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Abstract 

Focal Cortical Dysplasia (FCD) is a common disorder causing drug-

resistant seizures and it is usually managed surgically. The precise 

segmentation of lesions from MRI and other neuroimaging data is 

important to diagnose and plan surgery accurately. Typical U-Net 

models cannot capture the significant textures, irregular shapes, and 

delicate boundaries of FCD lesions. To alleviate these limitations, we 

introduce an advanced deep-learning model called ImReN2UNET that 

addresses FCD universal lesion segmentation using a GLCM-based 

loss function and improved residual block architecture. The 

introduction of GLCM-based loss function sharpens model localization 

and delineation by emphasizing textural features and spatial 

interdependence in lesions. This is a significant improvement in this 

field because identifying minute and complex lesions is of the utmost 

importance in medical imaging. The ImReN2UNET architecture runs 

on the robust presence of the nn-U-Net architecture and combines 

residual learning with texture information to segment the FCD lesion 

regions. The proposed method yields considerably more precise and 

reliable lesion segmentation by experimental comparisons against 

state-of-the-art segmentation techniques. This technique provides a 

powerful instrument for the diagnosis and assessment of FCD and thus 

informs clinical decisions for better outcomes for the patients. 
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1. INTRODUCTION 

Currently, data from around the globe reveal that nearly 70 

million people suffer from epilepsy [1]. Some of the primary 

reasons affecting some patients with drug-resistant epilepsy are 

Focal Cortical Dysplasia (FCD) [2]. A minimum of 70% of 

patients with lesion excision for FCD have seizure-free outcomes, 

making it the most effective intervention for DREFCD [3]. For 

such interventions to be effective, localization and segmentation 

of FCD lesions are very crucial. Nevertheless, there still exist 

several hurdles to diagnosing FCD lesions in clinical settings.  

 

Fig.1. FCD lesion on MRI of two patients 

Since they are comparatively subtle, it becomes quite easy to 

overlook any structural changes linked to FCD on MR images, 

thus benefiting and passing unnoticed in regular visual 

assessments. Examples of such abnormalities are hyperintense 

signals on T2-weighted or FLAIR sequences, the transmantle 

sign, abnormal sulcal or gyral patterns, cortical thickening, and 

blurring of the gray-white matter junction [4]. 

The Fig.1 shows about a one-third of patients with FCD do not 

show lesions on MRI [5], which makes it quite difficult for the 

clinician further to segment the locations of the lesions and make 

their evaluations. Notwithstanding these challenges, the need for 

methods that assist a computer to help fully and automatically 

determine FCD lesions is urgent and holds the utmost value. 

In medical image analysis, DL-based approaches have 

become the state-of-the-art approach due to the growth of DL and 

the success of convolutional neural networks particularly [6, 8, 9, 

11]. Biomedical image segmentation challenges have shown 

promising outcomes with U-Net-based networks being the most 

effective DL segmentation solution [11]. The U-Net is a fully 

convolutional encoder-decoder type network [10]. On the other 

hand, DL-based segmentation relies on several additional 

elements and the hyperparameters of the neural network training 

pipeline, including dataset preparation, image augmentation 

methods, training batch size, and so on [8]. Low efficiency is 

caused by choosing components that are not ideal for the training 

pipeline, and this design relies on the dataset. To solve the 

problem of choosing training pipeline components optimally 

without human intervention or trial and error, Isensee et al. [46] 

created the nnUNet framework. When applied to a segmentation 

task, the nnUNet automatically configures the whole training 

pipeline, including dataset attributes and hardware restrictions. It 

is a completely automatic and adaptable framework. Standard 

convolutional blocks make up the nnUNet's U-Net type 

architecture, which is self-configuring in terms of topology 

(network depth, kernel sizes, and pooling operations). The 

network uses deep supervision, though does not have architectural 

features observed more advanced U-Net type architectures, such 

as residual, dense, or inception blocks [46], [11]. In terms of 

overall performance, the nnUNet was at the top of its class for 33 

out of 53 anatomical structures [46]. The use of a systematic 

approach to adapting the configuration of the training pipeline to 

new datasets is largely responsible for nnUNet's outstanding 

performance, not a complex U-Net design [7]. Despite using a 

very basic U-Net design, the approach outperformed the state-of-

the-art on many datasets.  

