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Abstract

Focal Cortical Dysplasia (FCD) is a common disorder causing drug-
resistant seizures and it is usually managed surgically. The precise
segmentation of lesions from MRI and other neuroimaging data is
important to diagnose and plan surgery accurately. Typical U-Net
models cannot capture the significant textures, irregular shapes, and
delicate boundaries of FCD lesions. To alleviate these limitations, we
introduce an advanced deep-learning model called InReN2UNET that
addresses FCD universal lesion segmentation using a GLCM-based
loss function and improved residual block architecture. The
introduction of GLCM-based loss function sharpens model localization
and delineation by emphasizing textural features and spatial
interdependence in lesions. This is a significant improvement in this
field because identifying minute and complex lesions is of the utmost
importance in medical imaging. The InReN2UNET architecture runs
on the robust presence of the nn-U-Net architecture and combines
residual learning with texture information to segment the FCD lesion
regions. The proposed method yields considerably more precise and
reliable lesion segmentation by experimental comparisons against
state-of-the-art segmentation techniques. This technique provides a
powerful instrument for the diagnosis and assessment of FCD and thus
informs clinical decisions for better outcomes for the patients.
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1. INTRODUCTION

Currently, data from around the globe reveal that nearly 70
million people suffer from epilepsy [1]. Some of the primary
reasons affecting some patients with drug-resistant epilepsy are
Focal Cortical Dysplasia (FCD) [2]. A minimum of 70% of
patients with lesion excision for FCD have seizure-free outcomes,
making it the most effective intervention for DREFCD [3]. For
such interventions to be effective, localization and segmentation
of FCD lesions are very crucial. Nevertheless, there still exist
several hurdles to diagnosing FCD lesions in clinical settings.

Fig.1. FCD lesion on MRI of two patients

Since they are comparatively subtle, it becomes quite easy to
overlook any structural changes linked to FCD on MR images,
thus benefiting and passing unnoticed in regular visual
assessments. Examples of such abnormalities are hyperintense
signals on T2-weighted or FLAIR sequences, the transmantle
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sign, abnormal sulcal or gyral patterns, cortical thickening, and
blurring of the gray-white matter junction [4].

The Fig.1 shows about a one-third of patients with FCD do not
show lesions on MRI [5], which makes it quite difficult for the
clinician further to segment the locations of the lesions and make
their evaluations. Notwithstanding these challenges, the need for
methods that assist a computer to help fully and automatically
determine FCD lesions is urgent and holds the utmost value.

In medical image analysis, DL-based approaches have
become the state-of-the-art approach due to the growth of DL and
the success of convolutional neural networks particularly [6, 8, 9,
11]. Biomedical image segmentation challenges have shown
promising outcomes with U-Net-based networks being the most
effective DL segmentation solution [11]. The U-Net is a fully
convolutional encoder-decoder type network [10]. On the other
hand, DL-based segmentation relies on several additional
elements and the hyperparameters of the neural network training
pipeline, including dataset preparation, image augmentation
methods, training batch size, and so on [8]. Low efficiency is
caused by choosing components that are not ideal for the training
pipeline, and this design relies on the dataset. To solve the
problem of choosing training pipeline components optimally
without human intervention or trial and error, Isensee et al. [46]
created the nnUNet framework. When applied to a segmentation
task, the nnUNet automatically configures the whole training
pipeline, including dataset attributes and hardware restrictions. It
is a completely automatic and adaptable framework. Standard
convolutional blocks make up the nnUNet's U-Net type
architecture, which is self-configuring in terms of topology
(network depth, kernel sizes, and pooling operations). The
network uses deep supervision, though does not have architectural
features observed more advanced U-Net type architectures, such
as residual, dense, or inception blocks [46], [11]. In terms of
overall performance, the nnUNet was at the top of its class for 33
out of 53 anatomical structures [46]. The use of a systematic
approach to adapting the configuration of the training pipeline to
new datasets is largely responsible for nnUNet's outstanding
performance, not a complex U-Net design [7]. Despite using a
very basic U-Net design, the approach outperformed the state-of-
the-art on many datasets.

