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Abstract 

Fuzzy logic deals with uncertainty, scalability, data integration, and 

inaccuracy that offers an appealing solution to Intelligent 

Transportation Systems (ITS), especially in traffic management in 

urban cities. This paper conducts a comparative study of five different 

fuzzy logic techniques, like Mamdani, Sugeno, Type-2, Adaptive 

Neuro-Fuzzy Inference System (ANFIS), and Genetic Fuzzy Systems 

(GFS), and evaluates their performance in a SUMO-MATLAB 

simulation framework. The results demonstrate that GFS has the 

shortest average wait time (29.90 seconds) and computational delay 

(0.08 milliseconds). Type 2 Fuzzy Systems, on the other hand, are better 

at dealing with sensor noise. Research has determined that a 

concentration on hybrid fuzzy approaches improves urban 

transportation. 
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1. INTRODUCTION 

In our daily lives, there may be times when we are unable to 

determine if a statement is true or not. Fuzzy logic can help with 

this problem. Fuzzy logic is useful in many areas, such as ITS. 

Fuzzy logic is used in a lot of different areas, including industrial 

automation systems, medical diagnosis, finance, environmental 

management, agriculture, energy management, transportation, 

and more. An ITS can help a lot with lowering risks, accident 

rates, traffic jams, and carbon emissions, while also making all 

modes of transportation safer, more reliable, faster, and more 

enjoyable for passengers [1]. In a dynamic and complex 

environment, adaptive processes of computational intelligence 

enable the improved manifestation of conscious action. Effortless 

monitoring and controlling traffic congestion pose a substantial 

challenge in large metropolitan areas. An important strategy in the 

evolving landscape of smart cities is the ability to provide 

informed actions through adaptable algorithms [2]. In ITS, fuzzy 

logic systems make an important part to operations more efficient. 

For instance, they enable real time rerouting and scheduling of 

vehicles based on feedback from the passengers of their journey, 

the vehicle’s current position and the expected conditions on the 

path forward. This is also valid for automotive control systems 

such as Anti-Lock Braking System (ABS) and the adaptive cruise 

control where the use of fuzzy logic has guaranteed lower waiting 

times and passenger delays, and has increased overall reliability 

and customer satisfaction in public transport. Fuzzy logic enables 

fine-tuning control of automobile systems, showing strong 

adaptability to dynamic circumstances, such as emergency 

braking or skidding on slippery pavement. It processes imprecise 

inputs very actually-wheel speeds of vehicle and driver’s throttle 

inputs in improving their safety and operational efficiency. The 

fuel management systems based on fuzzy logic are ecological in 

their fuel consumption aligns the domains of eco-driving behavior 

and models based on fuzzy logic that supports the energy 

preservation issue. Adaptive fuzzy fuel management systems 

provide, in real-time, the recommendations on the optimal driving 

when speed over dynamics and the traffic network along the road 

surface caused by degradation, which directly affects fuel 

efficiencies. It is also true for fuzzy logic grounded intelligent 

parking assistance systems, which make the vehicle locate the 

available parking and successfully park in a parking space in the 

shortest time possible. Coupling it with emergent technologies 

such as artificial intelligence (AI) and the Internet of Things (IoT), 

complements fuzzy logic’s producing crisp set-theoretic 

predictive models that can be applied for traffic control and 

autonomous vehicle in various terrains. These models enable 

operators to take proactive measures and to drive decisions in the 

face of today’s complex urban environments. 

