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Abstract

In the field of medical data analysis, the major challenges are high
dimensionality and complexity due to temporal behavior of medical
datasets. Feature selection is crucial to overcoming these challenges
since it enhances interpretability, reduces processing expenses, and
boosts model performance. To analyze the medical records, it is very
essential to determine the most potential features that contribute more
in classification or diagnosis of disease especially in the medical in the
Medical Information Mart for Intensive Care I1I (MIMIC-III) dataset.
This paper, highlights the importance of robust feature selection by
developing a novel Hybrid feature selection framework that combines
ReliefF and Ant Colony Optimization with Graph Neural Networks
(ACO-GNN). The first step in the suggested approach is Ant Colony
Optimization (ACO), which creates candidate feature subsets by
effectively exploring the combinatorial feature space by mimicking
pheromone-guided search behavior. Then, using graph-based
representations of clinical variables, such as correlations between lab
tests, drugs, and vital signs, Graph Neural Networks (GNNs) are used
to model intricate, non-linear interactions among medical aspects. In
order to ensure robustness and interpretability, ReliefF is used to rank
and improve features by assessing their capacity to distinguish between
patient outcome classes. The hybrid approach significantly
outperforms conventional feature selection techniques like K-Nearest
Neighbors with ReliefFF (KNN-ReliefF) and XGBoost with SHAP
Feature Importance (XGB-SHAP) in through tests on the MIMIC-111
dataset, predictive performance indicators such as precision, accuracy,
Fl-score, recall, and AUC-ROC. The selected feature subsets offer
clinically meaningful insights into critical factors influencing patient
outcomes in intensive care, underscoring the potential of the ACO-
GNN-ReliefF method for advancing predictive analytics and clinical
decision support systems in healthcare.
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1. INTRODUCTION

The increasing growth of healthcare data brought about by the
widespread use of electronic health records, bedside monitoring
systems, and large-scale clinical databases like the MIMIC-III has
made predictive modeling in medicine easier than ever. [1].

However, creating precise, effective, and interpretable models
is extremely difficult due to the tremendous dimensionality and
complexity present in medical datasets. Irrelevant and redundant
characteristics can impair clinical interpretability, raise
computational costs, and reduce model performance all of which
are critical for acceptance and confidence in actual healthcare
settings [2][3]. Feature selection has emerged as a critical step in
the analysis of medical data since it aids in identifying the most
valuable variables, improves model generalization, reduces
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overfitting, and provides insights into
associated with patient outcomes. [4][5].

significant factors

Despite their widespread usage, classic statistical and filter-
based techniques like ReliefF or mutual information frequently
fail to capture intricate, nonlinear dependencies among clinical
variables, such as correlations between vital signs, medications,
and laboratory tests. Wrapper and embedding approaches, such as
tree-based algorithms like XGBoost, on the other hand, provide
superior modeling capabilities but can be computationally
demanding and prone to overfitting in high-dimensional fields [6].

To tackle these problems, this research proposes a new hybrid
feature selection framework that blends ACO-GNN with ReliefF.
Because it emulates ants’ foraging behavior, ACO is a nature-
inspired metaheuristic algorithm that may be used to create
candidate feature subsets. As a result, it excels at exploring vast
combinatorial spaces. By means of considering features as nodes
in a graph, Graph Neural Networks (GNNs) can naturally describe
complex relationships among them, making it possible to extract
nonlinear dependencies that are frequently found in medical data.
In order to ensure that the chosen features are still interpretable
and clinically significant, ReliefF is then used to robustly rank and
refine feature subsets according to their capacity to distinguish
between patient outcome classes [7] [8] [9] [10].

This paper’s primary contributions are the ACO-GNN-
ReliefF system, which effectively selects features in complicated
medical datasets by combining swarm intelligence, graph-based
deep learning, and statistical feature ranking. By comparing
predictive performance to more conventional feature selection
techniques, such as K-Nearest Neighbors with ReliefF (KNN-
ReliefF) and XGBoost with SHAP Feature Importance (XGB-
SHAP), we show the superiority of the suggested strategy on the
MIMIC-III dataset. We offer an examination of the chosen
feature subsets, emphasizing factors that are clinically significant
and linked to patient outcomes in critical care environments.