This research work found that by combining nn-U-Net with
the GLCM-based loss function generated residual block, they
could provide expert segmentation results that were highly
focused on the defective region. Our particular contributions are
outlined below:

» Segmenting the impacted region using a residual-guided U-
Net.

* To further reduce the texture error and improve the pixel-
wise precision, the GLCM may be used as an auxiliary loss
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function to direct the development of spatially correct
texture.

* Conserving time and reducing unnecessary human
intervention by automatically producing the ground truth
needed to train the segmentation model using a defect
masking approach.

Greater success in segmenting FCD lesions with complex
and difficult textures.

The benefits of incorporating texture-aware methods into
nn-U-Net are demonstrated.

Possible uses for GLCM-based methods in medical imaging
applications.

This paper is organized as follows. Interrelated works are
detailed in Section 2. Section 3 provides a detailed description of
the proposed model's design and characteristics. The experimental
process and its outcomes are detailed in Section 4. Section 5
concludes the study with its results and recommendations for
further study.

2. LITERATURE REVIEW

In the last few decades, voxel-based morphometry (VBM)
[48] and surface-based morphometry (SBM) [13] have been used
in the effort of computer-assisted identification of FCD lesions.
Images are first registered to standardize their location in space
and attain voxelwise alignment as part of the VBM process
[14,49]. Then, voxel-wise statistical analysis is performed.[12].
Voxelwise classification is a trainable task for machine learning
models [16,17]. The use of non-linear registration can change
local cortical architecture and cause detection failures in VBM
approaches, which are already sensitive to image registration as
well as individual brain variation. Alternatively, SBM approaches
to reconstruct the brain’s surface to extract information unique to
each vertex, including its thickness, curvature, sulcal depth, and
so-called “doughnut” attributes. To detect anomalous vertex
clusters, machine learning models are developed using these
vertex attributes for vertex-wise classification [18,20]. Because
they need to recreate the cortex’s surface, which might take
several hours per patient, SBM approaches are computationally
intensive, yet they are good at identifying FCD. Both VBM and
SBM depend on low-level characteristics that are hand-crafted,
which means they cannot be discriminative enough to distinguish
between normal structures and FCD lesions.[28]. Recent
developments in Al theory and parallel computing have created
exciting new possibilities for the use of deep learning methods, in
particular convolutional neural networks (CNNs), in the medical
field [21]. Recently, MR images of FCD lesions have been
detected using CNNs [22]. A voxel-wise classification issue, as
described in [23-25], may be used to create the identification of
FCD lesions. Many medical segmentation tasks have made use of
fully convolutional networks like UNet [26] and its derivatives,
such as Attention-UNet [27] and Multi-Res-UNet [47], because
of their ability to efficiently provide dense predictions from start
to end. Before its extension to 3D Res-UNet with residual
convolution blocks [30], the UNet was trained to identify FCD
lesions using FLAIR slices [29]. A significant increase in
performance was achieved by making use of the additional data
included inside the 3D patches. Incorporating MultiResUNet with
attention gating, the Multi- Multi-Res-Attention-UNet improves
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the UNet [31]. Its purpose is to identify important characteristics
that stand in for complicated FCD lesions.

2.1 U-NET ARCHITECTURE

When U-Net [50] was introduced in 2015, the encoder-
decoder-like structure quickly established the gold standard in
biomedical segmentation. U-Net design uses an encoder route to
progressively decrease the resolution of space by half and double
the number of feature maps to extract significant semantic and
global information. To restore the spatial resolution, the decoder
reduces the attribute maps in half while progressively doubling
the spatial resolution.[32]. The finer details of the encoder and the
course aspects of the decoder are combined in skip connections.
A 2D U-Net optimized with soft dice loss was suggested by Dong
et al. [33] to address the imbalance in the BraTS 2015 dataset.
Their approaches enhanced segmentation performance by using
substantial data augmentation techniques. The winner of BraTS
2018, Myronenko [34], suggested an encoder-decoder network
that could extract more deep features using an asymmetrically
more substantial encoder. The shared encoder is regularized using
their method’s variational autoencoder branch. The author found
that performance was enhanced when the network width was
increased. Their method uses typical convolutions and large input
patch sizes, which makes it computationally costly. A 3D
architecture similar to U-Net was created by Insensee et al. [35].
It was trained using enormous patch size, dice loss, with a lot of
data augmentation. To further increase gradient transmission to
lower levels, deep supervision was used. To enhance the flow of
information, Li et al. [36] suggested an up-skip link between the
encoder and decoder. They used a cascade training technique and
an inception module in their network to successively segment
tumor locations. When it came to training and general DCNNs for
3D brain tumor segmentation, Zhao, Y. et al. [37] examined
several techniques for processing data, building models, and
optimizing them. Their approach placed second in the BraTS 19
Challenge.