In Table.1 showing the evolution of ITS, progressive 

integration of fuzzy logic evolving from basic traffic control 

mechanism to high end smart transportation applications. Fuzzy-

logic-based approaches have proven its effectiveness in 

modelling the uncertainties and complexities of transportation 

systems. As ITS develops further, fuzzy logic is expected to be 

one of the core technology with other trends such as AI and other 

emerging innovations. Its ability to handle data that is unclear has 

greatly increased the usefulness and operating efficiency of ITS 

by using Fuzzy Inference System (FIS), which convert real-world 

parameters into actionable outputs. This process is named 

fuzzification, and in a case of the transit data extended with real 

time information, some inputs like traffic density or weather 

conditions will be translated into fuzzy sets defined by 

membership functions. For example, in a traffic control system, 

the flow of vehicles may be ‘heavy’, ‘moderate’, or ‘light.’ Then 

the predefined fuzzy rules are used to evaluate the rules and to 

create control actions like: “IF traffic is heavy AND weather is 

rainy, THEN extend signal duration.” This methodology supports 

robust decision making in complex city-scenarios. Fuzzy logic 

also underpins Fuzzy Control Systems (FCS) supporting ITS 

models like traffic signal control, vehicle route finding, as well as 

safety systems in real-time. Fuzzy logic controllers use fuzzy 

rules to optimize flow and reduce congestion in adaptive traffic 

signal management, which dynamically modifies signal timings 

based on real-time traffic data [3]. These uses demonstrate how 

important fuzzy logic is for improving ITS efficiency and 

adaptability in dynamic transportation scenarios. 

Table.1. Generational Evolution of Fuzzy Logic in ITS 

Generation Period Focus 

First 

Generation 
1970s 

Theoretical foundation and conceptual 

development 

Second 

Generation 
1980s Initial real-world implementations 
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Third 

Generation 
1990s 

Widespread adoption and 

commercialization of fuzzy logic in ITS 

Fourth 

Generation 
2000s 

Integrated and multi-functional ITS 

solutions 

Fifth 

Generation 
2010s 

Fusion of fuzzy logic with AI, machine 

learning, and IoT 

Sixth 

Generation 
2020s 

Advanced smart city infrastructure and 

autonomous mobility 

Transportation in smart cities is getting better as technology 

improves along with other sectors like utilities, smart buildings, 

security systems, and even public transport. To assure the 

development of a sustainable urban ecosystem while achieving 

long-term growth objectives set by the city, traffic management 

employs fuzzy logic to dynamically modify traffic signal control 

using real-time vehicle flow and congestion data, which improves 

delays and safety on roads [4]. The main contributions of our 

research are as follows: 

• This study advances fuzzy logic applications for traffic 

management and safety, optimizing urban mobility through 

real-time adaptive control in smart cities. 

• It conducts a comprehensive comparison of Mamdani, 

Sugeno, Type-2, ANFIS, and Genetic Fuzzy Systems, 

identifying their suitability for specific ITS applications. 

This analysis aids in selecting optimal techniques for diverse 

traffic scenarios. 

• The researchers suggest Focusing on hybrid fuzzy methods 

has been shown to improve transportation in cities. 

2. RELATED WORK 

ITS is revolutionized by fuzzy logic, which offers reliable 

solutions to challenging and unpredictable issues while promoting 

smarter traffic management, improved road safety, and increased 

energy efficiency. The most pertinent ITS works involving fuzzy 

logic applications are compiled in this section, along with their 

successes and failures and contributions to the field’s 

advancement. In light of the numerous real-world requirements of 

ITS, the findings of this review will assist us in defending our 

comparative analysis of Mamdani, Sugeno, Type-2, Adaptive 

Neuro-Fuzzy Inference System (ANFIS), and Genetic Fuzzy 

Systems. 

Parbat and Kukdapwar [8] proposed a fuzzy inference system 

(FIS) to simulate urban traffic congestion and found that traffic 

flow and density could be applied to quantify traffic jam then 

found the severity of gridlock. Their method works under certain 

retains conditions but breaks down if congestion perceptions 

differ among users, producing incoherent results. Kastaly et al. [8] 

also used fuzzy concept and linguistic variables in transport 

planning development. These methods have succeeded for a 

structured approach for the decision-making process, the fact that 

they rely on a subjective definition of membership functions may 

contribute to a poor precision in fast changing traffic 

environments, thus the need for more fast adaptive systems. 

Shelke et al. [10] designed a fuzzy priority system for traffic light 

control, which utilizes instantaneous traffic information and gives 

priority to emergency vehicles. 

This system reduces delays effectively, but it is still difficult 

to create exact fuzzy rules for irregular traffic, which frequently 

leads to less than ideal choices. By suggesting the best driving 

patterns based on real-time data, De Rango et al. [11] used fuzzy 

logic in the Internet of Vehicles (IoV) to encourage 

environmentally beneficial driving practices. Although the 

method has trouble with limited vehicle type variability and is 

susceptible to problems with data quality brought on by IoV 

network connection faults. Kalra et al. [12] used fuzzy logic by 

sensor data from smartphones (e.g., acceleration, GPS) to classify 

driving styles aggressive, cautious in real-time. however, as novel 

as it is, the performance is limited due to the complexity of 

handling many fuzzy rules, reflecting by efficiency and accuracy. 

