
ISSN: 2229-6956 (ONLINE)                                                                                                                     ICTACT JOURNAL ON SOFT COMPUTING, JANUARY 2026, VOLUME: 16, ISSUE: 04 

DOI: 10.21917/ijsc.2026.0569 

4117 

HYBRID ANT COLONY OPTIMIZATION WITH GRAPH NEURAL NETWORKS AND 

RELIEFF FOR ROBUST FEATURE SELECTION IN MEDICAL DATA ANALYSIS 

K. Preethi and M. Ramakrishnan 
Department of Computer Applications, School of Information Technology, Madurai Kamaraj University, India

Abstract 

In the field of medical data analysis, the major challenges are high 

dimensionality and complexity due to temporal behavior of medical 

datasets. Feature selection is crucial to overcoming these challenges 

since it enhances interpretability, reduces processing expenses, and 

boosts model performance. To analyze the medical records, it is very 

essential to determine the most potential features that contribute more 

in classification or diagnosis of disease especially in the medical in the 

Medical Information Mart for Intensive Care III (MIMIC-III) dataset. 

This paper, highlights the importance of robust feature selection by 

developing a novel Hybrid feature selection framework that combines 

ReliefF and Ant Colony Optimization with Graph Neural Networks 

(ACO-GNN). The first step in the suggested approach is Ant Colony 

Optimization (ACO), which creates candidate feature subsets by 

effectively exploring the combinatorial feature space by mimicking 

pheromone-guided search behavior. Then, using graph-based 

representations of clinical variables, such as correlations between lab 

tests, drugs, and vital signs, Graph Neural Networks (GNNs) are used 

to model intricate, non-linear interactions among medical aspects.  In 

order to ensure robustness and interpretability, ReliefF is used to rank 

and improve features by assessing their capacity to distinguish between 

patient outcome classes.  The hybrid approach significantly 

outperforms conventional feature selection techniques like K-Nearest 

Neighbors with ReliefF (KNN-ReliefF) and XGBoost with SHAP 

Feature Importance (XGB-SHAP) in through tests on the MIMIC-III 

dataset, predictive performance indicators such as precision, accuracy, 

F1-score, recall, and AUC-ROC. The selected feature subsets offer 

clinically meaningful insights into critical factors influencing patient 

outcomes in intensive care, underscoring the potential of the ACO-

GNN-ReliefF method for advancing predictive analytics and clinical 

decision support systems in healthcare. 
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1. INTRODUCTION 

The increasing growth of healthcare data brought about by the 

widespread use of electronic health records, bedside monitoring 

systems, and large-scale clinical databases like the MIMIC-III has 

made predictive modeling in medicine easier than ever. [1].   

However, creating precise, effective, and interpretable models 

is extremely difficult due to the tremendous dimensionality and 

complexity present in medical datasets.  Irrelevant and redundant 

characteristics can impair clinical interpretability, raise 

computational costs, and reduce model performance all of which 

are critical for acceptance and confidence in actual healthcare 

settings [2][3].   Feature selection has emerged as a critical step in 

the analysis of medical data since it aids in identifying the most 

valuable variables, improves model generalization, reduces 

overfitting, and provides insights into significant factors 

associated with patient outcomes. [4][5]. 

Despite their widespread usage, classic statistical and filter-

based techniques like ReliefF or mutual information frequently 

fail to capture intricate, nonlinear dependencies among clinical 

variables, such as correlations between vital signs, medications, 

and laboratory tests. Wrapper and embedding approaches, such as 

tree-based algorithms like XGBoost, on the other hand, provide 

superior modeling capabilities but can be computationally 

demanding and prone to overfitting in high-dimensional fields [6]. 

To tackle these problems, this research proposes a new hybrid 

feature selection framework that blends ACO-GNN with ReliefF. 

Because it emulates ants’ foraging behavior, ACO is a nature-

inspired metaheuristic algorithm that may be used to create 

candidate feature subsets. As a result, it excels at exploring vast 

combinatorial spaces. By means of considering features as nodes 

in a graph, Graph Neural Networks (GNNs) can naturally describe 

complex relationships among them, making it possible to extract 

nonlinear dependencies that are frequently found in medical data.  

In order to ensure that the chosen features are still interpretable 

and clinically significant, ReliefF is then used to robustly rank and 

refine feature subsets according to their capacity to distinguish 

between patient outcome classes [7] [8] [9] [10].   

This paper’s primary contributions are the ACO-GNN-

ReliefF system, which effectively selects features in complicated 

medical datasets by combining swarm intelligence, graph-based 

deep learning, and statistical feature ranking. By comparing 

predictive performance to more conventional feature selection 

techniques, such as K-Nearest Neighbors with ReliefF (KNN-

ReliefF) and XGBoost with SHAP Feature Importance (XGB-

SHAP), we show the superiority of the suggested strategy on the 

MIMIC-III dataset.  We offer an examination of the chosen 

feature subsets, emphasizing factors that are clinically significant 

and linked to patient outcomes in critical care environments.  