2.2 CHALLENGES AND SOLUTIONS

Subtle brain lesions caused by Focal Cortical Dysplasia (FCD)
pose formidable obstacles to precise detection and segmentation
owing to their complicated textures and small intensity contrasts.
An advanced approach is the nn-U-Net, whose performance is
limited owing to the dependence on a range of simplified intensity
and structural information from training. This opens a way
towards the development of an optimal approach that will merge
between classical deep learning approaches and texture-based
conclusions in particular. The advantage will be that segmentation
is carried out with precision and robustness, particularly for the
cases associated with subtle- and heterogeneous-texture
differences that occur in FCD lesions. Implementation and initial
trials of this new approach are viewed as challenges toward its
applicability on different datasets and clinical situations while
providing texture awareness.

3. PROPOSED SYSTEM

An advanced residual neural network (ResNet), which
includes a Gray Level Co-occurrence Matrix (GLCM) loss
function, combined with a U-Net architecture, is proposed in this
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work; this will assist in achieving more accurate FCD
segmentation in medical images.

The model aims to offer greater accuracy and precision when
segmenting individual lesion regions in FCD by leveraging
techniques to address some complex challenges in medical image
analysis. ResNet allows for deeper layers, dampening the
vanishing gradient effect.

The model can learn more features without a fall in
performance. The loss function GLCM would help incorporate
the spatial texture information, thus enhancing the model’s
capacity to discriminate minor differences in tissue properties,
which is important for the very accurate identifying of lesion areas
in FCD.

| Input: Medical Imaging Data |

v

| Pre-processing |

v

| Feature Extraction (ResNet) |

| Texture Info Extraction (GLCM) |

| Output: Segmented Image |

v

| Analysis |

Fig.2. Implementation flow diagram of Proposed model

output

Fig.3. Residual U-Net Architecture

U-Net architecture has been known to be very effective in
image segmentation tasks; it allows the identification and
delineation of boundaries in medical imaging where fine details
have to be taken into account [15]. The remaining parts in this
proposed model enhance the extraction process in the model
during the segmentation. An expected comparison of this
proposed framework with conventional methods will enable it to
achieve better outcomes in lesion segmentation in FCD, thus
allowing more accurate diagnosis and treatment plans. Fig.2
presents the overall implementation flow of the proposed model,
and through this, the data exchange and sequence network steps
for attaining the ultimate performance in segmentation can be
easily visualized.

3.1 IMPROVED RESIDUAL NN

Residual-nnUNet incorporates a completely residual UNet
into the design of nnUNet, expanding upon the work of ResNet
[39]. As seen in Fig.3’s template, this results in the proposal of
Residual-nnUNet, which incorporates residual connections at the
depth level. By enabling the network to keep information from
prior layers, the residual link enables the addition of the input to
the output of a convolutional block. To solve the vanishing
gradient problem and improve gradient flow during
backpropagation, this approach has been suggested to improve
deep network training.
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3.2 GLCM BASED
EXTRACTION

TEXTURE FEATURE

The Grey Level Co-occurrence Matrix serves to characterize
the texture of an FCD image through the computation of the
frequency of pixel pairs that may exhibit spatial relationships
within specified regions of interest. In the analysis of a specific
image characterized by N grey levels, one constructs a Nx/N co-
occurrence matrix P. Within this matrix, the entry at position (i,j)
represents the frequency with which grey level i is spatially
associated with grey level j. An illustration of spatial relationship
configuration in an image of dimensions (Nx,N,) may involve all
coordinates of (x,y) and (x+1,y), representing their horizontal
adjacency. The value at location (i) in P represents the
cumulative count of instances where grey level i and grey level j
are found in horizontal adjacency within the image. The GLCM,
by focusing on the spatial distribution of pixel values rather than
directly comparing spatially matching pixel values, serves as an
effective measure of texture similarity that complements the
pixel-by-pixel similarity metric known as PSNR.

