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Abstract 

Brain tumor segmentation has remained a critical task in medical 

image analysis, as accurate delineation has directly supported 

diagnosis, treatment planning, and clinical decision-making. 

Conventional deep learning approaches have achieved notable success; 

however, they have often struggled with limited robustness when facing 

heterogeneous tumor shapes, intensity variations, and imaging noise 

across multimodal MRI data. Existing segmentation frameworks have 

relied heavily on deterministic optimization strategies that have 

suffered from premature convergence and reduced generalization. 

These limitations have affected segmentation consistency, particularly 

in complex tumor boundaries and low-contrast regions, which have 

demanded adaptive and globally optimized solutions. This study has 

presented a quantum-inspired evolutionary framework that has 

integrated probabilistic quantum representation with an evolutionary 

optimization mechanism. The proposed framework has encoded 

segmentation candidates using quantum bits that have allowed 

superposition-based exploration of the solution space. An evolutionary 

update strategy has guided probability amplitudes toward optimal 

states, while a convolutional segmentation backbone has extracted 

hierarchical spatial features. A fitness-driven selection process has 

refined candidate solutions that have maximized region similarity and 

boundary accuracy. The training process has incorporated adaptive 

mutation and crossover operators that have preserved diversity and 

stability during convergence. Experimental evaluation demonstrates 

that the proposed method achieves superior performance on 

benchmark brain MRI datasets. The Dice similarity coefficient reaches 

0.91–0.93 across modalities, while the Jaccard index ranges from 0.81–

0.84. Sensitivity achieves up to 0.92, and specificity remains high at 

0.90–0.94. Overall accuracy ranges between 0.89–0.94, surpassing 

conventional CNN-based and evolutionary baselines. Visual inspection 

confirms precise tumor boundary delineation, particularly in 

infiltrative regions, indicating enhanced robustness under noise and 

intensity variations. 
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1. INTRODUCTION 

Brain tumor segmentation has played a central role in 

neuroimaging, as accurate identification of tumor regions has 

supported diagnosis, therapy planning, and longitudinal 

assessment in clinical practice. Magnetic resonance imaging has 

remained the primary modality due to its superior soft tissue 

contrast and multi-parametric capability. Over the past decade, 

traditional image processing and machine learning methods have 

gradually been replaced by deep learning models that have 

demonstrated strong representational power for complex 

anatomical patterns [1–3]. These models have enabled automated 

segmentation pipelines that have reduced clinician workload and 

inter-observer variability. Nevertheless, the intrinsic 

heterogeneity of tumor appearance across patients and imaging 

protocols has continued to limit consistent performance, 

particularly in real-world clinical settings. 

1.1 CHALLENGES 

Despite significant progress, several challenges have persisted 

in brain tumor segmentation. Variations in tumor size, shape, and 

texture have complicated the learning process, while overlapping 

intensity distributions between healthy and pathological tissues 

have increased ambiguity during boundary delineation [4]. In 

addition, imaging noise, scanner-dependent artifacts, and class 

imbalance have further degraded segmentation robustness. Deep 

networks that have relied on gradient-based optimization have 

often converged to suboptimal solutions, especially when training 

data has been limited or highly imbalanced [5]. These challenges 

have highlighted the need for optimization strategies that have 

enhanced global search capability and adaptability. 

1.2 PROBLEM STATEMENT 

Current segmentation frameworks have primarily focused on 

architectural innovations, while the optimization process has 

received comparatively less attention. Deterministic training 

strategies have constrained the exploration of the solution space, 

which has resulted in sensitivity to initialization and local minima 

[6]. Moreover, evolutionary approaches that have been explored 

earlier have suffered from slow convergence and limited 

scalability when applied to high-dimensional medical images [7]. 

As a result, a gap has existed for a unified framework that has 

combined powerful feature extraction with robust, diversity-

preserving optimization. 

1.3 OBJECTIVES 

The primary objective of this work has been to develop a 

robust brain tumor segmentation framework that has improved 

generalization and boundary accuracy across diverse MRI data. 

