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Abstract

The rapid adoption of the data-driven healthcare analytics has raised
serious concerns regarding the patient privacy, data integrity, and
collaborative intelligence across distributed medical institutions.
Traditional centralized learning approaches have relied on extensive
data sharing that has increased the risk of data leakage and regulatory
noncompliance. Federated learning has emerged as a promising
paradigm that has enabled collaborative model training without direct
data exchange. However, the presence of unreliable or malicious
participants has limited its practical deployment in real-world
healthcare environments. Although federated learning has preserved
data locality, it has not fully addressed the issue of trust among
participating clients. The contribution of low-quality or adversarial
updates has degraded the global model performance and has
compromised the clinical reliability. Existing aggregation strategies
have ignored behavioral uncertainty and contextual trust, which has
resulted in biased or unstable healthcare predictions. This study has
proposed a trust-aware federated learning framework that has
integrated soft computing techniques for adaptive client evaluation. A
fuzzy logic-based trust model has assessed each participant using the
historical update consistency, model divergence, and communication
reliability. The trust scores that have been computed have dynamically
weighted the local updates during aggregation. A privacy-preserving
mechanism that has incorporated differential noise has further
strengthened data confidentiality. The framework has been validated
using distributed healthcare datasets that have represented diagnostic
classification tasks under heterogeneous data distributions. The
experimental evaluation demonstrates that the proposed trust-aware
federated learning framework achieves a classification accuracy of
0.94 and an Fl-score of 0.94 at 200 iterations, which outperforms
Federated Averaging, Differentially Private Federated Learning, and
Trimmed Mean aggregation by margins of 10—15%. The framework
reduces convergence time to 95 rounds, compared with 140—175 rounds
for existing methods. These results confirm that trust-guided
aggregation improves robustness, accelerates convergence, and
preserves privacy in distributed healthcare analytics.
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1. INTRODUCTION

The rapid expansion of the digital healthcare ecosystem has
transformed the way the clinical data has been collected,
analyzed, and utilized for decision support. The integration of
electronic health records, wearable sensors, and medical imaging
systems has enabled large-scale healthcare analytics that has
improved diagnosis and treatment personalization [1-3]. Machine
learning models have played a central role in this transformation,
as they have extracted hidden patterns from complex and
heterogeneous medical datasets. However, traditional centralized
learning paradigms have required the aggregation of sensitive
patient data into a single repository, which has increased the risk
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of privacy violations and regulatory conflicts. To address this
limitation, federated learning has emerged as a decentralized
learning paradigm that has allowed collaborative model training
while keeping the raw data at local institutions.

Despite its promise, federated learning in healthcare has
encountered several operational and security challenges that have
constrained its real-world applicability. One major challenge has
involved the presence of non-independent and heterogeneous data
distributions across hospitals and clinical centers, which has
reduced model generalization [4]. Another challenge has arisen
from unreliable or malicious clients that have submitted low-
quality updates, either unintentionally due to resource constraints
or intentionally through adversarial behavior [5]. Standard
aggregation mechanisms, such as federated averaging, have
assumed honest participation and equal contribution, which has
led to performance degradation under adversarial or uncertain
conditions.

The core problem addressed in this work has focused on the
absence of an explicit trust management mechanism within
conventional federated learning frameworks for healthcare
analytics [6]. Although privacy preservation has been partially
achieved through data localization, the quality and reliability of
the shared model updates have not been sufficiently controlled.
This limitation has undermined the clinical credibility of
federated models, particularly in safety-critical healthcare
applications.

The primary objective of this study has been to design a trust-
aware federated learning framework that has enhanced model
robustness while maintaining strict privacy guarantees. The
framework has aimed to evaluate participant behavior
dynamically, mitigate the influence of unreliable clients, and
improve global model convergence under heterogeneous data
conditions. Another objective has involved integrating soft
computing techniques that have handled uncertainty and
imprecision inherent in distributed healthcare environments.

The novelty of this work has resided in the seamless
integration of fuzzy logic-based trust assessment with privacy-
preserving federated learning for healthcare analytics. Unlike
existing approaches that have relied on static or heuristic trust
rules, the proposed model has adaptively weighted client
contributions based on multi-criteria trust evaluation. This
adaptive strategy has enabled the system to respond to changing
client behavior over time.

The contributions of this work are twofold. First, a soft
computing-driven trust evaluation mechanism has been
introduced that has quantified client reliability using behavioral
and statistical indicators. Second, a trust-aware aggregation
strategy has been developed that has improved model accuracy
and resilience against adversarial updates, thereby strengthening
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the applicability of federated learning in real-world healthcare
systems.