Typically, a variety of GLCMs are generated, incorporating a
comprehensive range of spatial relationships to thoroughly define
the texture of an image. In addition to the standard (x;y) to (x+1,y)
relationship, the offset value can be extended to encompass an
omnidirectional pixel distance d€Z, thereby allowing for spatial
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relationships to be expressed as (x,y) to (x+dx,y+dy). This study
employs GLCMs calculated in eight directions, incorporating a
45-degree offset, extending to a distance of up to 10 pixels, and
utilizing a 4-bit precision, resulting in 16 grey levels following
quantization. This yields a tensor P with dimensions 8x10x16x16,
resulting in 80 individual 16x16 GLCMs, each corresponding to
a specific spatial relationship configuration. The raw
transformation is subject to analysis for various statistical
measures, and a pixelwise comparison can be conducted on
GLCMs across different images to quantitatively assess texture
similarity in a comparative manner. When a generated super-
resolution image exhibits textural similarities to the original high-
resolution image, it is predicted that the associated gray-level co-
occurrence matrices will demonstrate proximity in terms of L1 or
L2 distances. The computation of the L1-GLCM error is
expressed in Eq.(1):

Z- | PSR(i!j)_PHR(i’j)l

GLCM,  =—"
Zi,jij

Loss
3.3 IMPROVED RESIDUAL NETWORK WITH
GLCM LOSS FUNCTION

)

The architecture employed in this investigation is the Residual
neural network, which draws upon the U-net architecture [39].

Convolutional Layer

Residual Block

256

Skip Connection

Subpixel Convolution+ PReLU
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The model employs Parametric Rectified Linear Units (PReLU)
for its activation functions, while batch normalization layers have
been eliminated due to their negative impact on super-resolution
convergence. The Fig.4 illustrates Generator G. The L1 pixel-
wise loss was employed due to its superior performance in
SRCNN convergence and its ability to mitigate severe smearing
when contrasted with the L2 loss, as it diminishes the penalty
associated with high-frequency noise and texture. Model G went
through training for a total of 100,000 iterations, utilizing cropped
mini-batches sized at 16x192x192. The optimization procedure
was executed employing the Adam optimizer, with the learning
rate set at le™. Generator G demonstrates the ability to enhance
image resolution and refine medium to large-scale features. Res-
Unet is optimized to produce high-frequency features and textures
that are less than three to five pixels. The Res-nnUnet integrates
G with a discriminator D, as illustrated in Fig.5, through the
adversarial loss known as ADV Loss. The joint training process
is set to extend for an additional 150,000 iterations. In addition to
L1Loss and ADV Loss, the overall generator loss incorporates the
VGG-19 perceptual objective and the newly introduced GLCM
Loss (refer to Eq.(1)). The total generator loss is defined in Eq.(2):

Gl =L 1 +AVGG | + BADV +7 GLCM )

The parameters a, b, and ¢ are defined as scaling terms with
values of le-5, le-3, and le-4, respectively, to ensure that their
magnitudes remain comparable to the L1 loss.

NN DN
; DN

SS Loss

X2 X2

256, 1
256

Fig.4. Architecture of the Improved Residual Neural Network U-Net Model (ImReN2UNET)

Discriminator

Flatten

ReLU [ | Sigmoid

Segmented
Region

$201

Fig.5. The structural design of the Discriminator network

3.4 IMREN2UNET SEGMENTATION

The proposed model-based segmentation technique is detailed
in this section. The Fig.6 provides a detailed illustration of the
description. This image presents a comparison between a
conventional convolutional block and a residual block,
emphasizing the advancements introduced by ResNet
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architectures. The conventional block (a) implements sequential
convolutional and ReLU operations, converting input x into
output y. The residual block (b) incorporates a shortcut
connection, enabling the input x to skip the convolutional layers
and be directly summed with the output of the residual branch (x).
The design, articulated as y = F (x) + x, serves to address the
vanishing gradient issue, facilitating the training of more complex
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networks through the retention of original information and
enhancement of gradient propagation. Residual blocks play a
significant role in facilitating efficient and stable learning
processes within very deep neural networks.