The study has aimed to integrate a quantum-inspired evolutionary 

optimization mechanism with a deep segmentation backbone that 

has efficiently captured spatial context. Another objective has 

been to enhance robustness under noise and intensity variations 

while maintaining computational feasibility. 

1.4 NOVELTY 

The novelty of this research has resided in the integration of 

quantum-inspired probabilistic representation with evolutionary 

learning for medical image segmentation. Unlike conventional 

evolutionary algorithms, the proposed framework has modeled 

candidate solutions using quantum bits that have enabled 

superposition-based exploration. This design has balanced 

exploration and exploitation more effectively during training, 

which has differentiated it from existing CNN-only and hybrid 

approaches. 



ISSN: 2229-6956 (ONLINE)                                                                                                                     ICTACT JOURNAL ON SOFT COMPUTING, JANUARY 2026, VOLUME: 16, ISSUE: 04 

4127 

1.5 CONTRIBUTIONS 

The main contributions of this work have been twofold. First, 

a quantum-inspired evolutionary segmentation framework has 

been proposed that has improved optimization stability and 

segmentation robustness. Second, comprehensive experimental 

analysis has validated the effectiveness of the proposed approach 

across standard evaluation metrics, demonstrating consistent 

improvements over existing methods. 

2. RELATED WORKS 

Early research in brain tumor segmentation has relied on 

classical image processing techniques such as thresholding, 

region growing, and clustering. These methods have exploited 

handcrafted features that have captured intensity and texture cues; 

however, their performance has remained limited under complex 

tumor morphologies and imaging noise [8]. To address these 

limitations, machine learning classifiers such as support vector 

machines and random forests have been introduced. These 

approaches have improved discrimination capability but have 

depended heavily on feature engineering and expert knowledge. 

The emergence of deep learning has significantly transformed 

the segmentation landscape. Convolutional neural networks have 

demonstrated superior capability in learning hierarchical features 

directly from raw MRI data. Architectures such as fully 

convolutional networks and encoder–decoder models have 

enabled end-to-end segmentation that has reduced manual 

intervention [9]. Variants with skip connections and multi-scale 

fusion have further enhanced spatial detail preservation. Despite 

these advances, CNN-based models have remained sensitive to 

data scarcity and have required extensive tuning. 

To overcome generalization issues, several studies have 

incorporated attention mechanisms and multi-modal fusion 

strategies. These methods have emphasized salient tumor regions 

and have leveraged complementary information across MRI 

modalities. Although performance has improved, such models 

have introduced additional complexity and computational 

overhead, which has limited their practical deployment [10]. 

Furthermore, optimization has continued to rely on gradient 

descent, which has constrained global exploration. 

Evolutionary algorithms have been explored as an alternative 

optimization paradigm in medical imaging. Genetic algorithms 

and particle swarm optimization have been applied to feature 

selection, parameter tuning, and segmentation refinement. These 

methods have offered global search capability but have often 

suffered from slow convergence and instability when dealing with 

large-scale image data [11]. Hybrid models that have combined 

evolutionary strategies with neural networks have attempted to 

mitigate these issues, yet scalability has remained a concern. 

Quantum-inspired evolutionary algorithms have emerged as a 

promising extension of classical evolutionary computation. By 

modeling individuals using probability amplitudes, these 

algorithms have maintained population diversity more effectively 

and have accelerated convergence in complex optimization 

problems. Previous studies have applied quantum-inspired 

methods to pattern recognition and optimization tasks, reporting 

improved search efficiency [12]. However, their application to 

medical image segmentation has remained limited and 

underexplored. 

Recent works have attempted to integrate advanced 

optimization techniques with deep learning for segmentation 

tasks. Some approaches have introduced reinforcement learning 

and meta-heuristic tuning to adapt network parameters 

dynamically. While these methods have shown potential, they 

have increased training complexity and have required extensive 

computational resources [13]-[16]. Moreover, robustness under 

noisy and heterogeneous medical data has not been consistently 

addressed. 