2. RELATED WORKS

Early studies on privacy-preserving healthcare analytics have
primarily relied on centralized anonymization and encryption
techniques. These approaches have protected patient identity to a
certain extent but have still required data pooling at a central
server, which has exposed systems to single-point failures [7]. As
data volumes have increased, these methods have struggled to
scale while maintaining compliance with stringent healthcare
regulations.

Federated learning has been introduced as a decentralized
alternative that has enabled collaborative learning without raw
data exchange. McMabhan et al. have proposed the foundational
federated averaging algorithm that has demonstrated
effectiveness across distributed environments [8]. Subsequent
healthcare-focused studies have adopted this framework for tasks
such as disease prediction and medical image analysis. However,
these works have assumed trustworthy participants and have not
explicitly modeled client reliability.

To enhance privacy guarantees, several researchers have
integrated differential privacy into federated learning systems.
These approaches have injected calibrated noise into local
updates, which has reduced the risk of information leakage from
gradients [9]. Although privacy protection has improved, the
added noise has often degraded model accuracy, especially under
limited data scenarios common in healthcare. Secure multi-party
computation has also been explored to protect intermediate
computations, but the resulting computational overhead has
limited practical deployment [10].

Trust and robustness in federated learning have gained
increasing attention in recent years. Some studies have proposed
anomaly detection mechanisms that have identified malicious
updates based on statistical deviation [11]. These methods have
filtered extreme updates but have lacked adaptability to gradual
or stealthy adversarial behavior. Reputation-based schemes have
also been introduced, where historical performance has
influenced client weighting. However, these schemes have relied
on rigid thresholds that have failed under dynamic network
conditions [12].

Soft computing techniques have been explored as a means to
handle uncertainty and imprecision in distributed systems. Fuzzy
logic-based models have been applied to network trust
management and decision support systems, as they have captured
human-like reasoning under incomplete information [13]. In the
context of federated learning, limited studies have integrated
fuzzy inference for client selection or weighting. These
preliminary works have shown potential but have not focused
specifically on healthcare datasets or stringent privacy
requirements.

Recent healthcare-oriented federated learning studies have
emphasized robustness against data heterogeneity and adversarial
threats. Robust aggregation rules, such as median and trimmed
mean, have been proposed to reduce the impact of outliers [14].
While these techniques have improved resilience, they have
ignored contextual trust factors such as communication reliability
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and historical consistency. Moreover, their static nature has
limited adaptability over long-term deployments.

A few hybrid approaches have combined trust evaluation with
privacy-preserving mechanisms. These studies have suggested
multi-metric scoring systems that have evaluated client behavior
across rounds [15]. However, most have employed deterministic
scoring models that have struggled with noisy and uncertain
healthcare data. The lack of soft computing integration has
remained a notable gap.

3. PROPOSED METHOD

The proposed trust-aware federated learning method has
combined decentralized model training with soft computing-
based trust evaluation to ensure privacy-preserving and reliable
healthcare analytics. The framework has operated by allowing
multiple healthcare clients to train local models on sensitive
patient data while sharing only encrypted model updates with a
central coordinator. A fuzzy logic-based trust module has
continuously evaluated each client based on update consistency,
statistical deviation, and communication behavior. The trust
scores that have been generated have adaptively controlled the
aggregation weight of each client update. A privacy-preserving
mechanism that has incorporated controlled perturbation has
further ensured confidentiality. This integrated design has enabled
robust global model learning even in the presence of
heterogeneous data and unreliable participants.

3.1 FEDERATED SETUP

The federated learning system initializes with a central server
and a set of distributed healthcare clients such as hospitals,
diagnostic centers, or wearable-based monitoring units. Each
client retains its local dataset that contains sensitive patient
attributes. The global model parameters are initialized at the
server and are broadcast to all participating clients at the
beginning of each communication round. This initialization phase
ensures synchronization across the distributed environment while
preserving data locality.

Each client trains a local model using its private dataset and
computes parameter updates. These updates are prepared for
transmission without exposing raw data. At this stage, no trust
discrimination is applied, as the system establishes a baseline
behavioral profile for each participant. The Table.l illustrates a
initialization state of federated clients.

Table.1. Initial Federated Client Configuration

Client ID [Dataset Size|Local Epochs|Initial Trust Score
Cl1 12,000 5 1.0
C2 9,500 5 1.0
C3 14,200 5 1.0

As shown in Table.1, all clients begin with equal trust values,
which reflects an unbiased starting assumption.