Hwang and Lee [13] studied the use of fuzzy inference to 

customize autonomous driving behaviors in accordance with the 

drivers’ preferences; however, their results are sensitive to the 

choice of membership functions and, hence, the necessity for rule 

tuning to be robust.  
 

Table.1. Fuzzy Logic Applications in Urban Traffic and Vehicle Control 

Reference Techniques Dataset Aims Limitations 

Parbat and 

Kukdapwar [8] 

Fuzzy Inference 

System 

Urban traffic flow and 

density data 

Model urban traffic 

congestion to optimize flow 

Subjective congestion in perpetration 

leads to inconsistent results across 

users 

Kaczorek and 

Jacyna [9] 

Fuzzy Logic with 

Linguistic Variables 
Transport planning data 

Support decision making for 

transport development 

Subjective membership functions 

reduce precision in dynamic traffic 

scenarios 

Shelke et al. [10] 
Fuzzy Priority-Based 

Control 

Real-time traffic and 

emergency vehicle data 

Optimize traffic light timings 

and emergency routing 

Difficulty in defining accurate fuzzy 

rules for variable traffic conditions 

De Rango et al. 

[11] 
FIS for Eco-Driving 

Internet of Vehicles 

driving data 

Promote eco-friendly driving 

habits 

Limited variability in vehicle types 

and susceptibility to communication 

errors 

Kalra et al. [12] 
FIS with Smartphone 

Sensors 

Smartphone sensor data 

(acceleration, GPS) 

Identify aggressive/safe 

driving styles 

Complex rule management pacts 

system efficiency and output 

accuracy 
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Hwan and Lee 

[13] 

FIS for Automated 

Driving 
Driver preference data 

Personalize automated 

driving patterns 

Inconsistent outcomes due to 

variations in membership function 

design 

Ani et al. [14] FIS for Fatigue Index 
Driver physiological 

data 

Develop driving fatigue strain 

index to enhance safety 

Rigid membership functions limit 

adaptability to diverse driving 

conditions 

Guo et al. [15] 
FIS for Adaptive 

Control 

Plug-in hybrid electric 

vehicle data 

Optimize energy efficiency 

based on driving style 

Subjective driving style evaluation 

complicates precise rule formulation 

Aloui et al. [16] 
Hierarchical Interval 

Type-2 Fuzzy System 

Traffic, weather, and 

road safety data 

Set variable speed limits for 

dynamic traffic management 

High computational resource 

requirements for real-time 

implementation 

Jutury et al. [17] 
Adaptive Neuro-Fuzzy 

Inference System 

Real-time vehicle 

volume data 

Optimize traffic light control 

to reduce congestion 

Requires extensive training data and 

computational power for scalability 

Russo [18] Genetic Fuzzy System  Live traffic data 

Improve traffic flow 

adaptability in dynamic 

corridors 

High computational complex ity and 

need for continuous data updates 

Castillo and 

Melin [19] 

Hybrid Fuzzy with 

Machine Learning/IoT 

IoT and traffic sensor 

data 

Enhance decision making 

accuracy and responsiveness 

Susceptible to noisy or incomplete 

data affecting system performance 

Qureshi and 

Abdullah [1] 
FIS for Traffic Control Traffic sensor data 

Improve traffic flow and 

safety via adaptive signal 

control 

Limited integration with emerging 

IoT technologies 

Yusupbekov et 

al. [7] 

Adaptive Fuzzy-Logic 

Control 

Saturated transport 

stream data 

Reduce delays in high traffic 

scenarios 

Scalability issues in diverse urban 

environments 

Kalinic and 

Krisp [20] 
FIS with GIS 

Geo-graphic and traffic 

data  

Detect traffic congestion for 

urban planning 

Limited real-time adaptability due to 

static rule bases 

Odeh et al. [21] 
Hybrid Fuzzy-Genetic 

Algorithm 

Real-time traffic signal 

data 

Enhance adaptive traffic 

signal control 

High computational demands for rule 

optimization 

3. DATASET DESCRIPTION 

The experimental dataset emulated real-world traffic 

dynamics through a synthetic yet representative simulation of 

heterogeneous vehicular behavior.  