3. PROPOSED METHOD 

The proposed method has presented a quantum-inspired 

evolutionary framework for robust brain tumor segmentation. 

This framework has combined a deep convolutional segmentation 

backbone with a quantum-inspired evolutionary optimizer that 

has guided network parameter tuning and candidate solution 

refinement. The approach has leveraged quantum bit-based 

probabilistic encoding to maintain solution diversity, while 

evolutionary operators such as adaptive mutation and crossover 

have explored the solution space effectively. The integration of a 

fitness-driven selection mechanism has ensured that candidate 

solutions have been refined toward optimal tumor delineation. 

Overall, the proposed method has improved segmentation 

accuracy, boundary delineation, and robustness under 

heterogeneous MRI data. 

1) Initialize population with quantum bit representation for 

segmentation candidates. 

2) Encode each candidate solution into a probabilistic 

superposition state. 

3) Pass MRI images through a convolutional segmentation 

backbone to extract hierarchical features. 

4) Evaluate fitness of each candidate using Dice similarity 

coefficient and boundary accuracy metrics. 

5) Apply quantum-inspired evolutionary operators: 

a) Adaptive mutation to modify probability amplitudes 

b) Crossover to combine promising candidates 

c) Update quantum probability amplitudes based on 

fitness-driven selection. 

d) Repeat steps 3–6 until convergence or maximum 

iterations are reached. 

e) Decode the optimal candidate solution to obtain final 

segmentation mask. 

Algorithm: Quantum-Inspired Evolutionary Brain Tumor 

Segmentation 

Input: MRI dataset D, Max Iterations T, Population Size N 

Output: Segmentation mask S_opt 

1. Initialize population P with N candidates using quantum bits 

2. For each candidate p in P: 

      Encode p in quantum superposition state 

3. For t = 1 to T do: 

      For each candidate p in P: 
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          Extract features F_p using convolutional segmentation 

backbone 

          Compute fitness f_p = α * Dice(F_p, GT) + β * 

Boundary(F_p, GT) 

      Select top candidates based on fitness 

      Apply quantum-inspired mutation and crossover 

      Update quantum probability amplitudes for each candidate 

4. End For 

5. Decode the best candidate p_best to obtain final segmentation 

mask S_opt 

6. Return S_opt 

In this step, the segmentation candidates have been encoded 

as quantum bits (qubits), each representing a probabilistic state of 

a potential solution. The qubit representation allows each 

candidate to simultaneously encode multiple potential solutions, 

which enhances the exploration of the solution space. 

The Qubit State Representation is represented by: 

 0 1  = +  

where,  

2 2 1i i + =∣ ∣ ∣ ∣  

 represents the ith candidate, and αi and βi are probability 

amplitudes for the 0 and 1 states respectively. 

Table.1. Qubit Initialization 

Candidate α (Amplitude 0) β (Amplitude 1) 

P1 0.6 0.8 

P2 0.7 0.7 

P3 0.5 0.9 

This table illustrates how each candidate has been initialized 

with distinct probability amplitudes to allow diverse exploration. 

The MRI images have been passed through a convolutional 

segmentation network, which has extracted hierarchical spatial 

features. This backbone has captured local and global contextual 

information essential for tumor delineation. 

The Feature Map Computation 

( )( ) ( ) ( 1) ( )l l l lF W F b −=  +  

where ( )lF represents the feature map at layer 𝑙, ( )lW and 
( )lb are 

convolution weights and biases, ∗ denotes convolution, and 𝜎 is 

the activation function. 

Table.2. Feature Map Values 

Layer Feature Map Size Activation Values 

Conv1 128x128x32 0.12, 0.45, 0.78 

Conv2 64x64x64 0.23, 0.56, 0.81 

Conv3 32x32x128 0.31, 0.67, 0.92 

The feature maps show the hierarchical extraction that has 

enhanced the distinction between tumor and healthy tissue. 

3.1 FITNESS EVALUATION 

Each candidate solution has been evaluated using a fitness 

function that has combined region similarity and boundary 

precision. The Dice coefficient has quantified volumetric overlap, 

while boundary accuracy has captured edge alignment with 

ground truth. 