The global optimization objective that governs the federated
learning process is expressed as:
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where w denotes the global model parameters, N represents the
number of clients, »; indicates the local dataset size, and I(-)
defines the loss function. This establishes the learning foundation
before trust-aware modulation.

During each federated round, the server distributes the current
global model to all active clients. Each client performs local
training using stochastic gradient descent on its private healthcare
dataset. This process has respected institutional privacy
constraints, as no raw data leaves the local environment. The
trained local parameters are converted into model updates that
capture learned patterns from patient records.

Local training performance varies across clients due to
differences in data quality, class imbalance, and computational
resources. These variations become critical signals for trust
evaluation in subsequent stages. The Table.2 presents a snapshot
of local training outcomes.

Table.2. Local Training Outcomes

Client ID |Local Loss|Gradient Norm|Training Time (s)
Cl1 0.42 1.85 14.2
C2 0.58 243 18.9
C3 0.39 1.71 13.5

As reflected in Table.2, the observed heterogeneity across
clients has provided essential inputs for trust assessment.

The local parameter update computed by each client is
mathematically expressed as:

E
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where 7 denotes the learning rate, £ represents the number of local

epochs, and (x{",y(") are the local samples at client 7. These

updates form the basis for trust-aware aggregation.

4. TRUST FEATURE EXTRACTION AND
BEHAVIORAL ANALYSIS

After receiving local updates, the server extracts multiple
behavioral indicators that characterize client reliability. These
indicators include update consistency across rounds, deviation
from the global trend, and communication reliability such as delay
or packet loss. The extracted features are normalized to a common
scale to support fuzzy inference. Trust feature extraction allows
the system to move beyond static assumptions and adapt to
evolving client behavior. The Table.3 demonstrates a trust feature
matrix.

Table.3. Extracted Trust Features

. Consistency|Deviation|Communication
Client ID Score Score Reliability

Cl 0.87 0.18 0.93

C2 0.64 0.42 0.79
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As indicated in Table.3, clients exhibit varying behavioral
patterns that require nuanced evaluation. The deviation metric is
computed as:

1 N
5_(0 =EAW.(’) _ AW(_t) 3
i i N; J EZ ( )
This quantifies how far a client update deviates from the
collective behavior, which serves as a critical indicator of
potential unreliability.

The normalized trust features are fed into a fuzzy inference
system that models uncertainty and imprecision inherent in
healthcare federated environments. Linguistic variables such as
low, medium, and high are assigned to each feature. A rule base
that has been designed using expert knowledge evaluates the
combined trustworthiness of each client. The fuzzy system
produces a scalar trust score for each participant that dynamically
evolves over training rounds. The Table.4 provides an example of
fuzzy trust outputs.

Table.4. Fuzzy Trust Evaluation Results

Client ID |[Fuzzy Trust Score
Cl 0.88
C2 0.61
c3 0.92

As shown in Table.4, the trust-aware mechanism has
differentiated clients based on multi-criteria assessment rather
than single metrics.

The fuzzy aggregation process is formally represented as:
jgﬂtmst (Z) dZ

where T'” denotes the trust score of client i at round 7, g,
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represents the aggregated membership function, and Q defines the
universe of discourse. This formulation ensures smooth and
interpretable trust estimation.

The computed trust scores are integrated into the federated
aggregation process. Instead of averaging updates uniformly, the
server assigns higher weights to trustworthy clients and
suppresses the influence of unreliable ones. This strategy
enhances robustness against malicious or noisy updates without
excluding clients entirely. The Table.5 illustrates trust-weighted
aggregation coefficients.

Table.5. Trust-Weighted Aggregation Coefficients

Client ID|Trust Score|Aggregation Weight
C1 0.88 0.36
C2 0.61 0.25
C3 0.92 0.39

As cited in Table.5, the aggregation weights reflect both trust
and contribution relevance. The trust-aware global update is
computed as:
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equation ensures that both data volume and trust jointly influence
model evolution.

To further protect sensitive information, the framework
integrates a privacy-preserving mechanism that perturbs local
updates before transmission. Controlled noise is added to
gradients to reduce the risk of inference attacks while preserving
utility. This mechanism operates independently at each client. The
Table.6 shows an example of noise-calibrated updates.

Table.6. Privacy-Preserved Update Statistics

Client ID|Noise Variance|Signal-to-Noise Ratio
Cl 0.015 213
C2 0.020 18.7
C3 0.014 22.1

As shown in Table.6, noise levels are carefully controlled to
balance privacy and accuracy. The privacy-preserving update
mechanism is expressed as:

Aws” = Aw® + N (0,021) (6)

where N (0,077) denotes Gaussian noise with variance o . This
formulation has ensured differential privacy guarantees.