To simulate a realistic urban intersection with increased 

amounts of traffic, we configured Traffic Demand to be 1,000 

vehicles/hour, consisting of 80% passenger vehicle types, 15% 

trucks and 5% emergency vehicles. Each vehicle traffic 

simulation includes randomized origin-destination pairs based on 

the urban intersection’s complexity. The input feature 

measurements included: Vehicle Density (vehicles/km) Queue 

Length (m) and Waiting Time (seconds).  

These features were collected at 1-second intervals therefore 

allowing urban intersection models to analyze very small changes 

in their traffic state. In order to create realistic unpredictability 

within traffic flows, the following stochastic driver behaviors 

were included within the stochastic driver effects module for the 

analyses of traffic demand at urban intersections; Speed 

Variability (± 20% deviation from baseline), Random Lane 

Change Behavior, and Driver Reaction Time (1-2 seconds).  

Additionally, we split the data into two parts for purpose of 

model calibration and evaluation of adaptive control methods: 

70% for Training Data (2,520 seconds) and 30% for Testing Data 

(1,080 seconds). The study was able to accurately simulate real-

world conditions through a balance of fidelity. 

 

Fig.1. Sample Emulated Traffic Dataset 

4. ARCHITECTURE DESIGN OF FUZZY 

LOGIC SYSTEM 

The architecture of FLS plays an important role in addressing 

the challenges associated with ITS. Such systems utilize 

reasoning similar to that of a human to oversee the uncertainties 

of vehicular traffic, environmental conditions, the flow of 

vehicles, and the density of vehicles. In figure.2 show the 

framework outlined here employs diverse fuzzy logic methods 

such as Mamdani, Sugeno, Type-2, Adaptive Neuro-Fuzzy 

Inference System (ANFIS) and Genetic Fuzzy Systems (GFS) to 

improve traffic management and road safety. Each method 

focuses on different facets of ITS, such as congestion forecasting, 

signal management, and self-driving vehicle control. Congestion 
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forecasting could include processing inputs like vehicle density 

ρ(t), queue length q(t), and average waiting time w(t). 

The following rules control the evolution of the state: 

 ( )in out

1
( 1) ( ) ( ) ( )

Δ
t t t t

t
   + = + −  (1) 

where λin(t) and λout(t) represent inflow and outflow rates 

(vehicles/second) and ∆t = 1 second is the sampling interval. The 

control signal, traffic signal durations (t), is determined by the 

fuzzy logic system: 

 ( )( ) fuzzy ( ), ( ), ( )s t t q t w t= ∮  (2) 

where fuzzy∮ denotes the fuzzy inference function specific to 

each technique. 

4.1 MAMDANI FUZZY SYSTEM 

 The Mamdani fuzzy inference system, introduced by 

Mamdani and Assilian in 1975, employs triangular membership 

functions for inputs:   

 ( ) max 0,1A

x c
x



− 
= − 

 

∣ ∣
 (3) 

where c is the centre and σ is the spread. The system uses rules of 

the form:  

 IF   is   AND   is   THEN   is i j kA q B s C  (4) 

with outputs aggregated using the maximum operator and 

defuzzified via the centroid method: 

 
( )

( )

C

C

s s ds
s

s ds





  




=


 (5) 

 This approach yields interpretable outputs, making it ideal for 

adjusting traffic signal durations based on qualitative assessments 

by human operators. 

4.2 SUGENO FUZZY SYSTEM 

 The Sugeno fuzzy inference system, also known as Takagi-

Sugeno-Kang(TSK), uses linear output functions:  

 
k k k k kZ a b q c w d= + + +  (6) 

where ρ, q, and w represent traffic density, flow, and other 

variables, respectively. Rules are structured as: 

 IF   is   AND   is   THEN i j kA q B z z =  (7) 

Calculating weighted averages, enhancing real-time traffic 

management efficiency. The final output is determined by 

weighted averaging, given by 

 
( )

( )

C

C

s s ds
s

s ds





  




=


 (8) 

where wk is the firing strength of the kth rule. This method excels 

in tasks like optimal route planning and resource allocation, 

providing precise outputs that enhance real-time traffic  

 

Fig.2. Framework integrates multiple fuzzy logic techniques and compression to enhance traffic management and promote road safety 
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4.3 TYPE-2 FUZZY SYSTEM 

Type-2 fuzzy systems incorporate interval Type-2 

membership functions with a footprint of uncertainty (5% in this 

study): 

 ( ) ( ), ( )AA
A

x x x  
−

−

 
=   

  (9) 

where 
A


−

 and  A
−

are the lower and upper membership 

functions. The output is type-reduced using the Karnik-Mendel 

algorithm: 

 
2

l rs s
s

+
=  (10) 

where sl and sr are the left and right end points. Type-2 systems 

excel in handling high variability in traffic conditions, weather, 

and human inputs, making them ideal for dynamic speed limit 

adjustments and autonomous vehicle navigation. 