The remainder of the document is structured as follows: The
relevant work on feature selection techniques for medical data is
reviewed in Section 2. The suggested methodology is described
in depth in Section 3. The dataset, experimental setup, findings,
and performance comparison are all covered in Section 4. The
work is finally concluded and future research topics are outlined
in Section 5.

2. RELATED WORK

A crucial preprocessing step in the study of medical data is
feature selection, which lowers dimensionality, increases
predictive performance, and improves model interpretability.
Many methods have been proposed, which can be broadly
classified into three groups: embedding, filtering, and wrapping.
Filter approaches as ReliefF [11], mutual information [12], and
correlation-based feature selection [13] are commonly used due
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to their computational efficiency and ease of use. These methods,
however, frequently miss complicated, nonlinear interactions
between variables, which are prevalent in clinical data, and
evaluate features independently. By iteratively training prediction
models to evaluate subsets of features, wrapper approaches allow
feature interactions to be taken into account.

Examples are Sequential Forward Selection (SFS) and
Sequence Floating Selection (SFFS) [14]. Wrappers are
computationally expensive, especially when working with data
sets with high dimensions like those utilized in healthcare
applications, even though they usually yield better results. As seen
by decision tree-based algorithms such as random forest models
[16] and XGBoost [17] and regularization techniques like LASSO
[15], embedded approaches integrate feature selection into the
model training process. Although these techniques provide
interpretability and competitive performance, they may be
susceptible to hyperparameter manipulation and data imbalance.

Metaheuristic algorithms discussed in 18, 19, 20] have been
explored for feature selection due to their effectiveness in
searching large combinatorial spaces. Notably, ACO has shown
promise in generating high-quality feature subsets in domains
including genomics [21] and medical imaging [22]. Recently,
graph-based methods have gained attention for their ability to
model dependencies among features. GNNs have been
successfully applied to medical problems like disease
classification from electronic health records [23] and drug—drug
interaction prediction [24]. However, their use for feature
selection, particularly in combination with metaheuristics,
remains underexplored. Interpretability in feature selection is
crucial in healthcare. SHAP (SHapley Additive exPlanations)
values [25] provide consistent and model-agnostic feature
importance estimates and have been integrated with tree-based
models such as XGBoost to improve interpretability in clinical
settings [26]. Our proposed ACO-GNN-ReliefF framework
builds on these lines of work by integrating the global search
capability of ACO, the relational modeling strength of GNNs, and
the robustness of ReliefF for feature ranking. To the best of our
knowledge, this is the first approach combining swarm
intelligence, graph neural networks, and ReliefF for feature
selection in complex medical datasets like MIMIC-III.

3. PROPOSED METHODOLOGY: ACO-GNN-
RELIEFF FRAMEWORK

The proposed ACO-GNN-ReliefF framework is designed to
identify the most informative and clinically relevant features from
high-dimensional medical datasets by combining global
exploration, relational modeling, and robust feature ranking. The
Fig. 1 illustrates the complete pipeline, which consists of three
key stages:

» Candidate Feature Subset Generation using Ant Colony
Optimization (ACQO): ACO explores the combinatorial
space of potential feature subsets by simulating the
pheromone-guided foraging activity of ants. Pheromone
trails are updated according to the predicted performance of
candidate subsets, with each ant standing in for a possible
feature subset solution.

* Relational Modeling with Graph Neural Networks
(GNNs): A graph is created for each eligible feature subset,
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with nodes standing in for features (such as lab results or
prescription drugs) and edges encoding associations like
correlation or co-occurrence frequency. After processing
these graphs, GNNs produce feature embeddings enhanced
with relational knowledge by capturing nonlinear
dependencies and contextual information among features.