The final stage involves updating the global model using trust-
aware and privacy-preserved updates. The updated model is
redistributed to clients for the next training round. Over
successive iterations, trustworthy clients exert greater influence,
while unstable behavior is gradually attenuated. This iterative
refinement has improved convergence stability and predictive
performance in healthcare analytics. The Table.7 summarizes
global performance progression.

Table.7. Global Model Performance Across Rounds

Round|Accuracy|Loss
10 0.82 [0.46
20 0.87 10.34
30 091 (0.27
As cited in Table.7, the trust-aware framework has

consistently improved model accuracy while reducing loss.

The iterative learning dynamic is summarized as:

N
limw" =argmin 7,-E [ l(fw(x),y)}
i=1
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This highlights how trust-guided optimization has driven
stable convergence.

5. RESULTS AND DISCUSSION

The experimental evaluation is conducted using a simulation-
based federated learning environment that emulates distributed
healthcare institutions. The experiments are implemented using
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Python with TensorFlow and PyTorch frameworks that support
federated optimization and gradient-level customization. The
simulation environment models a central server and multiple
heterogeneous clients that communicate over synchronous
training rounds. The federated workflow is executed under
controlled network latency and client participation rates to reflect
realistic healthcare deployment conditions.

All experiments are executed on a workstation equipped with
an Intel Core i9 processor, 64 GB RAM, and an NVIDIA RTX
3080 GPU. The GPU has been utilized for accelerating local
model training, while the aggregation and trust evaluation
modules operate on the CPU. The operating system is Ubuntu
22.04, which has ensured stable execution of distributed learning
tasks. The simulation setup has enabled repeatable experiments
while maintaining strict isolation between client datasets, thereby
preserving privacy constraints.

The proposed framework is evaluated under consistent
hyperparameter settings across all comparative methods to ensure
fairness. The key experimental parameters that govern the
federated learning process are summarized in Table.8.

Table.8. Experimental Setup and Parameter Configuration

Parameter Value
Number of clients 20
Client participation rate 60% per round
Global communication rounds 50
Local training epochs 5
Learning rate 0.01
Batch size 32
Trust update interval Every round
Differential privacy noise ¢ 0.015

As cited in Table.1, the number of clients and participation
rate are selected to reflect partial availability that commonly
occurs in healthcare systems. The privacy noise parameter has
been carefully tuned to balance confidentiality and learning
stability.

5.1 PERFORMANCE METRICS

The performance metrics are employed to evaluate the
effectiveness of the proposed framework.

* Classification Accuracy measures the proportion of
correctly predicted clinical outcomes over the total number
of samples. This metric reflects the overall predictive
reliability of the healthcare analytics model.

Precision quantifies the ratio of true positive predictions to
the total positive predictions. Precision is critical in
healthcare analytics, as false positives may lead to
unnecessary clinical interventions.

Recall evaluates the ability of the model to correctly identify
positive clinical cases. A high recall value ensures that
critical medical conditions are not overlooked.

F1-score provides a harmonic balance between precision
and recall. This metric is particularly important for
imbalanced healthcare datasets that have skewed class
distributions.
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* Convergence Time measures the number of Table.11. Precision over Iterations
communication rounds required for the global model to - - -
reach a stable accuracy threshold. Reduced convergence Iterations| T ¢derated Differentially| Trimmed Proposed
time indicates efficient learning and lower communication Averaging| Private FL | Mean | Method
overhead. 25 0.69 0.67 0.71 0.77
5.2 DATASET DESCRIPTION 20 0.72 0.70 074 | 081
75 0.74 0.72 0.76 0.84
The evaluation employs a benchmark healthcare dataset that 100 0.76 0.73 0.78 0.87
represents patient diagnostic records collected from multiple
medical institutions. The dataset contains anonymized patient 125 0.77 0.74 0.79 0.89
features including demographic attributes, physiological 150 0.78 0.75 0.80 0.91
measurements, and clinical test indicators. The data are 175 0.79 0.76 0.81 0.92
partitioned across clients in a non-independent and heterogeneous 200 0.80 077 082 093

manner to reflect realistic institutional data silos.

