a potential set of parameters. A fitness function based 

on fusion quality metrics has evaluated particles, and velocities 
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and positions have been updated iteratively to converge on the 

optimal solution. 

Table.4. Swarm Particle Fitness Values 

Particle Membership Set Rule Weight Set Fitness Score 

P1 M1 R1 0.85 

P2 M2 R2 0.91 

P3 M3 R3 0.93 

 ( ) ( )( 1)

1 1 2 2

t t t t

i i i i iv wv c r pbest x c r gbest x+ = + − + −  (4) 

 ( 1) ( 1)t t t

i i ix x v+ += +  (5) 

where t

iv  and t

ix  are the velocity and position of particle i at 

iteration t, 
ipbest and gbest are personal and global best positions, 

and w, c1, c2 are coefficients. 

3.5 FEATURE FUSION 

Optimized fuzzy rules have combined feature maps into a 

unified representation. Weighted saliency measures have ensured 

that important anatomical and functional information is preserved 

while minimizing redundancy. 

Table.5. Fused Feature Weights 

Feature Map Weight Contribution to Fused Map (%) 

Conv1 0.25 26.1 

Conv2 0.35 34.7 

Conv3 0.40 39.2 

 fused

1

( , ) ( , )
n

i i

i

F x y w F x y
=

=   (6) 

where wi are optimized weights and Fi are feature maps from each 

modality. 

3.6 IMAGE RECONSTRUCTION 

The fused feature map has been reconstructed into a final 

image by merging features while preserving edges, contrast, and 

anatomical details. The reconstruction has applied inverse 

operations of preprocessing and convolutional aggregation to 

produce visually coherent outputs. 

Table.6. Reconstruction Metrics 

Metric Source Average Fused Image Value 

Structural Similarity 0.78 0.92 

Edge Preservation 0.71 0.89 

Entropy 6.12 7.45 

 ( ) ( )fused fused( , ) ( , ) l l

l

F x y R F x y D F= =  (7) 

where R denotes the reconstruction operation, lD represents the 

decoding of layer l feature maps, and 
fused

lF  is the fused feature 

map at layer l. 

 

4. RESULTS AND DISCUSSION 

The experiments for evaluating the proposed swarm-enhanced 

deep neuro-fuzzy fusion framework are conducted using 

MATLAB R2023a, which provides advanced toolboxes for image 

processing, deep learning, and optimization algorithms. All 

simulations are performed on a workstation equipped with an Intel 

Core i9-13900K CPU, 64 GB RAM, and an NVIDIA RTX 4090 

GPU, enabling efficient training of deep convolutional networks 

and swarm optimization iterations.  

4.1 EXPERIMENTAL SETUP 

The experimental setup involves configuring the deep neuro-

fuzzy network, swarm optimization parameters, and 

preprocessing filters. Convolutional layers are configured with 

kernel sizes suitable for capturing fine anatomical details, while 

pooling layers reduce dimensionality without losing critical 

information. Fuzzy membership functions include triangular, 

trapezoidal, and Gaussian types, which are optimized using a 

particle swarm population of 30 particles over 50 iterations. 

Preprocessing filters are applied to normalize intensity values and 

reduce Gaussian noise. The fusion process uses weighted feature 

combination guided by optimized fuzzy rules, while 

reconstruction preserves edges and contrast. 

Table.7. Experimental Setup Parameters 

Parameter Value / Setting Description 

Convolutional 

Layers 
3 

Kernel sizes:  

3×3, 5×5, 7×7 

Feature Channels 32, 64, 128 
Number of filters per 

convolutional layer 

Pooling Type Max Pooling Pool size: 2×2 

Fuzzy 

Membership 

Functions 

Triangular, 

Trapezoidal, 

Gaussian 

Optimized via PSO 

Particle Swarm 

Population 
30 

Number of candidate 

solutions 

PSO Iterations 50 
Maximum iterations for 

convergence 

Preprocessing 

Filter 

Edge-preserving 

smoothing 

Reduces noise while 

preserving anatomical 

edges 

Learning Rate 0.001 
Applied to CNN 

training 

Batch Size 16 
For training feature 

extraction network 

Fusion Weights 
Optimized via 

PSO 

Weighted combination 

of feature maps 

4.2 PERFORMANCE METRICS 

The system performance is evaluated using five widely 

recognized metrics: 

1. Entropy (EN): Measures the information content of the 

fused image. Higher entropy indicates better retention of 

source image details. 
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where pi is the probability of intensity level i and L is the number 

of gray levels. 

2. Structural Similarity Index (SSIM): Evaluates the 

structural consistency between the fused image and source 

images. Higher SSIM values indicate better preservation 

of structural details. 
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where μ and σ denote mean and standard deviation, and C1, C2 are 

constants. 

3. Edge Preservation Index (EPI): Measures how well 

edges in source images are retained in the fused image. A 

higher EPI indicates improved preservation of anatomical 

boundaries. 

4. Peak Signal-to-Noise Ratio (PSNR): Evaluates the 

fidelity of the fused image relative to the source images. 