Feature Refinement with ReliefF Algorithm: By
evaluating features’ capacity to differentiate across various
patient outcome classes, the ReliefF method calculates
feature importance ratings within each candidate subset.
Robustness and interpretability are guaranteed by retaining
features with consistently high ReliefF scores across
candidate subsets. The final selected feature subset is
derived by combining the global search capacity of ACO,
the relational insights captured by GNNs, and the
discriminative power identified by ReliefF.

Medical Dataset Input
(e.g., MIMIC-III features)

v

Candidate Feature Subset Generation
via ACO (Ants explore feature
combinations)

v

Relational Modeling with GNN
(Graphs of feature relationships —
embeddings)

v

Feature Refinement with ReliefF
(Importance ranking & subset
refinement)

v

Final Selected Feature Subset
(Clinically meaningful & predictive)

Fig.1. Overview of the ACO-GNN-ReliefF framework pipeline

In order to select the most informative and clinically relevant
features, the method starts with the creation of a candidate feature
subset using ACO, moves on to relational modeling using GNNs
to capture intricate feature dependencies, and ends with feature
refinement using the ReliefF algorithm.

3.1 FEATURE SUBSET GENERATION USING ACO

The pheromone-guided foraging behavior of ants served as the
inspiration for the swarm intelligence algorithm known as ACO.
Each artificial ant is a candidate feature subset in the feature
selection context, and the pheromone trails direct the investigation
toward promising subsets according to prediction performance.

3.1.1 Representation of Candidate Solutions:
Each candidate solution (ant) corresponds to a binary vector,
S=[51,52,...,5p],
where, D is the total features in the dataset. s;,€{0,1} indicates
whether feature i is included (1) or excluded (0) from the subset.

This binary representation allows ACO to efficiently explore
the combinatorial feature space.
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3.1.2 Pheromone Initialization:

Initially, the pheromone level tifor each feature i is set to a
constant value,

7.(0)=17,, Vie{2,..,D}

where, 79 is a small positive constant (e.g., 0.1) representing
initial uncertainty 1i.e., no prior bias toward any feature.

3.1.3 Probabilistic Construction of Feature Subsets:

Each ant constructs a feature subset by probabilistically
deciding whether to include feature 7 using the probability,

t-n’

D 4 g
Z,-J/ T
where, 7; is the current pheromone level for feature i, #; is the
heuristic desirability of feature 7, which can be initialized using a
simple filter metric like correlation with the target or set
uniformly if no prior knowledge exists. The relative importance
of heuristic information and pheromone trails is controlled by S

and a, respectively. To provide a candidate solution S, each ant
samples the inclusion of features based on p;.

b=

3.1.4 Pheromone Updating:

After all ants have generated feature subsets and their quality
has been evaluated (e.g., using validation accuracy of a
lightweight classifier), pheromone levels are updated to reinforce
promising features. The pheromone update rule is,

r,(t+D=(-p)7,(0)+Ar,

where, p€(0,1] is the evaporation rate, which prevents unlimited
accumulation of pheromones and encourages exploration. Az; is
the pheromone deposit from the best-performing ants, computed
as:

Netite

At = 0-f(5")-6,(S")

where, Neie being the number of top ants contributing pheromone
updates, O a constant scaling factor, f{S¥) the fitness score (e.g.,
classification accuracy) of the k™" best ant, §(S¥) an indicator
function (1 if feature i is selected in solution S¥, else 0).

3.1.5 Stopping Criterion:

The ACO search continues until a convergence condition is
met, such as:

* A maximum number of iterations 7. is reached, or

* No significant improvement in the best solution is observed
for a predefined number of iterations.

In Exploration vs. Exploitation, the pheromone evaporation
(p) promotes exploration of new feature subsets, while pheromone
reinforcement (4t;) exploits high-performing solutions. In Global
Search, the ACO efficiently searches the combinatorial space of
2D possible feature subsets, avoiding the myopic behavior of
greedy selection methods.