The remainder of the document is structured as follows:  The 

relevant work on feature selection techniques for medical data is 

reviewed in Section 2.  The suggested methodology is described 

in depth in Section 3.  The dataset, experimental setup, findings, 

and performance comparison are all covered in Section 4.  The 

work is finally concluded and future research topics are outlined 

in Section 5. 

2. RELATED WORK 

A crucial preprocessing step in the study of medical data is 

feature selection, which lowers dimensionality, increases 

predictive performance, and improves model interpretability. 

Many methods have been proposed, which can be broadly 

classified into three groups: embedding, filtering, and wrapping. 

Filter approaches as ReliefF [11], mutual information [12], and 

correlation-based feature selection [13] are commonly used due 
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to their computational efficiency and ease of use. These methods, 

however, frequently miss complicated, nonlinear interactions 

between variables, which are prevalent in clinical data, and 

evaluate features independently. By iteratively training prediction 

models to evaluate subsets of features, wrapper approaches allow 

feature interactions to be taken into account.  

Examples are Sequential Forward Selection (SFS) and 

Sequence Floating Selection (SFFS) [14]. Wrappers are 

computationally expensive, especially when working with data 

sets with high dimensions like those utilized in healthcare 

applications, even though they usually yield better results. As seen 

by decision tree-based algorithms such as random forest models 

[16] and XGBoost [17] and regularization techniques like LASSO 

[15], embedded approaches integrate feature selection into the 

model training process. Although these techniques provide 

interpretability and competitive performance, they may be 

susceptible to hyperparameter manipulation and data imbalance. 

Metaheuristic algorithms discussed in 18, 19, 20] have been 

explored for feature selection due to their effectiveness in 

searching large combinatorial spaces. Notably, ACO has shown 

promise in generating high-quality feature subsets in domains 

including genomics [21] and medical imaging [22]. Recently, 

graph-based methods have gained attention for their ability to 

model dependencies among features. GNNs have been 

successfully applied to medical problems like disease 

classification from electronic health records [23] and drug–drug 

interaction prediction [24]. However, their use for feature 

selection, particularly in combination with metaheuristics, 

remains underexplored. Interpretability in feature selection is 

crucial in healthcare. SHAP (SHapley Additive exPlanations) 

values [25] provide consistent and model-agnostic feature 

importance estimates and have been integrated with tree-based 

models such as XGBoost to improve interpretability in clinical 

settings [26]. Our proposed ACO-GNN-ReliefF framework 

builds on these lines of work by integrating the global search 

capability of ACO, the relational modeling strength of GNNs, and 

the robustness of ReliefF for feature ranking. To the best of our 

knowledge, this is the first approach combining swarm 

intelligence, graph neural networks, and ReliefF for feature 

selection in complex medical datasets like MIMIC-III. 

3. PROPOSED METHODOLOGY: ACO-GNN-

RELIEFF FRAMEWORK 

The proposed ACO-GNN-ReliefF framework is designed to 

identify the most informative and clinically relevant features from 

high-dimensional medical datasets by combining global 

exploration, relational modeling, and robust feature ranking. The 

Fig. 1 illustrates the complete pipeline, which consists of three 

key stages: 

• Candidate Feature Subset Generation using Ant Colony 

Optimization (ACO):  ACO explores the combinatorial 

space of potential feature subsets by simulating the 

pheromone-guided foraging activity of ants. Pheromone 

trails are updated according to the predicted performance of 

candidate subsets, with each ant standing in for a possible 

feature subset solution. 

• Relational Modeling with Graph Neural Networks 

(GNNs): A graph is created for each eligible feature subset, 

with nodes standing in for features (such as lab results or 

prescription drugs) and edges encoding associations like 

correlation or co-occurrence frequency. After processing 

these graphs, GNNs produce feature embeddings enhanced 

with relational knowledge by capturing nonlinear 

dependencies and contextual information among features. 

• Feature Refinement with ReliefF Algorithm:  By 

evaluating features’ capacity to differentiate across various 

patient outcome classes, the ReliefF method calculates 

feature importance ratings within each candidate subset. 

Robustness and interpretability are guaranteed by retaining 

features with consistently high ReliefF scores across 

candidate subsets. The final selected feature subset is 

derived by combining the global search capacity of ACO, 

the relational insights captured by GNNs, and the 

discriminative power identified by ReliefF. 