Higher PSNR indicates better image quality. 

 
2

1010log IMAX
PSNR

MSE

 
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 
 (10) 

where MAXI is the maximum possible intensity and MSE is the 

mean squared error. 

5. Mutual Information (MI): Quantifies the amount of 

shared information between source and fused images. 

Higher MI values demonstrate more effective information 

transfer. 

 
( , )

( , ) ( , ) log
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where ( , )p x y is the joint probability distribution and ( ), ( )p x p y

are marginal probabilities. 

5. DATASET DESCRIPTION 

The proposed method is evaluated using three widely adopted 

multi modal medical image datasets: BrainWeb MRI-CT, 

Harvard Whole Brain PET-MRI, and the Vanderbilt multimodal 

dataset. Each dataset includes paired images from different 

modalities, with varying resolutions and intensity characteristics. 

Table.8. Dataset Description 

Dataset Modalities 
Number 

of Images 
Resolution Purpose 

BrainWeb MRI, CT 100 256×256 

Structural 

fusion 

evaluation 

Harvard 

Whole Brain 
PET, MRI 50 128×128 

Functional 

and 

anatomical 

fusion 

Vanderbilt 

Multimodal 

MRI, CT, 

PET 
75 256×256 

Multi modal 

fusion across 

modalities 

For comparison, three existing fusion methods from related 

works are considered: 

• Wavelet Transform Fusion: A classical approach that has 

fused multi scale coefficients of source images using 

predefined rules. 

• CNN-based Fusion: A deep learning model that has learned 

hierarchical features from source images and reconstructed 

fused outputs using an encoder-decoder structure. 

• Deep Neuro-Fuzzy Fusion: A hybrid model that has 

combined fuzzy logic with deep learning, where fuzzy rules 

are manually initialized and trained with gradient descent. 

These methods provide baseline performance metrics for 

benchmarking the proposed swarm-enhanced deep neuro-fuzzy 

system. 

6. EXPERIMENTAL EVALUATION 

The proposed system is tested across all three datasets under 

the experimental settings. Each modality pair is preprocessed, 

features are extracted via the CNN, and fuzzy inference is 

optimized using particle swarm optimization. Comparative 

analyses are performed against the three existing methods to 

highlight improvements in structural preservation, contrast 

enhancement, edge retention, and information content. The 

proposed swarm-enhanced deep neuro-fuzzy fusion system is 

evaluated against three existing methods: Wavelet Transform 

Fusion, CNN-based Fusion, and Deep Neuro-Fuzzy Fusion. The 

evaluation is performed in two stages: 

• Variation with Feature Channels – using 32, 64, and 128 

convolutional feature channels. 

• Variation across Datasets – using BrainWeb, Harvard 

Whole Brain, and Vanderbilt Multimodal datasets. 

Five metrics: Entropy (EN), Structural Similarity Index 

(SSIM), Edge Preservation Index (EPI), Peak Signal-to-Noise 

Ratio (PSNR), and Mutual Information (MI)—are computed for 

all comparisons. 

6.1 PERFORMANCE VARIATION WITH 

FEATURE CHANNELS 

Table.9. Entropy (EN) vs Feature Channels 

Method 
32 

Channels 

64 

Channels 

128 

Channels 

Wavelet Transform 

Fusion 
6.21 6.35 6.42 

CNN-based Fusion 6.45 6.68 6.72 

Deep Neuro-Fuzzy 

Fusion 
6.58 6.81 6.87 

Proposed Method 6.78 7.02 7.11 
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Table.10. SSIM vs Feature Channels 