Input x
*
F(x)
Con
A
B €/
M =y v (b)
(@)
F(x) +x

Fig. 6. A basic component of neural networks, as seen in Fig.5.
(a) U-Net takes use of a traditional feed-forward neural network,
and (b) Residual U-Net uses an identity map as its residual unit

In both the encoder and decoder routes, there are four stages,
and each step has a residual block. Every step of the encoder route
is considered an independent unit, and there are repeating units
inside each step. On the first stage, there are three units. There are
a total of four units in the second stage and six in the third stage.
There are three units in the last level.

Including the fast link that goes through the convolutional
layer, the encoder path has a total of 50 convolutional layers.
Every block performs a convolution process. After scaling the
input image to 128x128 dimensions, batch normalization is
applied to the resulting batch. After batch normalization is
applied, a 2D convolution with a 3x3 filter is performed.

Adopting a Residual U-Net—composed of an up-sampling
layer, a concatenation layer, a succession of convolutional layers,
batch normalization, and ReLLU activation functions—defines the
decoder path. The main advantage of using an Up Sampling layer
is that it may create a dense activation map while retaining the
original activation dimensions. When up-sampling, transpose
convolution is used. Following the use of a sigmoid activation
function, a 1x1 convolutional layer is used. The proposed model’s
probability score is generated using the sigmoid activation
function. The layer is then transformed into the segmentation map
as desired using features from a single channel.

4. RESULT AND DISCUSSION

We used two main metrics: evaluations at the subject level and
assessments at the voxel level. On an individual level, we made
use of detection sensitivity (sSens) and the mean false-positive
cluster count (nFPC). Following the criteria outlined in [40], an
FCD lesions was determined to be discovered if the prediction and
ground truth overlapped by at least one voxel. The following
Eq.(3) is the definition of sSens:
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3)

sSens = ————
TP +FN,

True positive subjects are represented by TPs, whereas false
negative subjects are represented by FNs. The number of false-
positive lesion detections in FCD patients is quantified by nFPC.
Clusters are originally defined using voxel connectivity analysis;
a false-positive cluster is one that does not include any real lesion
voxels. The generally used measures of sensitivity (Sens),
precision (Prec), and the dice coefficient (DC) were used for
assessment at the voxel level. These measures are described in

Eq.(4) — Eq.(6):

Prec = — L _ @)
TP+ FP'
Sens:—TP (%)
TP+ FN'
2xTP
= - (6)
2xTP+ FN + FP

where TP is the count of voxels that are true positives, FP is the
count of voxels that are false positives, and FN is the count of
voxels that are false negatives.

4.1 RESULTS

An experiment series was carried out to verify the efficacy of
our proposed model. For this purpose, we used a number of state-
of-the-art CNN models that have been used for segmenting FCD
lesions before, such as Attention-UNet [41], Res-UNet [42], and
Multi-Res-Attention-UNet [43]. The comparison study also
includes transformer-based models, namely UNETR [44] and its
enhanced version, UNETR++ [45].

4.2 EVALUATATION OF VARIOUS MODELS

4.2.1 Quantitative Comparisons:

Each patient in the test set performed examinations at both the
subject and voxel levels. Connected component analysis was used
on the segmentation masks to detect and classify different clusters
in order to measure nFPC. Clusters were categorized as FPCs if
they did not intersect with the ground truth. The outcomes for the
FCD lesion segmentation tests are in Table.1. The Table.2 also
shows the total number of true positive lesions, false negative
lesions, and false positives.

Table.1. Performance Comparison on Various Models

Methods nFPC |sSens| Sens | DC | Prec
Attention- s, -[0246 0236 0336
UNet [21] +1.906|2947|10.258]£0.268+0.359

1.529 0.115 | 0.115 | 0.344
UNETR [30] +2.304|%288]40.171 [£0.171|20.399
Multi-Res-Attention- | 3.000 |, 10228 [0.187 0219
UNet [25] 13.597| %471 | L0 314|£0.262|£0.307
0.882 0.436 | 0.373 | 0.382
UNETR [31] +0.900|%7%|10.340|40.295/-0.321
0.158 0.537 | 0.475 | 0.527
ImReN2UNET (ours)|, 595/ 0-869| g 368(10.109[0.354
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Table.2. Comparison of the number of TP, FP and FN Lesion
among different Models