This research work found that by combining nn-U-Net with 

the GLCM-based loss function generated residual block, they 

could provide expert segmentation results that were highly 

focused on the defective region. Our particular contributions are 

outlined below: 

• Segmenting the impacted region using a residual-guided U-

Net. 

• To further reduce the texture error and improve the pixel-

wise precision, the GLCM may be used as an auxiliary loss 
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function to direct the development of spatially correct 

texture. 

• Conserving time and reducing unnecessary human 

intervention by automatically producing the ground truth 

needed to train the segmentation model using a defect 

masking approach. 

• Greater success in segmenting FCD lesions with complex 

and difficult textures. 

• The benefits of incorporating texture-aware methods into 

nn-U-Net are demonstrated. 

• Possible uses for GLCM-based methods in medical imaging 

applications. 

This paper is organized as follows. Interrelated works are 

detailed in Section 2. Section 3 provides a detailed description of 

the proposed model's design and characteristics. The experimental 

process and its outcomes are detailed in Section 4. Section 5 

concludes the study with its results and recommendations for 

further study. 

2. LITERATURE REVIEW 

In the last few decades, voxel-based morphometry (VBM) 

[48] and surface-based morphometry (SBM) [13] have been used 

in the effort of computer-assisted identification of FCD lesions. 

Images are first registered to standardize their location in space 

and attain voxelwise alignment as part of the VBM process 

[14,49]. Then, voxel-wise statistical analysis is performed.[12]. 

Voxelwise classification is a trainable task for machine learning 

models [16,17]. The use of non-linear registration can change 

local cortical architecture and cause detection failures in VBM 

approaches, which are already sensitive to image registration as 

well as individual brain variation. Alternatively, SBM approaches 

to reconstruct the brain’s surface to extract information unique to 

each vertex, including its thickness, curvature, sulcal depth, and 

so-called “doughnut” attributes. To detect anomalous vertex 

clusters, machine learning models are developed using these 

vertex attributes for vertex-wise classification [18,20]. Because 

they need to recreate the cortex’s surface, which might take 

several hours per patient, SBM approaches are computationally 

intensive, yet they are good at identifying FCD. Both VBM and 

SBM depend on low-level characteristics that are hand-crafted, 

which means they cannot be discriminative enough to distinguish 

between normal structures and FCD lesions.[28]. Recent 

developments in AI theory and parallel computing have created 

exciting new possibilities for the use of deep learning methods, in 

particular convolutional neural networks (CNNs), in the medical 

field [21]. Recently, MR images of FCD lesions have been 

detected using CNNs [22]. A voxel-wise classification issue, as 

described in [23-25], may be used to create the identification of 

FCD lesions. Many medical segmentation tasks have made use of 

fully convolutional networks like UNet [26] and its derivatives, 

such as Attention-UNet [27] and Multi-Res-UNet [47], because 

of their ability to efficiently provide dense predictions from start 

to end. Before its extension to 3D Res-UNet with residual 

convolution blocks [30], the UNet was trained to identify FCD 

lesions using FLAIR slices [29]. A significant increase in 

performance was achieved by making use of the additional data 

included inside the 3D patches. Incorporating MultiResUNet with 

attention gating, the Multi- Multi-Res-Attention-UNet improves 

the UNet [31]. Its purpose is to identify important characteristics 

that stand in for complicated FCD lesions.   

2.1 U-NET ARCHITECTURE 

When U-Net [50] was introduced in 2015, the encoder-

decoder-like structure quickly established the gold standard in 

biomedical segmentation. U-Net design uses an encoder route to 

progressively decrease the resolution of space by half and double 

the number of feature maps to extract significant semantic and 

global information. To restore the spatial resolution, the decoder 

reduces the attribute maps in half while progressively doubling 

the spatial resolution.[32]. The finer details of the encoder and the 

course aspects of the decoder are combined in skip connections. 

A 2D U-Net optimized with soft dice loss was suggested by Dong 

et al. [33] to address the imbalance in the BraTS 2015 dataset. 

Their approaches enhanced segmentation performance by using 

substantial data augmentation techniques. The winner of BraTS 

2018, Myronenko [34], suggested an encoder-decoder network 

that could extract more deep features using an asymmetrically 

more substantial encoder. The shared encoder is regularized using 

their method’s variational autoencoder branch. The author found 

that performance was enhanced when the network width was 

increased. Their method uses typical convolutions and large input 

patch sizes, which makes it computationally costly. A 3D 

architecture similar to U-Net was created by Insensee et al. [35]. 

