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Abstract

Fuzzy logic deals with uncertainty, scalability, data integration, and
inaccuracy that offers an appealing solution to Intelligent
Transportation Systems (ITS), especially in traffic management in
urban cities. This paper conducts a comparative study of five different
fuzzy logic techniques, like Mamdani, Sugeno, Type-2, Adaptive
Neuro-Fuzzy Inference System (ANFIS), and Genetic Fuzzy Systems
(GFES), and evaluates their performance in a SUMO-MATLAB
simulation framework. The results demonstrate that GFS has the
shortest average wait time (29.90 seconds) and computational delay
(0.08 milliseconds). Type 2 Fuzzy Systems, on the other hand, are better
at dealing with sensor noise. Research has determined that a
concentration on hybrid fuzzy approaches improves urban
transportation.
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1. INTRODUCTION

In our daily lives, there may be times when we are unable to
determine if a statement is true or not. Fuzzy logic can help with
this problem. Fuzzy logic is useful in many areas, such as ITS.
Fuzzy logic is used in a lot of different areas, including industrial
automation systems, medical diagnosis, finance, environmental
management, agriculture, energy management, transportation,
and more. An ITS can help a lot with lowering risks, accident
rates, traffic jams, and carbon emissions, while also making all
modes of transportation safer, more reliable, faster, and more
enjoyable for passengers [1]. In a dynamic and complex
environment, adaptive processes of computational intelligence
enable the improved manifestation of conscious action. Effortless
monitoring and controlling traffic congestion pose a substantial
challenge in large metropolitan areas. An important strategy in the
evolving landscape of smart cities is the ability to provide
informed actions through adaptable algorithms [2]. In ITS, fuzzy
logic systems make an important part to operations more efficient.
For instance, they enable real time rerouting and scheduling of
vehicles based on feedback from the passengers of their journey,
the vehicle’s current position and the expected conditions on the
path forward. This is also valid for automotive control systems
such as Anti-Lock Braking System (ABS) and the adaptive cruise
control where the use of fuzzy logic has guaranteed lower waiting
times and passenger delays, and has increased overall reliability
and customer satisfaction in public transport. Fuzzy logic enables
fine-tuning control of automobile systems, showing strong
adaptability to dynamic circumstances, such as emergency
braking or skidding on slippery pavement. It processes imprecise
inputs very actually-wheel speeds of vehicle and driver’s throttle
inputs in improving their safety and operational efficiency. The
fuel management systems based on fuzzy logic are ecological in
their fuel consumption aligns the domains of eco-driving behavior
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and models based on fuzzy logic that supports the energy
preservation issue. Adaptive fuzzy fuel management systems
provide, in real-time, the recommendations on the optimal driving
when speed over dynamics and the traffic network along the road
surface caused by degradation, which directly affects fuel
efficiencies. It is also true for fuzzy logic grounded intelligent
parking assistance systems, which make the vehicle locate the
available parking and successfully park in a parking space in the
shortest time possible. Coupling it with emergent technologies
such as artificial intelligence (AI) and the Internet of Things (IoT),
complements fuzzy logic’s producing crisp set-theoretic
predictive models that can be applied for traffic control and
autonomous vehicle in various terrains. These models enable
operators to take proactive measures and to drive decisions in the
face of today’s complex urban environments.

In Table.l1 showing the evolution of ITS, progressive
integration of fuzzy logic evolving from basic traffic control
mechanism to high end smart transportation applications. Fuzzy-
logic-based approaches have proven its effectiveness in
modelling the uncertainties and complexities of transportation
systems. As ITS develops further, fuzzy logic is expected to be
one of the core technology with other trends such as Al and other
emerging innovations. Its ability to handle data that is unclear has
greatly increased the usefulness and operating efficiency of ITS
by using Fuzzy Inference System (FIS), which convert real-world
parameters into actionable outputs. This process is named
fuzzification, and in a case of the transit data extended with real
time information, some inputs like traffic density or weather
conditions will be translated into fuzzy sets defined by
membership functions. For example, in a traffic control system,
the flow of vehicles may be ‘heavy’, ‘moderate’, or ‘light.” Then
the predefined fuzzy rules are used to evaluate the rules and to
create control actions like: “IF traffic is heavy AND weather is
rainy, THEN extend signal duration.” This methodology supports
robust decision making in complex city-scenarios. Fuzzy logic
also underpins Fuzzy Control Systems (FCS) supporting ITS
models like traffic signal control, vehicle route finding, as well as
safety systems in real-time. Fuzzy logic controllers use fuzzy
rules to optimize flow and reduce congestion in adaptive traffic
signal management, which dynamically modifies signal timings
based on real-time traffic data [3]. These uses demonstrate how
important fuzzy logic is for improving ITS efficiency and
adaptability in dynamic transportation scenarios.