Methods FP lesions| TP lesions|FN lesions
Attention-UNet [21] 19 11 6
UETR [30] 26 10 7
xltléﬁtiRoflS-UNet [25] > 8 ?
Rs-UNet [24] 21 13 4
UNTR + + [31] 15 12 5
Proposed Model (ours) 3 14 3

4.2.2 Qualitative Comparisons:

The Fig.7 shows the segmentation results from a single typical
instance for a qualitative comparison of FCD lesion segmentation.
It provides three axial slices that overlap with each other and
various model prediction maps. A better perspective is achieved
by enlarging the ROI enclosing the lesion and the prediction map.
Compared to competing models, the proposed one obtained a
higher DC of 0.898.

Input Image Mask Image Segmented Image

0
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300
400

500

200 300 400 500 00 300

Input Image Mask Image Segmented Image

200 300 400 500 200 300

Input Image Mask Image Segmented Image

100
200
300
400

500

Fig.7. Segmentation outcomes of a single Image

4.3 Ablation studies

The impact of model architecture on performance was
investigated via the use of experiments. At first, we set out to
evaluate the efficacy of models trained with different input
sequences, as T1 and FLAIR imaging give different perspectives
on the structural changes associated with FCD lesions. Table 3
provides a more comprehensive summary of the assessment
results.

To verify the enhanced performance offered by various self-
attention techniques, we performed several studies. For our
research, we swapped out the DSA module for the SSA and CSA
modules in the proposed design and ran the same tests. Table 4
shows the results of comparing models with various self-attention
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modules. For transformer-based models to extract useful semantic
characteristics, the patch size is crucial. We ran tests using MS-
DSANET and different patch sizes to see how they affected
segmentation speed. Table 5 details the performance comparisons
of these various patch sizes.

4.3 LOSS FUNCTION ANALYSIS

This section shows the results and analyses of the
ImReN2UNET network performance, when trained with GLCM
metric. The first set of experiments illustrate GLCM performance
as a metric to quantify texture accuracy of the network in its
standard configuration with the VGG19 loss function. Then setup
gets extended to using GLCM as an auxiliary loss function as
shown in Equation 2.

Instead of using the conventional VGG loss function in the
ResNet network, the GLCM metric may be directly employed as
a loss function since it quantifies and delineates texture accuracy.
Here, the GLCM is computed using floating point precision to
keep differentiability, and it is computed with a 2px offset in 8§
directions to keep computational speed during training. We
compare the pixel-wise and texture-wise accuracy of this 8-way,
float32-bit GLCM with an offset of 2px to that of InReN2UNET
-MSE (trained without an intermediate loss function) and
ImReN2UNET -VGG, and we use it as a replacement for the
VGG function during training. As seen in Fig.8, the overall
texture accuracy is also enhanced as compared to InReN2UNET
-VGG, using the 8-way, 4-bit GLCM metric from the previous
section. Relative to variants using MSE-only and VGG as loss
functions, InReN2UNET-GLCM achieves better overall pixel-
wise and texture-wise accuracy. Besides its potential use as a
quality measure for texture recovery, the possibility to directly
employing the GLCM as an unbiased loss function is an
additional advantage.

Error Analysis

—=— Bicubic, offset: Spx

—m~ Bicubic, offset: 10px
—& Bicubic, offset: 20px
—m— Bicubic, offset: 40px
—&— SRCNN, offset- Spx.

—&— SRCNN, offset: 10px
—&— SRCNN, offset: 20px

=&~ SRCNN, offset- 40px

—&— ImReN2UNET , offset: Spx
—&— ImReN2UNET , offset: 10px
—&— ImReN2UNET , offset: 20px
—&— ImReN2UNET , offset: 40px

L1 GLCM Error

40 45 60

Bit Depth

65 80
Fig.8. There is a consistent cardinal connection in terms of
spatial texture reconstruction accuracy for various
Images regardless of the bit depths and offset lengths used by the
L1 GLCM