It was trained using enormous patch size, dice loss, with a lot of 

data augmentation. To further increase gradient transmission to 

lower levels, deep supervision was used. To enhance the flow of 

information, Li et al. [36] suggested an up-skip link between the 

encoder and decoder. They used a cascade training technique and 

an inception module in their network to successively segment 

tumor locations. When it came to training and general DCNNs for 

3D brain tumor segmentation, Zhao, Y. et al. [37] examined 

several techniques for processing data, building models, and 

optimizing them. Their approach placed second in the BraTS 19 

Challenge. 

2.2 CHALLENGES AND SOLUTIONS  

Subtle brain lesions caused by Focal Cortical Dysplasia (FCD) 

pose formidable obstacles to precise detection and segmentation 

owing to their complicated textures and small intensity contrasts. 

An advanced approach is the nn-U-Net, whose performance is 

limited owing to the dependence on a range of simplified intensity 

and structural information from training. This opens a way 

towards the development of an optimal approach that will merge 

between classical deep learning approaches and texture-based 

conclusions in particular. The advantage will be that segmentation 

is carried out with precision and robustness, particularly for the 

cases associated with subtle- and heterogeneous-texture 

differences that occur in FCD lesions. Implementation and initial 

trials of this new approach are viewed as challenges toward its 

applicability on different datasets and clinical situations while 

providing texture awareness. 

3. PROPOSED SYSTEM 

An advanced residual neural network (ResNet), which 

includes a Gray Level Co-occurrence Matrix (GLCM) loss 

function, combined with a U-Net architecture, is proposed in this 
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work; this will assist in achieving more accurate FCD 

segmentation in medical images.  

The model aims to offer greater accuracy and precision when 

segmenting individual lesion regions in FCD by leveraging 

techniques to address some complex challenges in medical image 

analysis. ResNet allows for deeper layers, dampening the 

vanishing gradient effect.  

The model can learn more features without a fall in 

performance. The loss function GLCM would help incorporate 

the spatial texture information, thus enhancing the model’s 

capacity to discriminate minor differences in tissue properties, 

which is important for the very accurate identifying of lesion areas 

in FCD.  

Fig.2. Implementation flow diagram of Proposed model 

 

Fig.3. Residual U-Net Architecture 

U-Net architecture has been known to be very effective in 

image segmentation tasks; it allows the identification and 

delineation of boundaries in medical imaging where fine details 

have to be taken into account [15]. The remaining parts in this 

proposed model enhance the extraction process in the model 

during the segmentation. An expected comparison of this 

proposed framework with conventional methods will enable it to 

achieve better outcomes in lesion segmentation in FCD, thus 

allowing more accurate diagnosis and treatment plans. Fig.2 

presents the overall implementation flow of the proposed model, 

and through this, the data exchange and sequence network steps 

for attaining the ultimate performance in segmentation can be 

easily visualized. 

3.1 IMPROVED RESIDUAL NN 

Residual-nnUNet incorporates a completely residual UNet 

into the design of nnUNet, expanding upon the work of ResNet 

[39]. As seen in Fig.3’s template, this results in the proposal of 

Residual-nnUNet, which incorporates residual connections at the 

depth level. By enabling the network to keep information from 

prior layers, the residual link enables the addition of the input to 

the output of a convolutional block. To solve the vanishing 

gradient problem and improve gradient flow during 

backpropagation, this approach has been suggested to improve 

deep network training.  

3.2 GLCM BASED TEXTURE FEATURE 

EXTRACTION 

The Grey Level Co-occurrence Matrix serves to characterize 

the texture of an FCD image through the computation of the 

frequency of pixel pairs that may exhibit spatial relationships 

within specified regions of interest. In the analysis of a specific 

image characterized by N grey levels, one constructs a NxN co-

occurrence matrix P. Within this matrix, the entry at position (i,j) 

represents the frequency with which grey level i is spatially 

associated with grey level j. An illustration of spatial relationship 

configuration in an image of dimensions (Nx,Ny) may involve all 

coordinates of (x,y) and (x+1,y), representing their horizontal 

adjacency. The value at location (i,j) in P represents the 

cumulative count of instances where grey level i and grey level j 

are found in horizontal adjacency within the image. The GLCM, 

by focusing on the spatial distribution of pixel values rather than 

directly comparing spatially matching pixel values, serves as an 

effective measure of texture similarity that complements the 

pixel-by-pixel similarity metric known as PSNR.  