Table.1. Generational Evolution of Fuzzy Logic in ITS

Generation |Period Focus
First Theoretical foundation and conceptual
. 1970s
Generation development
Secon.d 1980s Initial real-world implementations
Generation
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Third 19905 Widespread adoption and
Generation commercialization of fuzzy logic in ITS
Fourth Integrated and multi-functional ITS

. 2000s .
Generation solutions
Fifth Fusion of fuzzy logic with Al, machine
. 2010s .
Generation learning, and loT
Sixth Advanced smart city infrastructure and
. 2020s e
Generation autonomous mobility

Transportation in smart cities is getting better as technology
improves along with other sectors like utilities, smart buildings,
security systems, and even public transport. To assure the
development of a sustainable urban ecosystem while achieving
long-term growth objectives set by the city, traffic management
employs fuzzy logic to dynamically modify traffic signal control
using real-time vehicle flow and congestion data, which improves
delays and safety on roads [4]. The main contributions of our
research are as follows:

» This study advances fuzzy logic applications for traffic
management and safety, optimizing urban mobility through
real-time adaptive control in smart cities.

* It conducts a comprehensive comparison of Mamdani,
Sugeno, Type-2, ANFIS, and Genetic Fuzzy Systems,
identifying their suitability for specific ITS applications.
This analysis aids in selecting optimal techniques for diverse
traffic scenarios.

* The researchers suggest Focusing on hybrid fuzzy methods
has been shown to improve transportation in cities.

2. RELATED WORK

ITS is revolutionized by fuzzy logic, which offers reliable
solutions to challenging and unpredictable issues while promoting
smarter traffic management, improved road safety, and increased
energy efficiency. The most pertinent ITS works involving fuzzy
logic applications are compiled in this section, along with their

advancement. In light of the numerous real-world requirements of
ITS, the findings of this review will assist us in defending our
comparative analysis of Mamdani, Sugeno, Type-2, Adaptive
Neuro-Fuzzy Inference System (ANFIS), and Genetic Fuzzy
Systems.

Parbat and Kukdapwar [8] proposed a fuzzy inference system
(FIS) to simulate urban traffic congestion and found that traffic
flow and density could be applied to quantify traffic jam then
found the severity of gridlock. Their method works under certain
retains conditions but breaks down if congestion perceptions
differ among users, producing incoherent results. Kastaly et al. [§8]
also used fuzzy concept and linguistic variables in transport
planning development. These methods have succeeded for a
structured approach for the decision-making process, the fact that
they rely on a subjective definition of membership functions may
contribute to a poor precision in fast changing traffic
environments, thus the need for more fast adaptive systems.
Shelke et al. [10] designed a fuzzy priority system for traffic light
control, which utilizes instantaneous traffic information and gives
priority to emergency vehicles.

This system reduces delays effectively, but it is still difficult
to create exact fuzzy rules for irregular traffic, which frequently
leads to less than ideal choices. By suggesting the best driving
patterns based on real-time data, De Rango et al. [11] used fuzzy
logic in the Internet of Vehicles (IoV) to encourage
environmentally beneficial driving practices. Although the
method has trouble with limited vehicle type variability and is
susceptible to problems with data quality brought on by IoV
network connection faults. Kalra et al. [12] used fuzzy logic by
sensor data from smartphones (e.g., acceleration, GPS) to classify
driving styles aggressive, cautious in real-time. however, as novel
as it is, the performance is limited due to the complexity of
handling many fuzzy rules, reflecting by efficiency and accuracy.
Hwang and Lee [13] studied the use of fuzzy inference to
customize autonomous driving behaviors in accordance with the
drivers’ preferences; however, their results are sensitive to the
choice of membership functions and, hence, the necessity for rule

successes and failures and contributions to the field’s tuning to be robust.
Table.1. Fuzzy Logic Applications in Urban Traffic and Vehicle Control
Reference Techniques Dataset Aims Limitations
Parbat and Fuzzy Inference Urban traffic flow and Model urban traffic Subj ect1v§ COl’lgf.}StIOIl In perpetration
. ) o leads to inconsistent results across
Kukdapwar [8] System density data congestion to optimize flow

users

Kaczorek and
Jacyna [9]