 

Fig.1. Overview of the ACO-GNN-ReliefF framework pipeline 

In order to select the most informative and clinically relevant 

features, the method starts with the creation of a candidate feature 

subset using ACO, moves on to relational modeling using GNNs 

to capture intricate feature dependencies, and ends with feature 

refinement using the ReliefF algorithm. 

3.1 FEATURE SUBSET GENERATION USING ACO 

The pheromone-guided foraging behavior of ants served as the 

inspiration for the swarm intelligence algorithm known as ACO.  

Each artificial ant is a candidate feature subset in the feature 

selection context, and the pheromone trails direct the investigation 

toward promising subsets according to prediction performance. 

3.1.1 Representation of Candidate Solutions:  

Each candidate solution (ant) corresponds to a binary vector, 

S=[s1,s2,…,sD], 

where, D is the total features in the dataset. si∈{0,1} indicates 

whether feature i is included (1) or excluded (0) from the subset. 

This binary representation allows ACO to efficiently explore 

the combinatorial feature space. 

Medical Dataset Input  

 (e.g., MIMIC-III features) 

Candidate Feature Subset Generation 

via ACO (Ants explore feature 

combinations) 

Relational Modeling with GNN                

(Graphs of feature relationships → 

embeddings) 

Feature Refinement with ReliefF                

(Importance ranking & subset 

refinement) 

Final Selected Feature Subset 

(Clinically meaningful & predictive) 
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3.1.2 Pheromone Initialization:  

Initially, the pheromone level τifor each feature i is set to a 

constant value, 

 
0(0) , {1,2, , }i i D  =    

where, τ0  is a small positive constant (e.g., 0.1) representing 

initial uncertainty   i.e., no prior bias toward any feature. 

3.1.3 Probabilistic Construction of Feature Subsets: 

Each ant constructs a feature subset by probabilistically 

deciding whether to include feature i using the probability, 
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where, τi is the current pheromone level for feature i, ηi is the 

heuristic desirability of feature i, which can be initialized using a 

simple filter metric like correlation with the target or set 

uniformly if no prior knowledge exists. The relative importance 

of heuristic information and pheromone trails is controlled by β 

and α, respectively. To provide a candidate solution S, each ant 

samples the inclusion of features based on pi. 

3.1.4 Pheromone Updating:  

After all ants have generated feature subsets and their quality 

has been evaluated (e.g., using validation accuracy of a 

lightweight classifier), pheromone levels are updated to reinforce 

promising features. The pheromone update rule is, 

 ( 1) (1 ) ( ) Δi i it t   + = − +  

where, ρ∈(0,1] is the evaporation rate, which prevents unlimited 

accumulation of pheromones and encourages exploration. Δτi is 

the pheromone deposit from the best-performing ants, computed 

as: 
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where, Nelite being the number of top ants contributing pheromone 

updates, Q a constant scaling factor, f(Sk) the fitness score (e.g., 

classification accuracy) of the kth best ant, δi(Sk) an indicator 

function (1 if feature i is selected in solution Sk, else 0). 

3.1.5 Stopping Criterion:  

The ACO search continues until a convergence condition is 

met, such as: 

• A maximum number of iterations Tmax is reached, or 

• No significant improvement in the best solution is observed 

for a predefined number of iterations. 

In Exploration vs. Exploitation, the pheromone evaporation 

(ρ) promotes exploration of new feature subsets, while pheromone 

reinforcement (Δτi) exploits high-performing solutions.  In Global 

Search, the ACO efficiently searches the combinatorial space of 

2D possible feature subsets, avoiding the myopic behavior of 

greedy selection methods. 

3.2 FEATURE RELATIONSHIP MODELING WITH 

GNN 

After candidate feature subsets are generated by ACO, Graph 

Neural Networks (GNNs) are used to model complex, nonlinear 

relationships among selected features. By representing features as 

nodes in a graph with edges capturing their interdependencies, 

GNNs can exploit the structure of the data to improve feature 

evaluation. 

Graph Construction from MIMIC-III Variables, for each 

candidate feature subset S, we construct an undirected graph 

G=(V,E), where: 

• V={v1,v2,…,vn} corresponds to the selected features (n 

features in the candidate subset). 

• E represents edges between pairs of features capturing their 

relationships. 

3.2.1 Edge Construction: 

Edges between feature nodes vi  and vj  are defined based on: 

• Correlation thresholding: If the absolute Pearson 

correlation ∣corr(fi,fj)∣ exceeds a threshold θ, an edge is 

created: 

 if corr( , )ij i je E f f  ∣ ∣  

where, θ is typically set between 0.2–0.4 in clinical datasets to 

capture moderate-to-strong correlations. 

• Co-occurrence or domain knowledge: Optionally, edges 

can encode known medical relationships, e.g., medications 

frequently prescribed with certain lab tests, or clinical 

guidelines linking variables. 