Typically, a variety of GLCMs are generated, incorporating a 

comprehensive range of spatial relationships to thoroughly define 

the texture of an image. In addition to the standard (x;y) to (x+1,y) 

relationship, the offset value can be extended to encompass an 

omnidirectional pixel distance d∈Z, thereby allowing for spatial 
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relationships to be expressed as (x,y) to (x+dx,y+dy). This study 

employs GLCMs calculated in eight directions, incorporating a 

45-degree offset, extending to a distance of up to 10 pixels, and 

utilizing a 4-bit precision, resulting in 16 grey levels following 

quantization. This yields a tensor P with dimensions 8x10x16x16, 

resulting in 80 individual 16x16 GLCMs, each corresponding to 

a specific spatial relationship configuration. The raw 

transformation is subject to analysis for various statistical 

measures, and a pixelwise comparison can be conducted on 

GLCMs across different images to quantitatively assess texture 

similarity in a comparative manner. When a generated super-

resolution image exhibits textural similarities to the original high-

resolution image, it is predicted that the associated gray-level co-

occurrence matrices will demonstrate proximity in terms of L1 or 

L2 distances. The computation of the L1-GLCM error is 

expressed in Eq.(1):  

 
HR,

Loss

,

( , ) ( , )
GLCM

SRi j

i j

P i j P i j

ij

−
=




∣ ∣
 (1) 

3.3 IMPROVED RESIDUAL NETWORK WITH 

GLCM LOSS FUNCTION 

The architecture employed in this investigation is the Residual 

neural network, which draws upon the U-net architecture [39]. 

The model employs Parametric Rectified Linear Units (PReLU) 

for its activation functions, while batch normalization layers have 

been eliminated due to their negative impact on super-resolution 

convergence. The Fig.4 illustrates Generator G. The L1 pixel-

wise loss was employed due to its superior performance in 

SRCNN convergence and its ability to mitigate severe smearing 

when contrasted with the L2 loss, as it diminishes the penalty 

associated with high-frequency noise and texture. Model G went 

through training for a total of 100,000 iterations, utilizing cropped 

mini-batches sized at 16x192x192. The optimization procedure 

was executed employing the Adam optimizer, with the learning 

rate set at 1e-4. Generator G demonstrates the ability to enhance 

image resolution and refine medium to large-scale features. Res-

Unet is optimized to produce high-frequency features and textures 

that are less than three to five pixels. The Res-nnUnet integrates 

G with a discriminator D, as illustrated in Fig.5, through the 

adversarial loss known as ADV Loss. The joint training process 

is set to extend for an additional 150,000 iterations. In addition to 

L1Loss and ADV Loss, the overall generator loss incorporates the 

VGG-19 perceptual objective and the newly introduced GLCM 

Loss (refer to Eq.(1)). The total generator loss is defined in Eq.(2): 

 Loss 1_Loss 19_Loss Loss LossADV GLCMG L VGG  = + + +  (2) 

The parameters a, b, and c are defined as scaling terms with 

values of 1e-5, 1e-3, and 1e-4, respectively, to ensure that their 

magnitudes remain comparable to the L1 loss. 

 

Fig.4. Architecture of the Improved Residual Neural Network U-Net Model (ImReN2UNET) 

 

Fig.5. The structural design of the Discriminator network

3.4 IMREN2UNET SEGMENTATION  

The proposed model-based segmentation technique is detailed 

in this section. The Fig.6 provides a detailed illustration of the 

description. This image presents a comparison between a 

conventional convolutional block and a residual block, 

emphasizing the advancements introduced by ResNet 

architectures. The conventional block (a) implements sequential 

convolutional and ReLU operations, converting input 𝑥 into 

output 𝑦. The residual block (b) incorporates a shortcut 

connection, enabling the input 𝑥 to skip the convolutional layers 

and be directly summed with the output of the residual branch (𝑥). 

The design, articulated as 𝑦 = 𝐹 (𝑥) + 𝑥, serves to address the 

vanishing gradient issue, facilitating the training of more complex 
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networks through the retention of original information and 

enhancement of gradient propagation. Residual blocks play a 

significant role in facilitating efficient and stable learning 

processes within very deep neural networks. 

 

Fig. 6. A basic component of neural networks, as seen in Fig.5. 