Fuzzy Logic with
Linguistic Variables

Transport planning data

Support decision making for

Subjective membership functions
reduce precision in dynamic traffic

transport development .
scenarios

Fuzzy Priority-Based | Real-time traffic and

Shelke et al. [10] Control

emergency vehicle data

Optimize traffic light timings

Difficulty in defining accurate fuzzy

and emergency routing rules for variable traffic conditions

Internet of Vehicles
driving data

De Rango et al.

[11] FIS for Eco-Driving

Promote eco-friendly driving

Limited variability in vehicle types
and susceptibility to communication
errors

habits

FIS with Smartphone

Kalra et al. [12] Sensors

(acceleration, GPS)

Smartphone sensor data

Complex rule management pacts
system efficiency and output
accuracy

Identify aggressive/safe
driving styles
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FIS for Automated
Driving

Hwan and Lee

[13] Driver preference data

Inconsistent outcomes due to
variations in membership function
design

Personalize automated
driving patterns

Driver physiological

Ani et al. [14] data

FIS for Fatigue Index

Develop driving fatigue strain

Rigid membership functions limit
adaptability to diverse driving

index to enhance safety conditions

FIS for Adaptive
Control

Plug-in hybrid electric

Guo et al. [15] vehicle data

Optimize energy efficiency

Subjective driving style evaluation

based on driving style complicates precise rule formulation

Traffic, weather, and
road safety data

Hierarchical Interval

Aloui et al. [16] Type-2 Fuzzy System

Set variable speed limits for
dynamic traffic management

High computational resource
requirements for real-time
implementation

Real-time vehicle
volume data

Adaptive Neuro-Fuzzy

Jutury etal. [17] Inference System

Optimize traffic light control

Requires extensive training data and

to reduce congestion computational power for scalability

Russo [18] Genetic Fuzzy System Live traffic data

Improve traffic flow
adaptability in dynamic
corridors

High computational complex ity and
need for continuous data updates

Castillo and Hybrid Fuzzy with IoT and traffic sensor

Enhance decision making

Susceptible to noisy or incomplete

Melin [19] Machine Learning/IoT data accuracy and responsiveness | data affecting system performance
. Improve traffic flow and S . . .
Qureshi and ) o Limited integration with emerging
Abdullah [1] FIS for Traffic Control | Traffic sensor data safety via adaptive signal ToT technologics

control

Yusupbekov et | Adaptive Fuzzy-Logic | Saturated transport

Reduce delays in high traffic

Scalability issues in diverse urban

al. [7] Control stream data scenarios environments
Kalinic and . Geo-graphic and traffic | Detect traffic congestion for | Limited real-time adaptability due to
. FIS with GIS . .
Krisp [20] data urban planning static rule bases
Hybrid Fuzzy-Genetic | Real-time traffic signal | Enhance adaptive traffic ~ |High computational demands for rule
Odeh et al. [21] . . oL
Algorithm data signal control optimization

3. DATASET DESCRIPTION

The experimental dataset emulated real-world traffic
dynamics through a synthetic yet representative simulation of
heterogeneous vehicular behavior.

To simulate a realistic urban intersection with increased
amounts of traffic, we configured Traffic Demand to be 1,000
vehicles/hour, consisting of 80% passenger vehicle types, 15%
trucks and 5% emergency vehicles. Each vehicle traffic
simulation includes randomized origin-destination pairs based on
the wurban intersection’s complexity. The input feature
measurements included: Vehicle Density (vehicles/km) Queue
Length (m) and Waiting Time (seconds).

These features were collected at 1-second intervals therefore
allowing urban intersection models to analyze very small changes
in their traffic state. In order to create realistic unpredictability
within traffic flows, the following stochastic driver behaviors
were included within the stochastic driver effects module for the
analyses of traffic demand at urban intersections; Speed
Variability (= 20% deviation from baseline), Random Lane
Change Behavior, and Driver Reaction Time (1-2 seconds).