3.2.2 Adjacency Matrix: 

The graph structure can be represented by an adjacency matrix 

A∈Rn×n, where: 

 
1, if 

0, otherwise

ij

ij

e E
A


= 


 

3.2.3 Node Features:  

Each node vi  is initialized with a feature vector xi  derived 

from statistical properties of feature i, such as: 

• Mean, variance across patients, 

• Feature importance scores (e.g., ReliefF), 

• Missingness rates (important in medical data). 

3.3 GNN ARCHITECTURE AND TRAINING  

Once the graph is constructed, a GNN processes it using a 

series of message-passing layers to learn enriched feature 

representations: 

3.3.1 Graph Convolutional Network (GCN) Layer: 

A widely used GNN layer is the spectral Graph Convolutional 

Network [1], where the layer-wise propagation rule for updating 

node features is: 

 ( )( 1) 1/2 1/2 ( ) ( )l l lH D AD H W+ − −=   

where, W(l) is the learnable weight matrix at layer l, σ(⋅) is a 

nonlinear activation function (like ReLU), H(l) is the node feature 

matrix at layer l with H(0)=X (starting node features), and A~=A+I 

is the adjacency matrix with added self-loops. 

3.3.2 Stacked GCN Layers:  

Multiple GCN layers are stacked (e.g., 2–3 layers) to allow 

information to propagate beyond immediate neighbors and 

capture higher-order dependencies. 
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3.3.3 Readout / Aggregation:  

To generate a unified representation for the entire candidate 

feature subset graph, node embeddings from the final GCN layer 

are aggregated: 

  ( )( )

graph READOUT 1,2, ,L

ih h i n= = ∣  

where, READOUT(⋅) can be a simple mean, sum, or more 

complex pooling like attention-based readout. 

3.3.4 Output Layer:  

The aggregated graph embedding hgraph is passed through a 

lightweight feedforward network: 

 
graph )ˆ MLP(y h=  

where, ŷ predicts the outcome (e.g., mortality, discharge status) 

associated with the candidate feature subset, enabling the 

evaluation of the subset’s predictive power. 

3.3.5 Loss Function:  

The model is trained using a supervised loss (e.g., binary 

cross-entropy for classification), defined as: 

  
1

1
log (1 ) log(1 )ˆ ˆ

M

i i i i

i

L y y y y
M =

= − + − −  

where, M is the number of samples, and yi are true labels. 

3.3.6 Optimization: 

The GNN is trained using backpropagation with stochastic 

gradient descent or Adam optimizer. 

By representing selected features as graphs, GNNs enable 

modeling of nonlinear dependencies among clinical variables, 

something traditional filter methods cannot achieve. The learned 

graph embeddings hgraph serve as powerful representations for 

evaluating candidate feature subsets. 

3.4 FEATURE RANKING WITH RELIEFF 

After candidate feature subsets have been evaluated using the 

GNN, the ReliefF algorithm is applied as the final step to robustly 

rank features within each subset. ReliefF ensures that features 

selected by ACO and validated by GNN modeling are further 

refined for discriminative power, yielding interpretable and 

clinically meaningful final feature sets. 

3.4.1 Integration with Candidate Subsets:  

For each candidate feature subset S generated by ACO and 

assessed via GNNs, ReliefF computes the importance of each 

feature fi∈S based on its ability to distinguish between instances 

of different classes in the target outcome (e.g., patient survival vs. 

mortality). ReliefF evaluates feature importance by iterating over 

a random sample of m instances from the dataset: 

• For each sampled instance xj, ReliefF identifies: 

• k nearest neighbors in the same class (Hits). 

• k nearest neighbors in different classes (Misses). 

The importance score W(fi) for feature fi is updated iteratively 

as: 
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where, P(c) is the prior probability of class c,yj is the true class 

label of instance xj, diff(fi,xj,x′) measures the difference between 

feature fi in instances xj and x′, defined as: 

• For continuous features: 
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max( ) min( )

i j i

i j

i i

f x f x
f x x

f f

− 
 =

−

∣ ∣
 

• For categorical features: 
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This formulation ensures ReliefF can handle continuous, 

categorical, or mixed-type features   typical in medical datasets 

like MIMIC-III. 

3.5 FINAL FEATURE SELECTION STRATEGY 

Features in the candidate subset are ranked according to their 

significance scores in descending order after ReliefF scores W(fi) 

have been calculated for each feature. 

The final set of selected features Sfinal is obtained by: 

• Thresholding-based selection: Retain features with scores 

above a predefined threshold τW, i.e., 

 
final { ( ) }i i WS f S W f =  ∣  

where, τW can be determined using: 

A fixed percentile cutoff (e.g., top 10% of features),An 

absolute score threshold derived from performance on a 

validation set. 