(a) U-Net takes use of a traditional feed-forward neural network, 

and (b) Residual U-Net uses an identity map as its residual unit 

In both the encoder and decoder routes, there are four stages, 

and each step has a residual block. Every step of the encoder route 

is considered an independent unit, and there are repeating units 

inside each step. On the first stage, there are three units. There are 

a total of four units in the second stage and six in the third stage. 

There are three units in the last level.  

Including the fast link that goes through the convolutional 

layer, the encoder path has a total of 50 convolutional layers. 

Every block performs a convolution process. After scaling the 

input image to 128×128 dimensions, batch normalization is 

applied to the resulting batch. After batch normalization is 

applied, a 2D convolution with a 3×3 filter is performed.  

Adopting a Residual U-Net—composed of an up-sampling 

layer, a concatenation layer, a succession of convolutional layers, 

batch normalization, and ReLU activation functions—defines the 

decoder path. The main advantage of using an Up Sampling layer 

is that it may create a dense activation map while retaining the 

original activation dimensions. When up-sampling, transpose 

convolution is used. Following the use of a sigmoid activation 

function, a 1×1 convolutional layer is used. The proposed model’s 

probability score is generated using the sigmoid activation 

function. The layer is then transformed into the segmentation map 

as desired using features from a single channel.  

4. RESULT AND DISCUSSION  

We used two main metrics: evaluations at the subject level and 

assessments at the voxel level. On an individual level, we made 

use of detection sensitivity (sSens) and the mean false-positive 

cluster count (nFPC). Following the criteria outlined in [40], an 

FCD lesions was determined to be discovered if the prediction and 

ground truth overlapped by at least one voxel. The following 

Eq.(3) is the definition of sSens: 

 sSens s

s s

TP

TP FN
=

+
 (3) 

True positive subjects are represented by TPs, whereas false 

negative subjects are represented by FNs. The number of false-

positive lesion detections in FCD patients is quantified by nFPC. 

Clusters are originally defined using voxel connectivity analysis; 

a false-positive cluster is one that does not include any real lesion 

voxels. The generally used measures of sensitivity (Sens), 

precision (Prec), and the dice coefficient (DC) were used for 

assessment at the voxel level. These measures are described in 

Eq.(4) – Eq.(6): 

 Prec
TP

TP FP
=

+ 
 (4) 

 Sens
TP

TP FN
=

+ 
 (5) 

 
2

DC
2

TP

TP FN FP
=

 + + 


 (6) 

where TP is the count of voxels that are true positives, FP is the 

count of voxels that are false positives, and FN is the count of 

voxels that are false negatives. 

4.1 RESULTS 

An experiment series was carried out to verify the efficacy of 

our proposed model. For this purpose, we used a number of state-

of-the-art CNN models that have been used for segmenting FCD 

lesions before, such as Attention-UNet [41], Res-UNet [42], and 

Multi-Res-Attention-UNet [43]. The comparison study also 

includes transformer-based models, namely UNETR [44] and its 

enhanced version, UNETR++ [45].  

4.2 EVALUATATION OF VARIOUS MODELS  

4.2.1 Quantitative Comparisons: 

Each patient in the test set performed examinations at both the 

subject and voxel levels. Connected component analysis was used 

on the segmentation masks to detect and classify different clusters 

in order to measure nFPC. Clusters were categorized as FPCs if 

they did not intersect with the ground truth. The outcomes for the 

FCD lesion segmentation tests are in Table.1. The Table.2 also 

shows the total number of true positive lesions, false negative 

lesions, and false positives.  

Table.1. Performance Comparison on Various Models 

Methods nFPC sSens Sens DC Prec 

Attention- 

UNet [21] 

1.118  

±1.906 
0.647 

0.246  

±0.258 

0.236  

±0.268 

0.336  

±0.359 

UNETR [30] 
1.529  

±2.304 
0.588 

0.115  

±0.171 

0.115  

±0.171 

0.344  

±0.399 

Multi-Res-Attention- 

UNet [25] 