3.2 FEATURE RELATIONSHIP MODELING WITH
GNN

After candidate feature subsets are generated by ACO, Graph
Neural Networks (GNNs) are used to model complex, nonlinear
relationships among selected features. By representing features as
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nodes in a graph with edges capturing their interdependencies,
GNNs can exploit the structure of the data to improve feature
evaluation.

Graph Construction from MIMIC-III Variables, for each
candidate feature subset S, we construct an undirected graph
G=(V,E), where:

o V={vi,v2,...,va} corresponds to the selected features (n
features in the candidate subset).

+ E represents edges between pairs of features capturing their
relationships.

3.2.1 Edge Construction:
Edges between feature nodes v; and v; are defined based on:

* Correlation thresholding: If the absolute Pearson
correlation |corr(f,f;)| exceeds a threshold 6, an edge is
created:

e, ek if |corr(f,f)=0
where, 6 is typically set between 0.2—0.4 in clinical datasets to
capture moderate-to-strong correlations.

» Co-occurrence or domain knowledge: Optionally, edges
can encode known medical relationships, e.g., medications
frequently prescribed with certain lab tests, or clinical
guidelines linking variables.

3.2.2 Adjacency Matrix:

The graph structure can be represented by an adjacency matrix
AER™", where:

1

0,

Node Features:

if e, € E
otherwise

3.2.3

Each node v; is initialized with a feature vector x; derived
from statistical properties of feature i, such as:

* Mean, variance across patients,

* Feature importance scores (e.g., ReliefF),

* Missingness rates (important in medical data).
3.3 GNN ARCHITECTURE AND TRAINING

Once the graph is constructed, a GNN processes it using a
series of message-passing layers to learn enriched feature
representations:

3.3.1 Graph Convolutional Network (GCN) Layer:

A widely used GNN layer is the spectral Graph Convolutional
Network [1], where the layer-wise propagation rule for updating
node features is:

HO — o-(ﬁ*”zjﬁ’”zH(”W”))

where, W is the learnable weight matrix at layer /, o(-) is a
nonlinear activation function (like ReLU), H? is the node feature
matrix at layer / with HO=X (starting node features), and A~=A-+1
is the adjacency matrix with added self-loops.

3.3.2 Stacked GCN Layers:

Multiple GCN layers are stacked (e.g., 2-3 layers) to allow
information to propagate beyond immediate neighbors and
capture higher-order dependencies.
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3.3.3 Readout/ Aggregation:

To generate a unified representation for the entire candidate
feature subset graph, node embeddings from the final GCN layer
are aggregated:

h =READ0UT({h;“|i=1,2,...,n})

graph
where, READOUT(-) can be a simple mean, sum, or more
complex pooling like attention-based readout.

3.3.4 Output Layer:

The aggregated graph embedding hgrpn is passed through a
lightweight feedforward network:

y=MLP(h,,.)

where, j predicts the outcome (e.g., mortality, discharge status)

associated with the candidate feature subset, enabling the
evaluation of the subset’s predictive power.

3.3.5 Loss Function:

The model is trained using a supervised loss (e.g., binary
cross-entropy for classification), defined as:

1 M R A
L=—72 [y log, +(1-y)log(1-5)]
i=l1

where, M is the number of samples, and y; are true labels.
3.3.6 Optimization:

The GNN is trained using backpropagation with stochastic
gradient descent or Adam optimizer.

By representing selected features as graphs, GNNs enable
modeling of nonlinear dependencies among clinical variables,
something traditional filter methods cannot achieve. The learned
graph embeddings /g, serve as powerful representations for
evaluating candidate feature subsets.

3.4 FEATURE RANKING WITH RELIEFF

After candidate feature subsets have been evaluated using the
GNN, the ReliefF algorithm is applied as the final step to robustly
rank features within each subset. ReliefF ensures that features
selected by ACO and validated by GNN modeling are further
refined for discriminative power, yielding interpretable and
clinically meaningful final feature sets.