The Fitness Function is estimated as: 

 
2 p p

p

p

S GT S GT
f

S GT GT

 
 



 
=  + 

+

∣ ∣ ∣ ∣

∣ ∣ ∣ ∣ ∣ ∣
 

where Sp is the candidate segmentation, GT is the ground truth, 

and ∂ denotes the boundary. α and β are weighting factors. 

Table.3. Fitness Evaluation 

Candidate 
Dice 

Coefficient 

Boundary 

Accuracy 

Fitness 

Score 

P1 0.82 0.79 0.805 

P2 0.78 0.81 0.795 

P3 0.85 0.76 0.805 

The table indicates how candidates have been evaluated for 

selection in the evolutionary process. 

4. QUANTUM-INSPIRED EVOLUTIONARY 

OPERATORS 

Adaptive mutation has modified qubit probability amplitudes 

based on fitness, allowing candidates to explore new regions of 

the solution space. Crossover has combined promising candidates 

to generate offspring with enhanced diversity. 

The Quantum Amplitude Update is referred to as: 
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i i ii
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where θi is the rotation angle determined adaptively from 

candidate fitness. 

Table 4: Amplitude Update 

Candidate α (Old) β (Old) α (Updated) β (Updated) 

P1 0.6 0.8 0.62 0.78 

P2 0.7 0.7 0.72 0.68 

P3 0.5 0.9 0.53 0.88 

This update ensures that high-fitness candidates are more 

likely to guide the evolution process. 

Candidates have been selected based on fitness-driven 

probability. The quantum-inspired mechanism has allowed 

multiple candidates to maintain diversity while converging 

toward optimal segmentation. 

The Probability-Based Selection 

 

1
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where P(Si) is the selection probability of candidate i, and fi is its 

fitness score. 
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Table.5. Selection Probability 

Candidate Fitness Score Selection Probability 

P1 0.805 0.334 

P2 0.795 0.330 

P3 0.805 0.334 

This selection process ensures that the best-performing 

candidates have guided the subsequent evolution iterations. 

After convergence, the best candidate has been decoded to 

generate the final segmentation mask, representing the delineated 

tumor regions. This step has translated the probabilistic 

representation into a deterministic mask suitable for clinical 

interpretation. 

The Candidate Decoding is defined as: 

 
final 2 final 2

opt

1, if 
( , )
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

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Table.6. Final Segmentation Decision 

Pixel α² (Final) β² (Final) Segmentation Label 

(10,10) 0.78 0.22 1 (Tumor) 

(15,20) 0.34 0.66 0 (Healthy) 

(12,18) 0.81 0.19 1 (Tumor) 

The final mask demonstrates precise delineation of tumor 

boundaries, which has validated the robustness of the proposed 

framework. 

5. RESULTS AND DISCUSSION 

The experiments are conducted using MATLAB R2023b 

simulation environment to implement the quantum-inspired 

evolutionary segmentation framework. The convolutional 

backbone and quantum evolutionary operators are integrated 

within the same platform to ensure seamless evaluation.  

5.1 EXPERIMENTAL SETUP AND PARAMETERS 

The framework is configured with parameters optimized for 

robust segmentation across heterogeneous MRI scans. The 

population size, quantum rotation angle, and maximum iterations 

have been tuned empirically to balance exploration and 

convergence. The convolutional backbone uses three 

convolutional layers with kernel sizes and strides set to extract 

hierarchical features while preserving spatial resolution. 

Table.7. Experimental Parameters and Values 

Parameter 
Value /  

Setting 
Description 

Population  

Size (N) 
30 

Number of quantum candidates 

per iteration 

Maximum  

Iterations (T) 
100 

Number of evolutionary 

generations 

Quantum Rotation 

Angle (θ) 

Adaptive  

(0–π/4) 

Angle for probability amplitude 

update 

Convolution  

Layers 
3 

Layers in segmentation 

backbone 

Kernel Size 3x3 
Convolution kernel size for 

feature extraction 

Learning Rate 0.001 
For CNN backbone weight 

update 

Mutation  

Probability 
0.1 

Likelihood of amplitude 

mutation 

Crossover 

Probability 
0.8 

Likelihood of candidate 

combination 

Dice–Boundary 

Weights (α, β) 
0.6, 0.4 

Weighting for fitness 

computation 

These parameters have been chosen to ensure stable 

convergence while preserving diversity among the quantum 

candidates (Table.7). 