• Stability analysis: Compute ReliefF scores across multiple 

bootstrap samples or folds to assess the stability of selected 

features; only features consistently ranked highly are 

included in the final subset. 

• Clinical interpretability filter: Apply domain expert 

review to exclude features irrelevant or redundant from a 

clinical perspective, ensuring the final set aligns with 

practical healthcare needs. 

ReliefF complements ACO and GNN by emphasizing the 

discriminative ability of features at a local level (near-neighbor 

differences), unlike ACO’s global search or GNN’s relational 

modeling. This step refines the feature subset to ensure that the 

selected features not only model complex relationships but also 

reliably separate different patient outcomes, improving both 

predictive performance and interpretability. 

The Fig.2 illustrates the proposed ACO-GNN-ReliefF 

framework was applied to the MIMIC-III dataset to identify 

clinically meaningful and predictive features for intensive care 

outcomes. In order to manage missing values, normalize 

continuous features, and encode categorical variables, pertinent 

variables were first retrieved and preprocessed. These variables 

included demographics, diagnostic codes, laboratory 

measurements, drugs, and vital signs. Using Ant Colony 



ISSN: 2229-6956 (ONLINE)                                                                                                                     ICTACT JOURNAL ON SOFT COMPUTING, JANUARY 2026, VOLUME: 16, ISSUE: 04 

4121 

Optimization (ACO), candidate feature subsets were generated by 

simulating the pheromone-guided search behavior of ants, where 

each ant represented a possible combination of features selected 

from the full set of MIMIC-III variables. The quality of each 

candidate subset was evaluated based on predictive performance 

using a lightweight classifier. For each candidate subset, a graph 

was constructed in which nodes represented selected features and 

edges captured relationships derived from pairwise correlations 

and known clinical co-occurrence patterns. Graph Neural 

Networks (GNNs) were then trained on these graphs to model 

complex, nonlinear dependencies among features, producing 

graph embeddings that summarized relational information within 

each subset.  

These embeddings were used to predict patient outcomes, 

enabling robust assessment of each candidate feature 

combination. Finally, the ReliefF algorithm was applied to the 

selected subsets to compute feature importance scores by 

evaluating how well individual features distinguished between 

different patient outcome classes through nearest-neighbor 

analysis. Features with consistently high ReliefF scores across 

candidate subsets were retained as the final set of selected 

features. This process allowed the framework to integrate global 

search (ACO), relational modeling (GNN), and discriminative 

ranking (ReliefF), yielding a compact, interpretable feature set 

that improved predictive performance on the MIMIC-III dataset 

and highlighted clinically relevant variables influencing patient 

outcomes in intensive care settings. 

 

Fig.2. Workflow of ACO-GNN-ReliefF framework 

4. RESULT AND DISCUSSIONS 

4.1 MIMIC-III DATASET 

The MIMIC-III is a large, publicly accessible critical care 

database that contains de-identified health-related De-identified 

health-related data on almost 40,000 patients admitted to 

Massachusetts intensive care units (ICUs) between 2001 and 2012 

can be found in the MIMIC-III, a sizable, publicly available 

critical care database. MIMIC-III’s comprehensive collection of 

clinical data gathered throughout stays in intensive care units 

enables rich evaluations of patient outcomes and forecasting in 

critical care. Patients in MIMIC-III comprise a broad group of 

people across all adult demographics, with ages ranging from 16 

to over 90. The sample include both male and female patients, 

with a fairly even gender distribution. Demographic information 

includes things like insurance type, gender, race, and age at 

admission (de-identified to preserve privacy). Types of Features 

Offered: 

• Diagnostic Codes: ICD-9 diagnosis codes assigned during 

hospital and ICU admissions. Enable identification of 

comorbidities, primary reasons for admission, and severity 

of illness. 

• Laboratory Measurements: Rich time-series data for lab 

tests such as lactate, creatinine, BUN, WBC,  emoglobin, 

electrolytes (e.g., sodium, potassium), and many more. 

Measurements are typically timestamped, allowing temporal 

analysis of trends. 

• Medications: Details of medications administered during 

ICU stays, including vasopressors, sedatives, antibiotics, 

anticoagulants, and other critical care drugs. Data includes 

dosages, administration times, and routes (e.g., IV, oral). 

• Vital Signs: temperature, oxygen saturation (SpO₂), heart 

rate, respiratory rate, blood pressure, GCS scores, and high-

resolution time-series recordings of physiological data. A 

thorough evaluation of the patient’s stability is made 

possible by the frequent recording of vital signs at minute-

to-hour intervals. 

Additional information in MIMIC-III includes fluid inputs and 

outputs, mechanical ventilation status, procedural codes, 

microbiology results, and charted nursing notes, providing a 

comprehensive view of each patient’s ICU stay. 