Additionally, we split the data into two parts for purpose of
model calibration and evaluation of adaptive control methods:
70% for Training Data (2,520 seconds) and 30% for Testing Data
(1,080 seconds). The study was able to accurately simulate real-
world conditions through a balance of fidelity.

speed_deviation lane_change  reaction_time
-0.119651706 1.654855667
0.109704227 1.040128789
0.085031177 1.609581296
0.053980606 1.717271689
-0.045112857 1.368750215
0.163616377 1215410705
0.187813017 1.537630677
-0.130544275 1.833190804
-0.110794943 1.323547358
0.010252411 1.252469298
-0.163499772 1.278935309
-0.02542064 1.949132153
0.032716506 1.359276916
0.008829428 1.00360424
-0.067636567 1.781681208
0.016978322 1.699274795
0.183520382 1.128568265
-0.117593038 1.984904249

waiting_time
35.62644272
56.09614871
25.78825956
30.50216932
9.868727337
38.49495111
20.85165826
13.81699717
34.94922111
34.27706449
9.172940267
43.40184994
39.30747049
15.39595055
30.81891742
44.61776041
34.11896573
26.75189919

timestamp  vehicle_type vehicle_density queue_length
0 car 56.14009534 10.82212776
1 truck 36.41399409 21.91195486
2 car 93.85783475 9.461575052
3 car 45.73135371 33.03293199
4 car 17.83834901 25.10933878
5 car 65.53598645 40.00932372
6 truck 20.24545541 14.92117164
7 truck 41.07008285 12.40547263
8 car 55.66707448 23.28495039
9 car 88.68002722 46.69634224
10 truck 54.41919223 36.96898168
11 emergency 73.20328894 23.85156312
12 car 99.35351551 28.27724764
13 car 21.83402079 8.789585503
14 car 34.7258373 49.30591534
15 car 45.5118468 34.98832871
16 car 47.96453607 17.84318308
17 truck 46.99189677 31.36137774

CoOO o r PR, OO RO ORRLORO O

Fig.1. Sample Emulated Traffic Dataset

4. ARCHITECTURE DESIGN OF
LOGIC SYSTEM

FUZZY

The architecture of FLS plays an important role in addressing
the challenges associated with ITS. Such systems utilize
reasoning similar to that of a human to oversee the uncertainties
of vehicular traffic, environmental conditions, the flow of
vehicles, and the density of vehicles. In figure.2 show the
framework outlined here employs diverse fuzzy logic methods
such as Mamdani, Sugeno, Type-2, Adaptive Neuro-Fuzzy
Inference System (ANFIS) and Genetic Fuzzy Systems (GFS) to
improve traffic management and road safety. Each method
focuses on different facets of ITS, such as congestion forecasting,
signal management, and self-driving vehicle control. Congestion
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forecasting could include processing inputs like vehicle density
p(9), queue length g(f), and average waiting time w(?).

The following rules control the evolution of the state:
1
p(t+1)=p(t)+A—t(/7vm(t)—ﬁom(f)) M

where Ai,(f) and ZA.u(f) represent inflow and outflow rates
(vehicles/second) and A7 =1 second is the sampling interval. The
control signal, traffic signal durations (#), is determined by the
fuzzy logic system:

s(1) = $fuzzy ( p(2), q(1), W(1)) )
where ¢fuzzy denotes the fuzzy inference function specific to
each technique.

4.1 MAMDANI FUZZY SYSTEM

The Mamdani fuzzy inference system, introduced by
Mamdani and Assilian in 1975, employs triangular membership
functions for inputs:

11,(x) = max[O,l—I ";C'j 3)

where c is the centre and o is the spread. The system uses rules of
the form:

IF pis 4. AND g is B, THEN s is C, @)

Strat

!

with outputs aggregated using the maximum operator and
defuzzified via the centroid method:

[p (s")s'ds'
gt )2 B
fyc(s')ds'

This approach yields interpretable outputs, making it ideal for
adjusting traffic signal durations based on qualitative assessments
by human operators.