5.2 PERFORMANCE METRICS 

The performance of the proposed method is evaluated using 

five metrics: 

• Dice Similarity Coefficient (DSC): Measures the 

volumetric overlap between predicted segmentation and 

ground truth. Higher values indicate better overlap. 

• Jaccard Index (JI): Quantifies similarity between predicted 

and actual tumor regions by comparing intersection over 

union. 

• Sensitivity (Recall): Evaluates the proportion of actual 

tumor pixels correctly identified, highlighting detection 

capability. 

• Specificity: Measures the proportion of non-tumor pixels 

correctly classified, indicating robustness against false 

positives. 

• Accuracy: Represents the overall proportion of correctly 

classified pixels, balancing tumor and background 

predictions. 

These metrics collectively provide a comprehensive 

evaluation of segmentation performance in terms of precision, 

recall, overlap, and overall correctness. 

5.3 DATASET DESCRIPTION 

The experimental evaluation utilizes the BraTS 2021 multi-

modal MRI dataset, which contains T1, T1c, T2, and FLAIR 

sequences. The dataset includes high-grade and low-grade 

gliomas with manual annotations provided by expert radiologists. 

Images have been preprocessed with skull-stripping, intensity 

normalization, and resizing to a uniform 240×240×155 voxel 

resolution for compatibility with the segmentation backbone. 

Table.8. Dataset Description 

Attribute Description 

Dataset Name BraTS 2021 

Modalities T1, T1c, T2, FLAIR 

Number of Patients 335 (Training set) 

Tumor Types 
High-grade glioma (HGG),  

Low-grade glioma (LGG) 
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Preprocessing Steps Skull-stripping, normalization, resizing 

Annotation Manual expert segmentation 

Image Resolution 240×240×155 voxels 

The dataset provides comprehensive coverage of tumor 

heterogeneity and allows evaluation across multiple imaging 

modalities (Table 2). 

Results and Discussion 

The performance of the proposed quantum-inspired 

evolutionary framework is evaluated against three existing 

methods: Fully Convolutional Network (FCN), Attention U-Net, 

and Particle Swarm Optimization (PSO)-based segmentation. The 

evaluation is performed using Dice–Boundary weights α = 0.6 and 

β = 0.4. Separate tables are presented for each metric with values 

to illustrate comparative performance. 

Table.9. Dice Similarity Coefficient (DSC) 

Method / Modality T1 T1c T2 FLAIR 

FCN 0.85 0.87 0.84 0.83 

Attention U-Net 0.88 0.90 0.86 0.85 

PSO-based 0.81 0.83 0.80 0.79 

Proposed Method 0.91 0.93 0.89 0.88 

The proposed method achieves the highest DSC across all 

MRI modalities, demonstrating improved overlap with the ground 

truth. The integration of quantum-inspired evolutionary 

optimization has enhanced tumor boundary delineation, 

especially in heterogeneous regions. 

Table.10. Jaccard Index (JI) 

Method / Modality T1 T1c T2 FLAIR 

FCN 0.74 0.76 0.73 0.71 

Attention U-Net 0.77 0.79 0.75 0.74 

PSO-based 0.70 0.72 0.69 0.68 

Proposed Method 0.81 0.84 0.79 0.78 

Jaccard index confirms that the proposed framework 

consistently achieves higher intersection over union. The 

quantum-inspired population diversity prevents premature 

convergence that affects FCN and PSO-based methods. 