Table.9. Healthcare Dataset Description Table.12. Recall over Iterations

Attribute Description Tterations Federa?ed Diff.erentially Trimmed|Proposed
Averaging| Private FL. | Mean | Method
Total samples 48,000
25 0.70 0.68 0.72 0.79
Number of features 32
- ; 50 0.73 0.71 0.75 0.83
Number of classes 2 (disease / non-disease)
— 75 0.75 0.73 0.77 0.86
Data type Tabular clinical records
— ; 100 0.77 0.74 0.79 0.89
Distribution Non-IID across clients
— - - ; 125 0.78 0.75 0.80 0.91
Missing value handling| = Mean imputation
As oh Tablos. tho d b 150 0.79 0.76 0.81 0.92
s shown 1n Table.9, the dataset structure supports binary
clinical classification tasks and introduces heterogeneity that 175 0.80 0.77 0.82 0.93
challenges standard federated learning methods. 200 0.81 0.78 0.83 0.94
6. RESULTS ANALYSIS AND DISCUSSION Table.13. F1-Score over Iterations
. |Federated |Differentially Tri d|P d
The compz.zlrative evaluation includes thre.e established Iterations Af/ ef’l:;Zifl g 11) r:\f‘:tl; ?Ly li\l,llzg:le 1\[;[(;[:](:33
federated learning approaches. Federated Averaging aggregates
client updates uniformly and assumes honest participation across 25 0.70 0.68 0.72 0.78
clients. Differentially Private Federated Learning introduces 50 0.73 0.71 0.75 0.82
controlled noise that has preserved privacy but affects 75 0.75 0.73 077 0.85
convergence stability. Robust Aggrega}tion usir}g Trimqu Mean 100 077 0.74 0.79 0.88
mitigates extreme updates by filtering outliers, yet it lacks
adaptive trust modeling that captures gradual behavioral 125 0.78 0.75 0.80 0.90
deviations. 150 0.79 0.76 0.81 0.92
) ) ) 175 0.80 0.77 0.82 0.93
Table.10. Classification Accuracy over Iterations
200 0.81 0.78 0.83 0.94
Iterations Federated Differentially Trimmed | Proposed
Averaging| Private FL. | Mean | Method Table.14. Convergence Performance
25 0.71 0.69 0.73 0.78
0 074 07 0.76 0.5 Method Rounds to Converge
P 0'76 0'74 0'78 0'85 Federated Averaging 160
100 0-78 0'75 0-80 0-88 Differentially Private FL 175
125 0.79 0.76 0'81 0'90 Trimmed Mean 149
. . - - Proposed Method 95
150 0.80 0.77 0.82 0.92
175 0.81 0.78 0.83 0.93 6.1 DISCUSSION OF RESULTS
200 0.82 0.79 0.84 0.94 The results presented in Table.10-Table.14 indicate that the

proposed trust-aware federated learning framework consistently
outperforms all existing methods across every evaluation metric.
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As shown in Table.10, the proposed method achicves a
classification accuracy of 0.94 at 200 iterations, whereas
Federated Averaging, Differentially Private Federated Learning,
and Trimmed Mean reach only 0.82, 0.79, and 0.84 respectively.
This improvement demonstrates that trust-guided aggregation
effectively suppresses unreliable updates.

Precision and recall results in Table.11 and Table.12 show
balanced growth for the proposed method, which confirms that
the model avoids biased learning that commonly occurs under
heterogeneous healthcare data. The F1-score values in Table.13
further validate this balance, reaching 0.94 at 200 iterations,
which reflects stable performance under class imbalance. The
Table.14 highlights that the proposed framework converges in 95
rounds, which is significantly faster than the comparative
methods. This reduction in convergence time indicates that
trustworthy clients guide the optimization more efficiently.

7. CONCLUSION

This study presents a trust-aware federated learning
framework that integrates soft computing for privacy-preserving
healthcare analytics. The framework systematically evaluates
client reliability using fuzzy logic and incorporates trust scores
into the aggregation process. Experimental results demonstrate
that the proposed method consistently achieves higher accuracy,
precision, recall, and Fl-score compared with Federated
Averaging, Differentially Private Federated Learning, and
Trimmed Mean aggregation. At 200 iterations, the proposed
approach reaches an accuracy of 0.94 and an F1-score of 0.94,
while significantly reducing convergence rounds to 95. The
results indicate that adaptive trust modeling effectively mitigates
the influence of unreliable or malicious clients without excluding
participants entirely. The inclusion of privacy-preserving noise
maintains confidentiality while preserving analytical utility. By
addressing uncertainty, heterogeneity, and trust simultaneously,
the proposed framework enhances the clinical reliability of
federated healthcare analytics. This work confirms that soft
computing-driven trust management represents a practical and
scalable solution for real-world distributed healthcare systems
that demand both privacy and robustness.
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