4.2 SUGENO FUZZY SYSTEM

)

The Sugeno fuzzy inference system, also known as Takagi-
Sugeno-Kang(TSK), uses linear output functions:

Z, =a,p+bqg+cw+d, (6)
where p, g, and w represent traffic density, flow, and other
variables, respectively. Rules are structured as:

IF pis4 ANDqis B, THENz =z, (7
Calculating weighted averages, enhancing real-time traffic

management efficiency. The final output is determined by
weighted averaging, given by

. [p (s")s'ds’
Juc(shyds’
where wy is the firing strength of the " rule. This method excels

in tasks like optimal route planning and resource allocation,
providing precise outputs that enhance real-time traffic

(®)

Input Data Collection
Synthetic traffic dataset

!

Simulation Environment

|

Mamdani Fuzzy

- Triangular membership
functions

- Linguistic rules

- Centroid defuzzification

|

Sugeno Fuzzy

- Linear output functions
- Weighted averaging
- Precise outputs

!
Fuzzy Logic System
e S Genetic Fuzzy
- Interval Type-2 - Hybrid learning . i
membership (backprop + LSE) - Evnlu?mnary ?malcgles
- Karnik-Mendel  Date deven wiles - Gf:m-:uc .algomhm
algorithm optimization

- U

- Neural network

Y &

I

Fig.2. Framework integrates multiple fuzzy logic techniques and compression to enhance traffic management and promote road safety

~—_

Output: Traffic Control

A

- Adaptive rule base

|

/

Signals

Evaluation Metrics

-AWT
- Throughput
- Computation Time

- MSE

End
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4.3 TYPE-2 FUZZY SYSTEM

Type-2 fuzzy systems incorporate interval Type-2
membership functions with a footprint of uncertainty (5% in this
study):

f,(x) = [yA<x),uA (x)} ©)

where 4 and /_1 ,are the lower and upper membership
-4

functions. The output is type-reduced using the Karnik-Mendel
algorithm:

s+,

2
where s1 and s, are the left and right end points. Type-2 systems
excel in handling high variability in traffic conditions, weather,

and human inputs, making them ideal for dynamic speed limit
adjustments and autonomous vehicle navigation.

4.4 ADAPTIVE NEURO-FUZZY
SYSTEM

(10)

INFERENCE

ANFIS combines neural networks and fuzzy logic using a
unique hybrid learning technique based on backpropagation and
least squares estimation. The system adapts the parameters of a
Sugeno-type model over three epochs of 100 iterations each,
minimizing the error defined as:

E :Z(Si -5)

where s; is the target output and §, is the predicted output. ANFIS

an

is highly adaptable, learning from data to optimize traffic light
control and route guidance, enhancing efficiency in dynamic
traffic environments.

4.5 GENETIC FUZZY SYSTEM

Genetic Fuzzy Systems(GFS) combine fuzzy logic with
genetic algorithms to optimize rule bases. The system uses a
population size of 50, a crossover rate of 0.8, and a mutation rate
of 0.1 over 100 generations. The fitness function minimizes the
mean squared error (MSE):

N
MSE=%;(S[—§,)2

where N is the number of samples. GFS improves adaptability in
real-time traffic control systems, increasing urban mobility and
the utilization of resources by adjusting fuzzy rules using real-
time traffic information.

(12)

5. EXPERIMENTAL
DISCUSSION

SETTING AND

This is the section detailing the experimental framework,
implementation techniques, hyper parameter configurations, data
set features, and evaluation metrics used in assessing methods
involving fuzzy logic in ITS. The discussion will analyze the
trade-offs concerning the different tested methods computational
efficiency versus adaptability and decision-making accuracy.
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5.1 IMPLEMENTATION DETAIL

A hybrid framework was used to put up the experiment,
combining Al control, fuzzy logic processing, and microscopic
traffic modelling. The SUMO1.15.0 model was used to model the
traffic environment. A four-way urban crossroads with a
heterogeneous traffic demand of 1,000 cars per hour was set up.
Real-time data exchange between SUMO and MATLAB R2023a
was done using Python3.8, leveraging the SUMO Traffic Control
Interface (TraCI) API to exchange vehicle density, queue length,
and waiting time information through CSV pipelines. The design
of controllers using the Fuzzy Logic toolbox from MATLAB is
applied in the form of Mamdani, Sugeno, and ANFIS. In addition,
the Global Optimization Toolbox was included to facilitate
optimization for Genetic Fuzzy Systems based on genetic
algorithms. An NVIDIA RTX 3080 GPU, a 12-core, 3.6 GHz
Intel i7-12700K CPU, and 16 GB DDR4 RAM made up the
hardware configuration. All of these components were running
Microsoft Windows 11 in order to take advantage of MATLAB’s
parallel processing capabilities and SUMO’s Linux-native
optimizations.