4.2 PREPROCESSING STEPS 

Preprocessing is a critical step in preparing the MIMIC-III 

dataset for feature selection and predictive modeling, especially 

given its high dimensionality and frequent missing values 

common in clinical data. 

4.2.1 Missing Data Handling 

Missing data is pervasive in ICU datasets due to irregular 

measurements, varying clinical practices, and equipment failures. 

Handling missingness appropriately prevents biases and ensures 

model robustness. 

• Identifying Missingness: For each feature fi across all 

patient records N, the missingness rate is computed as: 

 
Number of missing entries in 

MissingRate( ) i

i

f
f

N
=  

Medical Dataset Input 

 (e.g., MIMIC-III features) 

Graph Construction for each candidate subset 

(nodes=features, edges=relations) 

Relational Modeling with GNN 

(Graphs of feature relationships → 

embeddings) 

Feature Ranking with ReliefF 

(Compute important scores) 

Final Feature Subset 

(Clinically meaningful & predictive) 

Preprocessing (Missing value handling, 

Normalization, Encoding) 

Feature Subset Generation with ACO (Ants 

create candidate subsets) 

Predict Outcome using graph embedding 

Evaluation & Comparison 

(Accuracy, F1, AUC etc.,) 



K PREETHI AND M RAMAKRISHNAN: HYBRID ANT COLONY OPTIMIZATION WITH GRAPH NEURAL NETWORKS AND RELIEFF FOR ROBUST FEATURE SELECTION IN  

                                                                       MEDICAL DATA ANALYSIS 

4122 

Which helps determine whether to impute or discard a feature. 

• Threshold-based Feature Removal: Features with a 

missing rate above a threshold τmissing (commonly 30-50%) 

are dropped entirely: 

 
missingis removed if MissingRate( )i if f   

• Imputation: For features retained after thresholding, 

missing entries are imputed: 

• Continuous features: missing values fi(xj) are filled with 

the feature’s mean or median: 

 ( ) mode( ) if  ( ) is missingi j i i jf x f f x=  

where, fi is the mean across non-missing entries. 

• Categorical features: missing entries are replaced with the 

mode (most frequent category): 

For simplicity and computational economy, advanced 

imputation techniques like model-based imputation (like 

MissForest) and k-nearest neighbors (KNN) imputation were not 

utilized here, while they can be used for greater accuracy. 

4.2.2 Normalization or Encoding 

Medical features often span vastly different scales (e.g., 

glucose in mg/dL vs. heart rate in beats/min), which can skew 

learning algorithms. Therefore, normalization ensures features 

contribute comparably during model training. 

• Normalization of Continuous Features: Each continuous 

feature fi is standardized using z-score normalization: 

 norm
( )

( )
i j i

i j

i

f x
f x





−
=  

where, μi is the mean of fi, σi is the standard deviation of fi, fi
norm(xj) 

is the normalized value for patient xj.This transformation 

produces features with zero mean and unit variance, which 

improves convergence of gradient-based learning algorithms. 

• Encoding of Categorical Features: Categorical variables 

(e.g., gender, admission type) are converted to numerical 

representations: 

• One-Hot Encoding: For a categorical feature with k 

unique classes, one-hot encoding creates k binary 

features indicating the presence of each class. For 

instance, a “Gender” feature with categories {Male, 

Female} becomes two binary features: 

Gender_Male,  Gender_Female, 

where each patient has a 1 in the corresponding column and 0 

in the other. 

• Label Encoding (if necessary): For ordinal categories 

(e.g., GCS scores), integers preserving the order are 

assigned: 

Category∈{Low=0,Medium=1,High=2}. 

Missing data handling reduces bias by either imputing or 

discarding unreliable features. Normalization makes continuous 

features comparable in scale. Encoding transforms categorical 

features into numerical form, enabling their inclusion in 

algorithms like ACO, GNN, and ReliefF. 

4.3 EXPERIMENTAL SETUP  

Experiments were carried out using the publicly accessible 

MIMIC-III dataset, which comprises more than 112,000 

comprehensive ICU records including vital signs, laboratory 

measurements, medications, diagnostic and procedure codes 

(ICD-9), and clinical observations, in order to assess the 

effectiveness of the suggested ACO-GNN-ReliefF framework on 

high-dimensional clinical data. 

Each record in the dataset typically contains an average of 7.6 

ICD-9 codes per patient encounter, offering a rich feature space 

for predictive modeling. Data preprocessing included handling 

missing values through threshold-based feature removal and 

mean/mode imputation, normalizing numerical features using z-

score scaling, and encoding categorical variables via one-hot 

encoding. Every experiment was conducted using Python 3.8 and 

ran on a Windows 10 computer with an Intel i7 processor, 16 GB 

of RAM, and a 1 TB hard drive. A local computer without GPU 

acceleration was used for the experiments. 