3.4.1 Integration with Candidate Subsets:

For each candidate feature subset S generated by ACO and
assessed via GNNs, ReliefF computes the importance of each
feature fi€S based on its ability to distinguish between instances
of different classes in the target outcome (e.g., patient survival vs.
mortality). ReliefF evaluates feature importance by iterating over
a random sample of m instances from the dataset:

» For each sampled instance x;, ReliefF identifies:
* k nearest neighbors in the same class (Hits).
* k nearest neighbors in different classes (Misses).

The importance score W(f;) for feature f; is updated iteratively
as:
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o lzk:diff(f,.,x/.,HitH)
W =wH-—3 "
j=1 _Z

c#y;

P() 1

k
PO R > diff(f;,x,,Miss, )
J

H=1

where, P(c) is the prior probability of class c,y; is the true class
label of instance x;, diff(f;x;x") measures the difference between
feature f; in instances x; and x’, defined as:

e For continuous features:
1A £

diff(£;,x;,x") max(f,) —min(f)

i)

* For categorical features:

0, fi(x)=/f(x)

L fi(x) = fi(x)

This formulation ensures ReliefF can handle continuous,

categorical, or mixed-type features typical in medical datasets
like MIMIC-III.

diff(f,.,xj,x'):{

3.5 FINAL FEATURE SELECTION STRATEGY

Features in the candidate subset are ranked according to their
significance scores in descending order after ReliefF scores W(f;)
have been calculated for each feature.

The final set of selected features Spnas is obtained by:

* Thresholding-based selection: Retain features with scores
above a predefined threshold 7y, i.e.,

Sﬁnal = {fz‘ ES| W(f;) 2TW}

where, 7 can be determined using:

A fixed percentile cutoff (e.g., top 10% of features),An
absolute score threshold derived from performance on a
validation set.

« Stability analysis: Compute ReliefF scores across multiple
bootstrap samples or folds to assess the stability of selected
features; only features consistently ranked highly are
included in the final subset.

* Clinical interpretability filter: Apply domain expert
review to exclude features irrelevant or redundant from a
clinical perspective, ensuring the final set aligns with
practical healthcare needs.

ReliefF complements ACO and GNN by emphasizing the
discriminative ability of features at a local level (near-neighbor
differences), unlike ACO’s global search or GNN’s relational
modeling. This step refines the feature subset to ensure that the
selected features not only model complex relationships but also
reliably separate different patient outcomes, improving both
predictive performance and interpretability.

The Fig.2 illustrates the proposed ACO-GNN-ReliefF
framework was applied to the MIMIC-III dataset to identify
clinically meaningful and predictive features for intensive care
outcomes. In order to manage missing values, normalize
continuous features, and encode categorical variables, pertinent
variables were first retrieved and preprocessed. These variables
included  demographics, diagnostic = codes, laboratory
measurements, drugs, and vital signs. Using Ant Colony
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Optimization (ACO), candidate feature subsets were generated by
simulating the pheromone-guided search behavior of ants, where
each ant represented a possible combination of features selected
from the full set of MIMIC-III variables. The quality of each
candidate subset was evaluated based on predictive performance
using a lightweight classifier. For each candidate subset, a graph
was constructed in which nodes represented selected features and
edges captured relationships derived from pairwise correlations
and known clinical co-occurrence patterns. Graph Neural
Networks (GNNs) were then trained on these graphs to model
complex, nonlinear dependencies among features, producing
graph embeddings that summarized relational information within
each subset.

These embeddings were used to predict patient outcomes,
enabling robust assessment of each candidate feature
combination. Finally, the ReliefF algorithm was applied to the
selected subsets to compute feature importance scores by
evaluating how well individual features distinguished between
different patient outcome classes through nearest-neighbor
analysis. Features with consistently high ReliefF scores across
candidate subsets were retained as the final set of selected
features. This process allowed the framework to integrate global
search (ACO), relational modeling (GNN), and discriminative
ranking (ReliefF), yielding a compact, interpretable feature set
that improved predictive performance on the MIMIC-III dataset
and highlighted clinically relevant variables influencing patient
outcomes in intensive care settings.