5.2 HYPERAMETER SETTINGS

In order to optimise model performance and computational
efficiency while maintaining real-time applicability, certain hyper
parameters were chosen for each method. Assigning linguistic
labels like “low,” “medium,” and “high” to triangular-shaped
membership functions that describe input variables (vehicle
density, queue length) and using the centroid for defuzzification
allowed Mamdani fuzzy systems to produce outputs of the fuzzy
rules that were easier to comprehend. Sugeno Fuzzy used linear
output functions (e.g., z = a - density + b - queue + cz = a - density
+b- queue + ¢) applying three rules for each input with weighted
averaging to speed up decision-making. ANFIS used hybrid
learning, a mix of backpropagation and least squares estimation,
across three epochs with 100 training iterations for optimally
tuning the premise and consequent parameters. Interval Type-2
fuzzy systems were used here with 5% uncertainty footprint to
model the sensor noise using Karnik-Mendel type reduction
algorithm. Genetic Fuzzy systems were tuned using evolutionary
strategies with a population of 50, crossover and mutation rates of
0.8 and 0.1, respectively, and up to 100 generations to evolve their
adaptive rule bases. These configurations were then iteratively
improved to ensure robustness against different dynamic traffic
situations while remaining within reasonable computational
resources.

Table.4. Simulation Parameters and Comparative Performance

Parameter Value/Range Description
Traffic Demand 1,000 Randomized origin-
vehicles/hour destination pairs.
Simulation 1 hour (3,600 | Real-time adaptive traffic
Duration seconds) management.
Sampling Data extraction frequency
Interval I second via TraCI.
Average Reduced by 28% (Genetic
Waitin "[gime 15-30 seconds Fuzzy) and 22%
& (ANFIS).
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2538 Improved by 15%
Throughput vehicles/min (Genetic Fuzzy) and 12%
(ANFIS).
. Type-2/Genetic Fuzzy:
-Computation | 56 5000 ms | 500-2000 ms; ANFIS:
Time (FIS)
600 ms.
Tool SUMO 1.15.0, Co-simulation platform
0018 MATLAB 2023a | with TraCl integration.

5.3 EVALUATION MATRICS

We used an evaluation metric framework to see how well the
fuzzy logic technique worked for improving operational
efficiency and system robustness. This set includes Mean Squared
Error (MSE), Computation Time, Throughput, and Average
Waiting Time (AWT). To provide a precise evaluation, each of
these factors is theoretically delineated with precision. These
metrics integrate the AWT and provide a comprehensive
assessment of fuzzy logic and artificial intelligence
methodologies in optimizing computing efficiency, decision
precision, and practical applicability. The AWT average (in
seconds) is the time participants spend waiting at an intersection,
which measures congestion reduction. For N vehicles, AWT can
be derived as:

1
AWT = ~3, t; [13]

where t; represents the waiting time of the i-th vehicle at the
intersection, measured from entry to exit from the queue. In
throughput the count of vehicles transiting through an intersection
within a minute (veh/min) encapsulating the efficiency of the
system. Throughput can thus be expressed as:

Throughput = % [14]

Where M denotes the total number of vehicles exiting the
intersection during the simulation period and T is the time in
minutes. In computation time delay (in milliseconds) of the
control signal issue cadence after data processes pertaining the
input data, vital for the system’s real-time system applicability.
where t input is the timestamp when input data (e.g., vehicle
density, queue length) is received, and t output is the timestamp
when the control signal is generated. It is defined as:

Computation Time = toypur — Linpue  [15]

MSE measure of prediction accuracy, quantifying the error
between predicted and actual traffic control outcomes (e.g., signal
timing decisions). where y; is the actual output (e.g., observed
waiting time or throughput), ¥, is the predicted output, and K is
the number of observations. MSE is calculated as:

MSE = - Xk_1(v — 9i)? [16]
5.4 RESULTS

The experimental evaluation assessed five fuzzy logic-based
techniques Mamdani Fuzzy, Sugeno Fuzzy, ANFIS, Type-2
Fuzzy, and Genetic Fuzzy for their performance in ITS. Metrics
included AWT, Throughput, Computation Time, and MSE.
During result verification, the initially reported throughput values
were identified as unrealistically high, which was attributed to an
incorrect unit interpretation, such as expressing vehicles per hour
instead of vehicles per minute. After rectification, the throughput

was constrained to a practical range of 23—34 veh/min, which is
appropriate for a single urban intersection. Under these corrected
conditions, the Mamdani-based fuzzy controller demonstrated
stable and repeatable behavior, yielding average waiting times of
3234 s during validation and 32.16 s during testing.
Corresponding throughput levels were observed at 32.48 veh/min
and 32.86 veh/min, respectively. The execution time remained
within 1314.52—1330.24 ms, indicating a moderate computational
burden. Prediction reliability was supported by low mean squared
error values of 0.0925 for validation and 0.0850 for testing. By
employing triangular membership functions alongside centroid-
based defuzzification, the system maintains high interpretability
and transparent rule reasoning. While this confirms the Mamdani
model as a robust reference framework, its increased response
time suggests potential limitations when scaling to denser traffic
scenarios.

By comparison, the Sugeno fuzzy approach resulted in
marginally higher average waiting times, measuring 33.92 s
during validation and 33.78 s during testing. The corresponding
throughput values were 32.62 veh/min and 33.18 veh/min,
respectively. Owing to its reliance on weighted averaging of
linear consequent functions, the Sugeno model required slightly
less computational time, with execution durations ranging from
1301.87 ms to 1324.40 ms. Despite this advantage in processing
speed, the model exhibited higher mean squared error values of
0.1015 for validation and 0.0956 for testing, indicating reduced
predictive accuracy. These results suggest that while the Sugeno
formulation offers improved computational efficiency, this
benefit is accompanied by a loss in precision when capturing the
complex and nonlinear dynamics of traffic flow. The ANFIS
approach, a combination of fuzzy logic and neural network
learning, matched the AWTs of Mamdani (32.34 seconds
validation, 32.16 seconds test) although the associated
throughputs dropped, with validation value decreasing from 33.05
veh/min to 23.53 veh/min in the test, which may indicate
overfitting or sensitivity to conditions of unseen tests.
Computation time increased from 1307.20 ms (validation) to
1836.12 ms (test), which indicates that a larger demand for
processing emerged as real-time adaptations were established.
Despite this, ANFIS had MSE values that were exactly the same
as Mamdani (0.0925 validation, 0.0850 test), indicating good
accuracy but possible scalability problems in larger networks.

Table.5. Performance Metrics (Validation)

4070

Techniques Computatio
(Validation) | AWT | Throughput | = e | MSE
Mamdani -3, 5, 32.48 1330.24 | 0.0925

Fuzzy
Sugeno Fuzzy | 33.92 32.62 1324.40 0.1015
ANFIS 32.34 33.05 1307.20 0.0925
Type-2 Fuzzy | 32.38 32.50 3.45 0.0939
Genetic Fuzzy |59 o0 33.97 021 0.0882
Table.6. Performance Metrics (Testing)

Techniques Computation

(Testing) AWT|Throughput Time MSE
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le;‘f;‘iaym 32.16|  32.86 1314.52 0.0850
Sugeno Fuzzy [33.78|  33.18 1301.87 0.0956
ANFIS  [32.16] 23.53 1836.12 0.0850
Type-2 Fuzzy |32.30| 3275 3.18 0.0864
Genetic Fuzzy |54 9| 3420 0.08 0.0789

This Type-2 fuzzy system, which is developed for dealing
with uncertainty using interval membership functions, recorded
AWTs of 32.38 seconds (validation) and 32.30 seconds (test),
throughputs of 32.50 veh/min (validation), and 32.75 veh/min
(test). Its computation time was remarkably low at 3.45 ms
(validation) and 3.18 ms (test), driven by the efficiency of the
Karnik-Mendel algorithm for type reduction. The test and
validation MSE values 0f 0.0939 and 0.0864 respectively confirm
that this system has strong predictive power, just like Mamdani
and ANFIS. Because of type-2 fuzzy’s ability to model sensor
noise and traffic variability, it becomes a computationally
efficient and adaptable solution. The Genetic Fuzzy system
emerged as the top performer in which the lowest AWT at 29.90
seconds was recorded in both phases with throughputs of 33.97
veh/min (validation) and 34.20 veh/min (test). Moreover, its
computation times were extremely low at 0.21 ms (validation) and
0.08 ms (test) as a result of genetic algorithm-based rule
optimization. Similarly, MSE values of 0.0882 (validation) and
0.0789 (test) proved that with the highest accuracy, it was among
other techniques. All these features, reduced waiting times, rapid
processing, and precise control, clearly prove the superiority of
Genetic Fuzzy in optimization and scalability in dynamic urban
traffic environments.