Three feature selection techniques were compared in this 

study. The proposed method, ACO-GNN-ReliefF, integrates Ant 

Colony Optimization for candidate feature subset generation, 

Graph Neural Networks for modeling complex relational 

dependencies among features, and ReliefF for final discriminative 

feature ranking. As baselines, two widely used methods were 

included: KNN-ReliefF, which applies ReliefF feature 

importance scores followed by classification using k-Nearest 

Neighbors, and XGB-SHAP, which leverages XGBoost’s SHAP 

feature importance scores as an interpretable benchmark for 

feature selection. 

The hyperparameters for the proposed ACO-GNN-ReliefF 

framework were carefully tuned to balance exploration and 

performance. For the ACO component, 30 ants were used with a 

maximum of 50 iterations, a pheromone evaporation rate (ρ) of 

0.2, a pheromone influence coefficient (α) of 1.0, a heuristic 

information influence coefficient (β) of 2.0, and an initial 

pheromone level (τ0) of 0.1. The GNN component was configured 

with two graph convolutional layers, each with a hidden 

dimension of 64, using ReLU as the activation function. The GNN 

was trained with a learning rate of 0.001, optimized using Adam, 

and run for 30 epochs per candidate feature subset graph. For the 

ReliefF component, the number of nearest neighbors (k) was set 

to 10, the number of sampled instances (m) to 1000, and the 

feature importance threshold (τW) to 0.05.For the baseline 

methods, hyperparameters were set as follows: in KNN-ReliefF, 

the k-Nearest Neighbors classifier used k=5 and ReliefF was 

applied with k=10 nearest neighbors and 1000 sampled instances. 

For XGB-SHAP, XGBoost was configured with 100 trees, a 

maximum tree depth of 6, and a learning rate of 0.05, with SHAP 

values calculated on the trained model to determine feature 

importance rankings. All feature selection methods were 

evaluated by training a lightweight classifier either logistic 

regression or a shallow recurrent neural network on the features 

selected by each technique. Performance was assessed on a held-

out test set using the following evaluation metrics: accuracy, 

precision, recall, F1-score, and AUC-ROC, along with execution 

time (total runtime of feature selection and model training) and 

subset size (number of features selected), to comprehensively 

measure both the predictive performance and efficiency of each 

feature selection approach. 
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Finding the 15 most pertinent characteristics from the 

analytical dataset was the main goal of each feature selection 

technique. The best neighborhood size was then determined by 

evaluating K={4,8,12,16,20,24} across the techniques in order to 

improve pattern recognition performance. The experimental 

results demonstrate that all classifiers achieved strong 

performance, with seven features consistently appearing among 

the top-ranked selections across runs using the proposed ACO-

GNN-ReliefF framework. These repeatedly identified features 

highlight their stability and potential clinical significance. 

The consistently selected features in the ACO-GNN-ReliefF 

pipeline suggest the method’s ability to capture clinically 

meaningful predictors of patient outcomes in intensive care. 

4.4 PERFORMANCE EVALUATION 

The top K=15 features found by KNN-ReliefF, XGB-SHAP, 

and the suggested ACO-GNN-ReliefF pipeline were used to train 

a logistic regression classifier in order to assess the predictive 

potential of feature subsets chosen by each technique. Using 

common classification criteria, performance was evaluated on a 

stratified 20% hold-out test set from the MIMIC-III dataset. These 

measurements offer a thorough understanding of class 

discrimination as well as overall prediction capacity.  

The suggested ACO-GNN-ReliefF continuously outperformed 

the baseline selection of features techniques in all measures, 

according to the experimental findings, which are compiled in 

Fig.1. Notably, it demonstrated robust generalization with 

balanced precision-recall performance and higher AUC-ROC 

scores, showing greater discriminative potential. 

The superior performance of the proposed ACO-GNN-

ReliefF framework can be attributed to several key factors.  

• First, the global search capability of Ant Colony 

Optimization (ACO) allows the method to explore a broader 

combinatorial space of feature subsets, effectively avoiding 

the local optima that often limit purely filter-based 

approaches.  

• Second, the relational modeling provided by Graph Neural 

Networks (GNNs) captures complex, nonlinear interactions 

among features   including dependencies between laboratory 

measurements, diagnostic codes, and vital signs   which 

traditional methods such as ReliefF or SHAP-based feature 

importance cannot adequately represent.  

• Third, ReliefF’s local neighborhood ranking refines the 

selected features by evaluating their discriminative power 

within the feature space, ensuring that the final subset 

includes features most relevant to distinguishing ICU 

outcomes.  