4.4 ADAPTIVE NEURO-FUZZY INFERENCE 

SYSTEM 

ANFIS combines neural networks and fuzzy logic using a 

unique hybrid learning technique based on backpropagation and 

least squares estimation. The system adapts the parameters of a 

Sugeno-type model over three epochs of 100 iterations each, 

minimizing the error defined as: 

 ( )
2

ˆ
i i

i

E s s= −  (11) 

where si is the target output and 
îs is the predicted output. ANFIS 

is highly adaptable, learning from data to optimize traffic light 

control and route guidance, enhancing efficiency in dynamic 

traffic environments. 

4.5 GENETIC FUZZY SYSTEM 

Genetic Fuzzy Systems(GFS) combine fuzzy logic with 

genetic algorithms to optimize rule bases. The system uses a 

population size of 50, a crossover rate of 0.8, and a mutation rate 

of 0.1 over 100 generations. The fitness function minimizes the 

mean squared error (MSE): 

 ( )
2

1

1
M ˆSE

N

i i

i

s s
N =

= −  (12) 

where N is the number of samples. GFS improves adaptability in 

real-time traffic control systems, increasing urban mobility and 

the utilization of resources by adjusting fuzzy rules using real-

time traffic information. 

5. EXPERIMENTAL SETTING AND 

DISCUSSION 

This is the section detailing the experimental framework, 

implementation techniques, hyper parameter configurations, data 

set features, and evaluation metrics used in assessing methods 

involving fuzzy logic in ITS. The discussion will analyze the 

trade-offs concerning the different tested methods computational 

efficiency versus adaptability and decision-making accuracy. 

5.1 IMPLEMENTATION DETAIL 

A hybrid framework was used to put up the experiment, 

combining AI control, fuzzy logic processing, and microscopic 

traffic modelling. The SUMO1.15.0 model was used to model the 

traffic environment. A four-way urban crossroads with a 

heterogeneous traffic demand of 1,000 cars per hour was set up. 

Real-time data exchange between SUMO and MATLAB R2023a 

was done using Python3.8, leveraging the SUMO Traffic Control 

Interface (TraCI) API to exchange vehicle density, queue length, 

and waiting time information through CSV pipelines. The design 

of controllers using the Fuzzy Logic toolbox from MATLAB is 

applied in the form of Mamdani, Sugeno, and ANFIS. In addition, 

the Global Optimization Toolbox was included to facilitate 

optimization for Genetic Fuzzy Systems based on genetic 

algorithms. An NVIDIA RTX 3080 GPU, a 12-core, 3.6 GHz 

Intel i7-12700K CPU, and 16 GB DDR4 RAM made up the 

hardware configuration. All of these components were running 

Microsoft Windows 11 in order to take advantage of MATLAB’s 

parallel processing capabilities and SUMO’s Linux-native 

optimizations. 

5.2 HYPERAMETER SETTINGS 

In order to optimise model performance and computational 

efficiency while maintaining real-time applicability, certain hyper 

parameters were chosen for each method. Assigning linguistic 

labels like “low,” “medium,” and “high” to triangular-shaped 

membership functions that describe input variables (vehicle 

density, queue length) and using the centroid for defuzzification 

allowed Mamdani fuzzy systems to produce outputs of the fuzzy 

rules that were easier to comprehend. Sugeno Fuzzy used linear 

output functions (e.g., z = a ⋅ density + b ⋅ queue + cz = a ⋅ density 

+ b⋅ queue + c) applying three rules for each input with weighted 

averaging to speed up decision-making. ANFIS used hybrid 

learning, a mix of backpropagation and least squares estimation, 

across three epochs with 100 training iterations for optimally 

tuning the premise and consequent parameters. Interval Type-2 

fuzzy systems were used here with 5% uncertainty footprint to 

model the sensor noise using Karnik-Mendel type reduction 

algorithm. Genetic Fuzzy systems were tuned using evolutionary 

strategies with a population of 50, crossover and mutation rates of 

0.8 and 0.1, respectively, and up to 100 generations to evolve their 

adaptive rule bases. These configurations were then iteratively 

improved to ensure robustness against different dynamic traffic 

situations while remaining within reasonable computational 

resources. 