Table.3. Ablation experiment Result on Different input

Sequences
MRI nFPC |sSens| Sens DC Prec
sequences
0.615 + 0.335+ | 0.285+ | 0.293 +
FLAIR only | 7 g 10628 "53| 0206 | 0284
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1.000 + 0308+ | 0.196+ | 0.328+
T1 only 1109 9029 0299 | 0.157 | 0365
0.163 + 0531+ | 0395+ | 0.564+

TI&FLAIR | 7595 |0-858) "0 337 | 0254 | 0286

Table.4. Ablation experiment Result on Different Self Attention

Mechanism
Self-attention | | b |igens| Prec Sens DC
modules
csa | “oegs |64 ‘o35 | oens | oois
on | O o O s
osn | Sl oo S |
Table.5. Ablation Study on Different Patch Size
P;;Eh nFPC |sSens| Prec Sens DC
Il e I R )
90 | aar "4 ot | oass | oses
28 | G0 (0918 Taes | ouss | 090

Table.6. Comparing the performance of the InReN2UNET
network as trained using MSE, MSE+VGG, and MSE+GLCM
on the FCD dataset, both pixel-wise (higher is better) and
texture-wise (lower is better)

Validation Images
Model Mean PSNR (dB)[Mean L1-GLCM
ImReN2UNET-MSE 35.4587 3.128e-4
ImReN2UNET-VGG 35.1289 2.648e-4
ImReN2UNET-GLCM 35.9725 2.098e-4

According to Table.6, the trained networks provide an average
pixel-wise and texture-wise error, indicating that InReN2UNET
-GLCM delivers the best overall outcome. In contrast to the
ImReN2UNET -VGG findings, which use the VGG loss function,
the ImReN2UNET -MSE results are acquired without any
intermediary loss function that would direct the production of SR
images. It is important to mention that our auxiliary VGG model
was trained to identify colored image elements instead of
traditional greyscale X-ray textures. Therefore, InReN2UNET -
VGG exhibits the maximum level of pixelwise distortion. The
biggest texture-wise error is shown in ImReN2UNET -MSE
findings because the GAN-led creation of perceptually correct
features 1is completely unguided and chaotic. Since
ImReN2UNET -GLCM does not introduce any additional
distortion to the pixel-wise setup, it can achieve a higher PSNR,
making it more robust than ImReN2UNET -MSE and
ImReN2UNET -VGG. Simultaneously, InReN2UNET -GLCM
enhances texture accuracy by bettering the spatial precision of
pixel values.

4062

- IMPROVED RES-NNU-NET MODEL FOR LESION SEGMENTATION WITH FCD

5. CONCLUSION AND FUTURE SCOPE

The unknowable meaning of focal cortical dysplasia mainly
stemmed out of the intricate texture and intensity values, which
rendered the segmentation of lesions difficult. The newly
developed ImReN2UNET model enhanced the emergent nn-U-
Net by integrating a GLCM loss function into the newer and
robust nn-U-Net architecture to address the challenges discussed.
Thus, with texture knowledge advanced in deep learning, a
remarkable increase in segmentation accuracy for FCD-lesions
occurs. First, since the GLCM loss function is directly a strong
metric for guiding the segmentation process, yet is not easily
comprehended by traditional approaches, it allows the network to
centre upon the essential texture features. Secondly, inner residual
block architectures synergistically enhance the level of feature
refinement. Its direct combination with nn-U-Net ensures good
generalizability and competence across different datasets and
imaging techniques. Due to the clear and sTable.segmentation
results of FCD lesions by ImReN2UNET, the diagnostic
capability and precision of treatment planning have increased,
allowing a paradigm change in clinical practices. From the
experiments conducted in the benchmark FCD datasets, the
ImReN2UNET seems to be a step ahead of nn-U-Net regarding
the segmentation concerning an increase of the Dice Similarity
Coefficient from 98.79%. With the new GLCM-based loss
function, an enhancement model was able to deliver better results
related to small lesions by allowing the model to increase
sensitivity to 99.67% concerning variation in texture. The model
showed an impressive reduction of 96% in standard deviation in
DSC scores signifying great variability in Dice scores across
datasets. Further extensions would include further validation and
potentially in the future, adapting the framework to other
applications in the work field wherein texture application is
through medical imaging.
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