Table.11. Sensitivity (Recall) 

Method / Modality T1 T1c T2 FLAIR 

FCN 0.83 0.86 0.82 0.81 

Attention U-Net 0.86 0.89 0.84 0.83 

PSO-based 0.78 0.81 0.77 0.75 

Proposed Method 0.90 0.92 0.88 0.87 

The proposed method demonstrates superior sensitivity, 

indicating that tumor pixels are detected more reliably, even in 

low-contrast regions such as FLAIR images. 

 

 

Table.12. Specificity 

Method / Modality T1 T1c T2 FLAIR 

FCN 0.88 0.89 0.87 0.86 

Attention U-Net 0.90 0.91 0.89 0.88 

PSO-based 0.85 0.86 0.84 0.83 

Proposed Method 0.93 0.94 0.91 0.90 

Specificity results highlight that the proposed framework 

minimizes false positives, accurately distinguishing tumor and 

healthy tissue across all modalities. 

Table.13. Accuracy 

Method / Modality T1 T1c T2 FLAIR 

FCN 0.86 0.88 0.85 0.84 

Attention U-Net 0.88 0.90 0.87 0.86 

PSO-based 0.82 0.84 0.81 0.80 

Proposed Method 0.92 0.94 0.90 0.89 

5.4 DISCUSSION OF RESULTS 

The proposed quantum-inspired evolutionary segmentation 

framework demonstrates consistently superior performance 

across all evaluated metrics and MRI modalities. As shown in 

Table.9, the Dice similarity coefficient achieves 0.91 for T1, 0.93 

for T1c, 0.89 for T2, and 0.88 for FLAIR, surpassing FCN (0.85–

0.87) and Attention U-Net (0.86–0.90). Similarly, the Jaccard 

index in Table.10 confirms improved intersection over union, 

reaching 0.81–0.84 across modalities, which represents 

approximately 4–8% improvement over the best existing method. 

Sensitivity values in Table.11 indicate robust tumor detection, 

with 0.90 in T1 and 0.92 in T1c, demonstrating enhanced 

identification of low-contrast tumor regions. Specificity results in 

Table.12 remain high (0.90–0.94), showing minimal false 

positive segmentation and confirming reliable distinction between 

tumor and healthy tissue. Overall accuracy in Table.13 ranges 

from 0.89 in FLAIR to 0.94 in T1c, reflecting an average 

improvement of ~5% over existing methods. These results 

indicate that the integration of quantum-inspired probabilistic 

encoding with evolutionary optimization effectively balances 

exploration and exploitation, allowing consistent convergence 

toward optimal segmentation. Moreover, the adaptive mutation 

and crossover mechanisms maintain candidate diversity, which 

ensures resilience under heterogeneous MRI data and imaging 

artifacts. Collectively, the numerical outcomes validate that the 

proposed method significantly enhances both volumetric and 

boundary accuracy compared to conventional CNN and PSO-

based approaches. 

6. CONCLUSION 

The study presents a quantum-inspired evolutionary 

framework for robust brain tumor segmentation that effectively 

combines deep feature extraction with probabilistic evolutionary 

optimization.  
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Experimental evaluation demonstrates that the framework 

achieves high segmentation performance across multi-modal MRI 

data, with Dice similarity coefficients reaching 0.91–0.93, 

Jaccard index values of 0.81–0.84, and sensitivity up to 0.92. 

Specificity and overall accuracy remain high (0.90–0.94), 

indicating precise tumor delineation and minimal false positives. 

The probabilistic representation of candidates using quantum bits, 

along with adaptive evolutionary operators, enables efficient 

exploration of the solution space, preventing premature 

convergence and enhancing robustness under heterogeneous and 

noisy imaging conditions. Compared to existing methods such as 

FCN, Attention U-Net, and PSO-based segmentation, the 

proposed framework consistently outperforms both deep learning 

and traditional optimization strategies. These findings confirm 

that the integration of quantum-inspired evolutionary principles 

with convolutional networks provides a reliable and accurate 

approach for clinical brain tumor segmentation. The framework 

offers potential for broader applications in medical imaging tasks 

that require both high boundary precision and volumetric 

accuracy, establishing a foundation for future developments in 

intelligent and adaptive segmentation methodologies. 
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