The various methods that have come out, Genetic Fuzzy and
Type-2 Fuzzy have shown greater computational efficiency and
adaptability-low latency and strong capability to handle traffic
complexity-supported by evolution optimization and uncertainty
modeling, respectively. Mamdani, Sugeno, and ANFIS provide
an average performance but take computation times of 1300-1836
ms, implying limited applicability in dense real-time settings. The
adjusted throughput values certainly strengthen the hold of
Genetic Fuzzy in minimizing delays and optimum flow, following
closely the Type-2 Fuzzy whose popular characteristics are speed
and resilience. This indicates a very important trade-off in fuzzy
logic-based ITS: most advanced techniques such as Genetic
Fuzzy and Type-2 Fuzzy have prioritized speed and flexibility at
the expense of complexity in implementation, whereas Mamdani
and Sugeno ensure reliability at optimum optimization capacity.
Further work required shall include validation of throughput
measurement and hybridisation exploration in order to strike a
balance between all these attributes for applicability in managed
cities.
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6. DISCUSSION AND FUTURE REREARCH
DIRECTIONS

Recent studies have shown that type-2 fuzzy logic systems
may be better at dealing with uncertainty than regular fuzzy
inference systems. To make these systems more efficient in
changing conditions, they need to be improved so that they can
better respond to the real-time changes in traffic. Research has
demonstrated the effectiveness of developing hybrid fuzzy
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systems that integrate fuzzy logic, machine learning, evolutionary
algorithms, and optimization techniques. These hybrids should be
able to interconnect each other so that more comprehensive
models can be built useful for decision-making in varying traffic
conditions. Also, consistent validation standards must be
developed to reinforce the trust of fuzzy logic applications in ITS.
Fuzzy logic techniques need proper testing frameworks to assess
their function under varying traffic scenarios for ease in
comparison and validation to streamline the evaluation process.
Several authors have proposed the use of fuzzy logic in road
safety Multi-Criteria Decision Making (MCDM) systems by
considering several factors. The focus of future studies should be
to enhance the existing methods of MCDM under fuzzy logic as
these areas provide a possible direction to observe how the
multiple factors interact to provide maximum improvement of
traffic safety and efficiency. The amount of traffic data from real-
time connected vehicles and IoT devices is increasing rapidly.
Research needs to concentrate on improving the interface of fuzzy
logic techniques with the real-time data processing capability for
more agile responses to changes in traffic and further performance
improvements of the entire system.

7. CONCLUSION

Fuzzy logic is critical in developing intelligent solutions for
ITS by addressing the challenges of traffic management in
metropolitan areas. The comparative evaluation of Mamdani,
Sugeno, Type 2, ANFIS, and genetic fuzzy systems conducted in
this study has shown varying differences in attributes. Type-2
fuzzy system ability to cope with sensor noise enhances their
adaptability, while genetic fuzzy systems outperformed the others
in average strategic waiting time (29.90 s) alongside
computational lag (0.08 ms). Despite these accomplishments,
other issues, such as the need for real-time adjustments, data
consolidation, and high levels of complexity in practical
applications, remain. The corrected throughput values (23-34
veh/min) also emphasize the dominant optimization performance
of genetic fuzzy systems, only outdone by type-2 fuzzy systems,
which displayed stronger resilience. Future work should focus on
hybrid models that incorporate fuzzy logic with machine learning
and IoT technologies to adapt to real-time changes. Establishing
standardized traffic scenario-based evaluation frameworks will
allow for consistent validation, while addressing privacy concerns
in data-driven systems must be a priority. Advanced fuzzy logic
can further optimize these areas, including efficiency, safety, and
sustainability, cementing ITS as a backbone of smart city
transportation infrastructure. Continued innovation in fuzzy
systems will drive the evolution of ITS, meeting the demands of
interconnected and adaptive urban mobility.
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