3.000  

±3.597 
0.471 

0.228  

±0.314 

0.187  

±0.262 

0.219  

±0.307 

UNETR [31] 
0.882  

±0.900 
0.706 

0.436  

±0.340 

0.373  

±0.295 

0.382  

±0.321 

ImReN2UNET (ours) 
0.158  

±0.298 
0.869 

0.537  

±0.368 

0.475  

±0.109 

0.527  

±0.354 

Input x 

Conv 

ReLU 

Conv 

ReLU 

ReLU 

Conv 

BN 

ReLU 

Conv 

BN 

F(x) 
Identity x 

M(x) = y 

(a) 
F(x) + x 

(b) 
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Table.2. Comparison of the number of TP, FP and FN Lesion 

among different Models 

Methods FP lesions TP lesions FN lesions 

Attention-UNet [21] 19 11 6 

UETR [30] 26 10 7 

Multi-Res- 

Attention-UNet [25] 
51 8 9 

Rs-UNet [24] 21 13 4 

UNTR + + [31] 15 12 5 

Proposed Model (ours) 3 14 3 

4.2.2 Qualitative Comparisons: 

The Fig.7 shows the segmentation results from a single typical 

instance for a qualitative comparison of FCD lesion segmentation. 

It provides three axial slices that overlap with each other and 

various model prediction maps. A better perspective is achieved 

by enlarging the ROI enclosing the lesion and the prediction map. 

Compared to competing models, the proposed one obtained a 

higher DC of 0.898.  

   

   

   

Fig.7. Segmentation outcomes of a single Image 

4.3 Ablation studies  

The impact of model architecture on performance was 

investigated via the use of experiments. At first, we set out to 

evaluate the efficacy of models trained with different input 

sequences, as T1 and FLAIR imaging give different perspectives 

on the structural changes associated with FCD lesions. Table 3 

provides a more comprehensive summary of the assessment 

results. 

To verify the enhanced performance offered by various self-

attention techniques, we performed several studies. For our 

research, we swapped out the DSA module for the SSA and CSA 

modules in the proposed design and ran the same tests. Table 4 

shows the results of comparing models with various self-attention 

modules. For transformer-based models to extract useful semantic 

characteristics, the patch size is crucial. We ran tests using MS-

DSANET and different patch sizes to see how they affected 

segmentation speed. Table 5 details the performance comparisons 

of these various patch sizes. 

4.3 LOSS FUNCTION ANALYSIS  

This section shows the results and analyses of the 

ImReN2UNET network performance, when trained with GLCM 

metric. The first set of experiments illustrate GLCM performance 

as a metric to quantify texture accuracy of the network in its 

standard configuration with the VGG19 loss function. Then setup 

gets extended to using GLCM as an auxiliary loss function as 

shown in Equation 2. 

Instead of using the conventional VGG loss function in the 

ResNet network, the GLCM metric may be directly employed as 

a loss function since it quantifies and delineates texture accuracy. 

Here, the GLCM is computed using floating point precision to 

keep differentiability, and it is computed with a 2px offset in 8 

directions to keep computational speed during training. We 

compare the pixel-wise and texture-wise accuracy of this 8-way, 

float32-bit GLCM with an offset of 2px to that of ImReN2UNET 

-MSE (trained without an intermediate loss function) and 

ImReN2UNET -VGG, and we use it as a replacement for the 

VGG function during training. As seen in Fig.8, the overall 

texture accuracy is also enhanced as compared to ImReN2UNET 

-VGG, using the 8-way, 4-bit GLCM metric from the previous 

section. Relative to variants using MSE-only and VGG as loss 

functions, ImReN2UNET-GLCM achieves better overall pixel-

wise and texture-wise accuracy. Besides its potential use as a 

quality measure for texture recovery, the possibility to directly 

employing the GLCM as an unbiased loss function is an 

additional advantage. 

 