Table.4. Simulation Parameters and Comparative Performance 

Parameter Value/Range Description 

Traffic Demand 
1,000 

vehicles/hour 

Randomized origin-

destination pairs. 

Simulation 

Duration 

1 hour (3,600 

seconds) 

Real-time adaptive traffic 

management. 

Sampling 

Interval 
1 second 

Data extraction frequency 

via TraCI. 

 Average 

Waiting Time 
15–30 seconds 

Reduced by 28% (Genetic 

Fuzzy) and 22% 

(ANFIS). 
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Throughput 
25–38 

vehicles/min 

Improved by 15% 

(Genetic Fuzzy) and 12% 

(ANFIS). 

-Computation 

Time (FIS) 
200–2000 ms 

Type-2/Genetic Fuzzy: 

500–2000 ms; ANFIS: 

600 ms. 

Tools 
SUMO 1.15.0, 

MATLAB 2023a 

Co-simulation platform 

with TraCI integration. 

5.3 EVALUATION MATRICS 

We used an evaluation metric framework to see how well the 

fuzzy logic technique worked for improving operational 

efficiency and system robustness. This set includes Mean Squared 

Error (MSE), Computation Time, Throughput, and Average 

Waiting Time (AWT). To provide a precise evaluation, each of 

these factors is theoretically delineated with precision. These 

metrics integrate the AWT and provide a comprehensive 

assessment of fuzzy logic and artificial intelligence 

methodologies in optimizing computing efficiency, decision 

precision, and practical applicability. The AWT average (in 

seconds) is the time participants spend waiting at an intersection, 

which measures congestion reduction. For N vehicles, AWT can 

be derived as: 

AWT =  
1

𝑁
∑ 𝑡𝑖

𝑁
𝑖=1   [13] 

where ti represents the waiting time of the i-th vehicle at the 

intersection, measured from entry to exit from the queue. In 

throughput the count of vehicles transiting through an intersection 

within a minute (veh/min) encapsulating the efficiency of the 

system. Throughput can thus be expressed as: 

𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 =  
𝑀

𝑇
   [14] 

Where M denotes the total number of vehicles exiting the 

intersection during the simulation period and T is the time in 

minutes. In computation time delay (in milliseconds) of the 

control signal issue cadence after data processes pertaining the 

input data, vital for the system’s real-time system applicability. 

where t input is the timestamp when input data (e.g., vehicle 

density, queue length) is received, and t output is the timestamp 

when the control signal is generated. It is defined as: 

𝐶𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒 = 𝑡𝑜𝑢𝑡𝑝𝑢𝑡 − 𝑡𝑖𝑛𝑝𝑢𝑡   [15] 

MSE measure of prediction accuracy, quantifying the error 

between predicted and actual traffic control outcomes (e.g., signal 

timing decisions). where 𝑦𝑘 is the actual output (e.g., observed 

waiting time or throughput), 𝑦̂𝑘 is the predicted output, and K is 

the number of observations. MSE is calculated as: 

MSE =  
1

𝑘
∑ (𝑦𝑘 − 𝑦̂𝑘)2𝑘

𝑘=1    [16] 

5.4 RESULTS 

The experimental evaluation assessed five fuzzy logic-based 

techniques Mamdani Fuzzy, Sugeno Fuzzy, ANFIS, Type-2 

Fuzzy, and Genetic Fuzzy for their performance in ITS. Metrics 

included AWT, Throughput, Computation Time, and MSE. 

During result verification, the initially reported throughput values 

were identified as unrealistically high, which was attributed to an 

incorrect unit interpretation, such as expressing vehicles per hour 

instead of vehicles per minute. After rectification, the throughput 

was constrained to a practical range of 23–34 veh/min, which is 

appropriate for a single urban intersection. Under these corrected 

conditions, the Mamdani-based fuzzy controller demonstrated 

stable and repeatable behavior, yielding average waiting times of 

32.34 s during validation and 32.16 s during testing. 