By integrating swarm intelligence through ACO, deep 

relational learning with GNN, and discriminative ranking using 

ReliefF, the proposed ACO-GNN-ReliefF method produces a 

feature subset that not only maximizes predictive performance but 

also maintains clinical interpretability, setting it apart from 

conventional feature selection techniques. 

 

Fig.3. Performance metrics on the MIMIC-III test set using the 

top K=15 features selected by each method 

The Fig.3 shown, the proposed ACO-GNN-ReliefF achieved 

the highest performance across all metrics compared to KNN-

ReliefF and XGB-SHAP, with precision (0.82), recall (0.85), F1-

score (0.83), accuracy (0.86), and AUC-ROC (0.91), 

demonstrating its superior ability to identify relevant features and 

predict ICU outcomes more accurately and reliably.The proposed 

ACO-GNN-ReliefF improved AUC-ROC by 10–13% over KNN-

ReliefF and XGB-SHAP, indicating superior ability to distinguish 

between positive and negative ICU outcomes. Precision and recall 

gains suggest that ACO-GNN-ReliefF not only identified the 

correct positive cases more often but did so with fewer false 

alarms. The consistent improvement across metrics demonstrates 

the effectiveness of integrating global feature search (ACO), 

relational modeling (GNN), and local ranking (ReliefF). 

4.4.1 Execution Time:  

Execution time is an important metric in evaluating the 

efficiency of feature selection algorithms, especially when 

working with large-scale medical datasets like MIMIC-III, which 

contains high-dimensional, heterogeneous patient records. 

Execution time measures the total wall-clock duration required by 

each feature selection method to preprocess data, perform feature 

selection, train the predictive model on the selected features, and 

evaluate performance metrics on the test set. It reflects both 

computational complexity and practical feasibility in clinical or 

real-time settings. The execution time Texec for each method can 

be formally defined as: 

 Texec=Tprep+Tfs+Ttrain+Teval, 

where, Tprep is the time for data preprocessing, Tfs is the time spent 

on feature selection, Ttrain is the time to train the classifier on the 

selected features, Teval is the time to compute evaluation metrics 

on the test set. The Fig.4 shown the proposed ACO-GNN-ReliefF 

required more time (28.4 minutes) than KNN-ReliefF (7.8 

minutes) and XGB-SHAP (10.5 minutes), reflecting its more 

complex but more thorough feature selection process. 
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Fig.4. Total execution time for KNN-ReliefF, XGB-SHAP, and 

the proposed ACO-GNN-ReliefF 

While the proposed ACO-GNN-ReliefF requires more 

computational time than the baseline methods (approximately 

three times longer than KNN-ReliefF), its superior predictive 

performance, demonstrated by higher precision, recall, F1-score, 

accuracy, and AUC-ROC, justifies this additional computational 

cost. The extended execution time is mainly attributed to the 

iterative global search by ACO and the graph-based modeling of 

feature relationships using GNNs, both of which enable ACO-

GNN-ReliefF to identify more informative, robust, and clinically 

meaningful features. Unlike KNN-ReliefF and XGB-SHAP, 

which rely on local or univariate feature relevance scores, the 

proposed method captures complex interdependence between 

features, providing a more holistic feature selection process that 

improves generalization on ICU outcome prediction tasks. 

5. CONCLUSION   

In this paper, we developed a new hybrid feature selection 

framework, ACO-GNN-ReliefF, which integrates Ant Colony 

Optimization for global exploration of feature subsets, Graph 

Neural Networks for modeling complex, nonlinear relationships 

among clinical variables, and ReliefF for fine-grained 

discriminative ranking of features. Applied to the high-

dimensional MIMIC-III intensive care dataset, the proposed 

method demonstrated substantial improvements in predictive 

performance over traditional approaches such as KNN-ReliefF 

and XGB-SHAP, achieving higher recall, precision ,F1-score, 

accuracy, and AUC-ROC. The results highlight the potential of 

combining swarm intelligence with deep relational learning for 

robust and interpretable feature selection in critical care analytics. 

Despite its superior performance, ACO-GNN-ReliefF incurs 

greater computational cost, which is a trade-off for its more 

comprehensive feature evaluation process. 

In subsequent work, we intend to use early halting techniques 

and parallel processing to maximize the ACO-GNN-ReliefF 

framework’s computational efficiency. Additionally, by 

including sequential models like LSTM-based GNNs, we want to 

expand this methodology to handle temporal changes in time-

series ICU data. The suggested method’s generalizability and 

clinical relevance will be established with additional validation on 

external datasets from various institutions and patient 

demographics. The interpretability and applicability of the chosen 

features for actual healthcare decision support systems may also 

be improved by including domain knowledge, such as ontologies 

or clinical guidelines, into the graph generation process. 
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