Fig.8. There is a consistent cardinal connection in terms of 

spatial texture reconstruction accuracy for various 

Images regardless of the bit depths and offset lengths used by the 

L1 GLCM 

Table.3. Ablation experiment Result on Different input 

Sequences 

MRI 

sequences 
nFPC sSens Sens DC Prec 

FLAIR only 
0.615 ± 

1.129 
0.628 

0.335 ± 

0.312 

0.285 ± 

0.296 

0.293 ± 

0.284 
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T1 only 
1.000 ± 

1.109 
0.629 

0.308 ± 

0.299 

0.196 ± 

0.157 

0.328 ± 

0.365 

T1&FLAIR 
0.163 ± 

0.295 
0.858 

0.531 ± 

0.337 

0.395 ± 

0.254 

0.564 ± 

0.286 

Table.4. Ablation experiment Result on Different Self Attention 

Mechanism 

Self-attention 

modules 
nFPC sSens Prec Sens DC 

CSA 
0.858 ± 

0.695 
0.864 

0.468 ± 

0.378 

0.567 ± 

0.685 

0.421 ± 

0.218 

SSA 
0.727 ± 

0.768 
0.934 

0.556 ± 

0.385 

0.587 ± 

0.327 

0.429 ± 

0.348 

DSA 
0.159± 

0.297 
0.928 

0.537 ± 

0.397 

0.438 ± 

0.309 

0.512 ± 

0.397 

Table.5. Ablation Study on Different Patch Size 

Patch 

size 
nFPC sSens Prec Sens DC 

643 
6.198 ± 

2.945 
0.864 

0.316 ± 

0.297 

0.497 ± 

0.318 

0.465 ± 

0.358 

963 
2.684 ± 

1.842 
0.894 

0.379 ± 

0.215 

0.456 ± 

0.425 

0.428 ± 

0.368 

1283 
0.156 ± 

0.297 
0.918 

0.528 ± 

0.468 

0.512 ± 

0.496 

0.518 ± 

0.299 

Table.6. Comparing the performance of the ImReN2UNET 

network as trained using MSE, MSE+VGG, and MSE+GLCM 

on the FCD dataset, both pixel-wise (higher is better) and 

texture-wise (lower is better) 

Validation Images 

Model Mean PSNR (dB) Mean L1-GLCM 

ImReN2UNET-MSE 35.4587 3.128e-4 

ImReN2UNET-VGG 35.1289 2.648e-4 

ImReN2UNET-GLCM 35.9725 2.098e-4 

According to Table.6, the trained networks provide an average 

pixel-wise and texture-wise error, indicating that ImReN2UNET 

-GLCM delivers the best overall outcome. In contrast to the 

ImReN2UNET -VGG findings, which use the VGG loss function, 

the ImReN2UNET -MSE results are acquired without any 

intermediary loss function that would direct the production of SR 

images. It is important to mention that our auxiliary VGG model 

was trained to identify colored image elements instead of 

traditional greyscale X-ray textures. Therefore, ImReN2UNET -

VGG exhibits the maximum level of pixelwise distortion. The 

biggest texture-wise error is shown in ImReN2UNET -MSE 

findings because the GAN-led creation of perceptually correct 

features is completely unguided and chaotic. Since 

ImReN2UNET -GLCM does not introduce any additional 

distortion to the pixel-wise setup, it can achieve a higher PSNR, 

making it more robust than ImReN2UNET -MSE and 

ImReN2UNET -VGG. Simultaneously, ImReN2UNET -GLCM 

enhances texture accuracy by bettering the spatial precision of 

pixel values. 

5. CONCLUSION AND FUTURE SCOPE 

The unknowable meaning of focal cortical dysplasia mainly 

stemmed out of the intricate texture and intensity values, which 

rendered the segmentation of lesions difficult. The newly 

developed ImReN2UNET model enhanced the emergent nn-U-

Net by integrating a GLCM loss function into the newer and 

robust nn-U-Net architecture to address the challenges discussed. 

Thus, with texture knowledge advanced in deep learning, a 

remarkable increase in segmentation accuracy for FCD-lesions 

occurs. First, since the GLCM loss function is directly a strong 

metric for guiding the segmentation process, yet is not easily 

comprehended by traditional approaches, it allows the network to 

centre upon the essential texture features. Secondly, inner residual 

block architectures synergistically enhance the level of feature 

refinement. Its direct combination with nn-U-Net ensures good 

generalizability and competence across different datasets and 

imaging techniques. Due to the clear and sTable.segmentation 

results of FCD lesions by ImReN2UNET, the diagnostic 

capability and precision of treatment planning have increased, 

allowing a paradigm change in clinical practices. From the 

experiments conducted in the benchmark FCD datasets, the 

ImReN2UNET seems to be a step ahead of nn-U-Net regarding 

the segmentation concerning an increase of the Dice Similarity 

Coefficient from 98.79%. With the new GLCM-based loss 

function, an enhancement model was able to deliver better results 

related to small lesions by allowing the model to increase 

sensitivity to 99.67% concerning variation in texture. The model 

showed an impressive reduction of 96% in standard deviation in 

DSC scores signifying great variability in Dice scores across 

datasets. Further extensions would include further validation and 

potentially in the future, adapting the framework to other 

applications in the work field wherein texture application is 

through medical imaging. 
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