Corresponding throughput levels were observed at 32.48 veh/min 

and 32.86 veh/min, respectively. The execution time remained 

within 1314.52–1330.24 ms, indicating a moderate computational 

burden. Prediction reliability was supported by low mean squared 

error values of 0.0925 for validation and 0.0850 for testing. By 

employing triangular membership functions alongside centroid-

based defuzzification, the system maintains high interpretability 

and transparent rule reasoning. While this confirms the Mamdani 

model as a robust reference framework, its increased response 

time suggests potential limitations when scaling to denser traffic 

scenarios. 

By comparison, the Sugeno fuzzy approach resulted in 

marginally higher average waiting times, measuring 33.92 s 

during validation and 33.78 s during testing. The corresponding 

throughput values were 32.62 veh/min and 33.18 veh/min, 

respectively. Owing to its reliance on weighted averaging of 

linear consequent functions, the Sugeno model required slightly 

less computational time, with execution durations ranging from 

1301.87 ms to 1324.40 ms. Despite this advantage in processing 

speed, the model exhibited higher mean squared error values of 

0.1015 for validation and 0.0956 for testing, indicating reduced 

predictive accuracy. These results suggest that while the Sugeno 

formulation offers improved computational efficiency, this 

benefit is accompanied by a loss in precision when capturing the 

complex and nonlinear dynamics of traffic flow. The ANFIS 

approach, a combination of fuzzy logic and neural network 

learning, matched the AWTs of Mamdani (32.34 seconds 

validation, 32.16 seconds test) although the associated 

throughputs dropped, with validation value decreasing from 33.05 

veh/min to 23.53 veh/min in the test, which may indicate 

overfitting or sensitivity to conditions of unseen tests. 

Computation time increased from 1307.20 ms (validation) to 

1836.12 ms (test), which indicates that a larger demand for 

processing emerged as real-time adaptations were established. 

Despite this, ANFIS had MSE values that were exactly the same 

as Mamdani (0.0925 validation, 0.0850 test), indicating good 

accuracy but possible scalability problems in larger networks. 

Table.5. Performance Metrics (Validation) 

Techniques 

(Validation) 
AWT Throughput 

Computatio

n Time 
MSE 

Mamdani 

Fuzzy 
32.34 32.48 1330.24 0.0925 

Sugeno Fuzzy 33.92 32.62 1324.40 0.1015 

ANFIS 32.34 33.05 1307.20 0.0925 

Type-2 Fuzzy 32.38 32.50 3.45 0.0939 

Genetic Fuzzy 

 
29.90 33.97 0.21 0.0882 

Table.6. Performance Metrics (Testing) 

Techniques 

(Testing) 
AWT Throughput 

Computation 

Time 
MSE 
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Mamdani 

Fuzzy 
32.16 32.86 1314.52 0.0850 

Sugeno Fuzzy 33.78 33.18 1301.87 0.0956 

ANFIS 32.16 23.53 1836.12 0.0850 

Type-2 Fuzzy 32.30 32.75 3.18 0.0864 

Genetic Fuzzy 

 
29.90 34.20 0.08 0.0789 

This Type-2 fuzzy system, which is developed for dealing 

with uncertainty using interval membership functions, recorded 

AWTs of 32.38 seconds (validation) and 32.30 seconds (test), 

throughputs of 32.50 veh/min (validation), and 32.75 veh/min 

(test). Its computation time was remarkably low at 3.45 ms 

(validation) and 3.18 ms (test), driven by the efficiency of the 

Karnik-Mendel algorithm for type reduction. The test and 

validation MSE values of 0.0939 and 0.0864 respectively confirm 

that this system has strong predictive power, just like Mamdani 

and ANFIS. Because of type-2 fuzzy’s ability to model sensor 

noise and traffic variability, it becomes a computationally 

efficient and adaptable solution. The Genetic Fuzzy system 

emerged as the top performer in which the lowest AWT at 29.90 

seconds was recorded in both phases with throughputs of 33.97 

veh/min (validation) and 34.20 veh/min (test). Moreover, its 

computation times were extremely low at 0.21 ms (validation) and 

0.08 ms (test) as a result of genetic algorithm-based rule 

optimization. Similarly, MSE values of 0.0882 (validation) and 

0.0789 (test) proved that with the highest accuracy, it was among 

other techniques. All these features, reduced waiting times, rapid 

processing, and precise control, clearly prove the superiority of 

Genetic Fuzzy in optimization and scalability in dynamic urban 

traffic environments. 