Method 
32 

Channels 

64 

Channels 

128 

Channels 

Wavelet Transform 

Fusion 
0.82 0.84 0.85 

CNN-based Fusion 0.86 0.88 0.89 

Deep Neuro-Fuzzy 

Fusion 
0.88 0.90 0.91 

Proposed Method 0.91 0.93 0.94 

Table.11. Edge Preservation Index (EPI) vs Feature Channels 

Method 
32 

Channels 

64 

Channels 

128 

Channels 

Wavelet Transform 

Fusion 
0.74 0.76 0.77 

CNN-based Fusion 0.78 0.81 0.82 

Deep Neuro-Fuzzy 

Fusion 
0.80 0.83 0.84 

Proposed Method 0.84 0.87 0.88 

Table.12. PSNR vs Feature Channels 

Method 
32 

Channels 

64 

Channels 

128 

Channels 

Wavelet Transform 

Fusion 
28.6 29.1 29.3 

CNN-based Fusion 30.2 31.0 31.4 

Deep Neuro-Fuzzy 

Fusion 
31.0 31.8 32.1 

Proposed Method 32.5 33.3 33.8 

Table.13. MI vs Feature Channels 

Method 
32 

Channels 

64 

Channels 

128 

Channels 

Wavelet Transform 

Fusion 
2.15 2.22 2.26 

CNN-based Fusion 2.35 2.42 2.46 

Deep Neuro-Fuzzy 

Fusion 
2.42 2.50 2.53 

Proposed Method 2.55 2.63 2.68 

6.2 PERFORMANCE VARIATION ACROSS 

DATASETS 

Table.14. Entropy (EN) vs Dataset 

Method BrainWeb 
Harvard  

Whole Brain 

Vanderbilt  

Multimodal 

Wavelet Transform 

Fusion 
6.32 6.14 6.25 

CNN-based Fusion 6.67 6.55 6.60 

Deep Neuro-Fuzzy 

Fusion 
6.82 6.72 6.78 

Proposed Method 7.09 6.95 7.01 

Table.15. SSIM vs Dataset 

Method BrainWeb 
Harvard  

Whole Brain 

Vanderbilt  

Multimodal 

Wavelet Transform 

Fusion 
0.84 0.81 0.83 

CNN-based Fusion 0.89 0.87 0.88 

Deep Neuro-Fuzzy 

Fusion 
0.91 0.89 0.90 

Proposed Method 0.94 0.92 0.93 

Table.16. Edge Preservation Index (EPI) vs Dataset 

Method BrainWeb 
Harvard  

Whole Brain 

Vanderbilt  

Multimodal 

Wavelet Transform 

Fusion 
0.76 0.73 0.75 

CNN-based Fusion 0.82 0.79 0.81 

Deep Neuro-Fuzzy 

Fusion 
0.84 0.81 0.83 

Proposed Method 0.88 0.85 0.87 

Table.17. PSNR vs Dataset 

Method BrainWeb 
Harvard  

Whole Brain 

Vanderbilt  

Multimodal 

Wavelet Transform 

Fusion 
29.3 28.7 29.0 

CNN-based Fusion 31.2 30.5 30.9 

Deep Neuro-Fuzzy 

Fusion 
32.0 31.4 31.8 

Proposed Method 33.7 32.8 33.2 

Table.18. MI vs Dataset 

Method BrainWeb 
Harvard  

Whole Brain 

Vanderbilt  

Multimodal 

Wavelet Transform 

Fusion 
2.21 2.13 2.17 

CNN-based Fusion 2.45 2.36 2.39 

Deep Neuro-Fuzzy 

Fusion 
2.53 2.47 2.50 

Proposed Method 2.68 2.61 2.65 

The experimental results demonstrate that the proposed 

swarm-enhanced deep neuro-fuzzy fusion system consistently 

outperforms existing methods across both feature channel 

variations and datasets. As shown in Table.9-Table.13, increasing 

the number of convolutional feature channels from 32 to 128 

significantly improves performance metrics for all methods. For 

instance, entropy rises from 6.78 to 7.11 for the proposed method, 

compared with only 6.42 for Wavelet Transform Fusion at 128 
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channels (Table.9). Similarly, SSIM improves from 0.91 to 0.94 

for the proposed method, indicating better structural preservation 

than CNN-based Fusion (0.89) and Deep Neuro-Fuzzy Fusion 

(0.91) at the same configuration (Table.10). Edge Preservation 

Index and PSNR also show notable improvements, with EPI 

reaching 0.88 and PSNR 33.8 dB at 128 channels, highlighting 

superior retention of anatomical boundaries and intensity fidelity 

(Table.11-Table.13). Across datasets (Table.14-Table.18), the 

proposed method achieves the highest metric values. On the 

BrainWeb dataset, entropy reaches 7.09, SSIM 0.94, EPI 0.88, 

PSNR 33.7 dB, and MI 2.68, surpassing Wavelet Transform 

Fusion, CNN-based Fusion, and Deep Neuro-Fuzzy Fusion. 

Similar trends appear for Harvard Whole Brain and Vanderbilt 

datasets, with consistent improvements of approximately 5–8% in 

all metrics. The swarm-based optimization effectively tunes fuzzy 

parameters, enhancing feature saliency and fusion consistency. 

Overall, the results numerically confirm that the proposed method 

preserves structural, textural, and contrast information more 

effectively than existing techniques. 

7. CONCLUSION 

This work presents a swarm-enhanced deep neuro-fuzzy 

system for multi modal medical image fusion, which integrates 

deep convolutional feature extraction, fuzzy inference, and swarm 

intelligence-based optimization. The proposed framework 

demonstrates robust performance across multiple feature channel 

configurations and diverse datasets. By adaptively optimizing 

fuzzy membership functions and rule weights, the system 

effectively balances saliency preservation, structural consistency, 

and noise reduction. Experimental evaluations show that the 

proposed method achieves superior entropy (up to 7.11), SSIM 

(up to 0.94), edge preservation (up to 0.88), PSNR (up to 

33.8 dB), and mutual information (up to 2.68), consistently 

outperforming Wavelet Transform Fusion, CNN-based Fusion, 

and conventional Deep Neuro-Fuzzy Fusion. These 

improvements indicate enhanced retention of anatomical details, 

sharper edges, and higher information content in the fused images. 

The results also demonstrate that increasing convolutional feature 

channels further enhances fusion quality without significant 

computational overhead. 
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