The various methods that have come out, Genetic Fuzzy and 

Type-2 Fuzzy have shown greater computational efficiency and 

adaptability-low latency and strong capability to handle traffic 

complexity-supported by evolution optimization and uncertainty 

modeling, respectively. Mamdani, Sugeno, and ANFIS provide 

an average performance but take computation times of 1300-1836 

ms, implying limited applicability in dense real-time settings. The 

adjusted throughput values certainly strengthen the hold of 

Genetic Fuzzy in minimizing delays and optimum flow, following 

closely the Type-2 Fuzzy whose popular characteristics are speed 

and resilience. This indicates a very important trade-off in fuzzy 

logic-based ITS: most advanced techniques such as Genetic 

Fuzzy and Type-2 Fuzzy have prioritized speed and flexibility at 

the expense of complexity in implementation, whereas Mamdani 

and Sugeno ensure reliability at optimum optimization capacity. 

Further work required shall include validation of throughput 

measurement and hybridisation exploration in order to strike a 

balance between all these attributes for applicability in managed 

cities. 

 

Fig.3. Experimental evaluation of AWT 

 

Fig.4. Experimental evaluation of throughput 

 

Fig.5. Experimental evaluation of computation time 

 

Fig.6. Experimental evaluation of MSE 

6. DISCUSSION AND FUTURE REREARCH 

DIRECTIONS 

Recent studies have shown that type-2 fuzzy logic systems 

may be better at dealing with uncertainty than regular fuzzy 

inference systems. To make these systems more efficient in 

changing conditions, they need to be improved so that they can 

better respond to the real-time changes in traffic. Research has 

demonstrated the effectiveness of developing hybrid fuzzy 
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systems that integrate fuzzy logic, machine learning, evolutionary 

algorithms, and optimization techniques. These hybrids should be 

able to interconnect each other so that more comprehensive 

models can be built useful for decision-making in varying traffic 

conditions. Also, consistent validation standards must be 

developed to reinforce the trust of fuzzy logic applications in ITS. 

Fuzzy logic techniques need proper testing frameworks to assess 

their function under varying traffic scenarios for ease in 

comparison and validation to streamline the evaluation process. 

Several authors have proposed the use of fuzzy logic in road 

safety Multi-Criteria Decision Making (MCDM) systems by 

considering several factors. The focus of future studies should be 

to enhance the existing methods of MCDM under fuzzy logic as 

these areas provide a possible direction to observe how the 

multiple factors interact to provide maximum improvement of 

traffic safety and efficiency. The amount of traffic data from real-

time connected vehicles and IoT devices is increasing rapidly. 

Research needs to concentrate on improving the interface of fuzzy 

logic techniques with the real-time data processing capability for 

more agile responses to changes in traffic and further performance 

improvements of the entire system. 

7. CONCLUSION 

Fuzzy logic is critical in developing intelligent solutions for 

ITS by addressing the challenges of traffic management in 

metropolitan areas. The comparative evaluation of Mamdani, 

Sugeno, Type 2, ANFIS, and genetic fuzzy systems conducted in 

this study has shown varying differences in attributes. Type-2 

fuzzy system ability to cope with sensor noise enhances their 

adaptability, while genetic fuzzy systems outperformed the others 

in average strategic waiting time (29.90 s) alongside 

computational lag (0.08 ms). Despite these accomplishments, 

other issues, such as the need for real-time adjustments, data 

consolidation, and high levels of complexity in practical 

applications, remain. The corrected throughput values (23–34 

veh/min) also emphasize the dominant optimization performance 

of genetic fuzzy systems, only outdone by type-2 fuzzy systems, 

which displayed stronger resilience. Future work should focus on 

hybrid models that incorporate fuzzy logic with machine learning 

and IoT technologies to adapt to real-time changes. Establishing 

standardized traffic scenario-based evaluation frameworks will 

allow for consistent validation, while addressing privacy concerns 

in data-driven systems must be a priority. Advanced fuzzy logic 

can further optimize these areas, including efficiency, safety, and 

sustainability, cementing ITS as a backbone of smart city 

transportation infrastructure. Continued innovation in fuzzy 

systems will drive the evolution of ITS, meeting the demands of 

interconnected and adaptive urban mobility. 
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