Medical Dataset Input
(e.g., MIMIC-III features)

v

Preprocessing (Missing value handling,
Normalization, Encoding)
v

Feature Subset Generation with ACO (Ants
create candidate subsets)

v

Graph Construction for each candidate subset
(nodes=features, edges=relations)

v
Relational Modeling with GNN

(Graphs of feature relationships —
embeddings)

v

Predict Outcome using graph embedding

v

Feature Ranking with ReliefF
(Compute important scores)

v

Final Feature Subset
(Clinically meaningful & predictive)

v

Evaluation & Comparison
(Accuracy, F1, AUC etc.,)

Fig.2. Workflow of ACO-GNN-ReliefF framework
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4. RESULT AND DISCUSSIONS

4.1 MIMIC-III DATASET

The MIMIC-III is a large, publicly accessible critical care
database that contains de-identified health-related De-identified
health-related data on almost 40,000 patients admitted to
Massachusetts intensive care units (ICUs) between 2001 and 2012
can be found in the MIMIC-III, a sizable, publicly available
critical care database. MIMIC-III’s comprehensive collection of
clinical data gathered throughout stays in intensive care units
enables rich evaluations of patient outcomes and forecasting in
critical care. Patients in MIMIC-III comprise a broad group of
people across all adult demographics, with ages ranging from 16
to over 90. The sample include both male and female patients,
with a fairly even gender distribution. Demographic information
includes things like insurance type, gender, race, and age at
admission (de-identified to preserve privacy). Types of Features
Offered:

 Diagnostic Codes: ICD-9 diagnosis codes assigned during
hospital and ICU admissions. Enable identification of
comorbidities, primary reasons for admission, and severity
of illness.

Laboratory Measurements: Rich time-series data for lab
tests such as lactate, creatinine, BUN, WBC, emoglobin,
electrolytes (e.g., sodium, potassium), and many more.
Measurements are typically timestamped, allowing temporal
analysis of trends.

* Medications: Details of medications administered during
ICU stays, including vasopressors, sedatives, antibiotics,
anticoagulants, and other critical care drugs. Data includes
dosages, administration times, and routes (e.g., IV, oral).

Vital Signs: temperature, oxygen saturation (SpO:), heart
rate, respiratory rate, blood pressure, GCS scores, and high-
resolution time-series recordings of physiological data. A
thorough evaluation of the patient’s stability is made
possible by the frequent recording of vital signs at minute-
to-hour intervals.

Additional information in MIMIC-III includes fluid inputs and
outputs, mechanical ventilation status, procedural codes,
microbiology results, and charted nursing notes, providing a
comprehensive view of each patient’s ICU stay.

4.2 PREPROCESSING STEPS

Preprocessing is a critical step in preparing the MIMIC-III
dataset for feature selection and predictive modeling, especially
given its high dimensionality and frequent missing values
common in clinical data.

4.2.1 Missing Data Handling

Missing data is pervasive in ICU datasets due to irregular
measurements, varying clinical practices, and equipment failures.
Handling missingness appropriately prevents biases and ensures
model robustness.

o Identifying Missingness: For each feature f; across all
patient records N, the missingness rate is computed as:

Number of missing entries in f
N

MissingRate( f,) =
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Which helps determine whether to impute or discard a feature.

* Threshold-based Feature Removal: Features with a
missing rate above a threshold Tyissing (commonly 30-50%)
are dropped entirely:

f, is removed if MissingRate(f,) > 7,

missing

* Imputation: For features retained after thresholding,
missing entries are imputed:

» Continuous features: missing values fi(x;) are filled with
the feature’s mean or median:

Sfi(x;)=mode(f;) iff;(x,) is missing
where, f; is the mean across non-missing entries.

 Categorical features: missing entries are replaced with the
mode (most frequent category):

For simplicity and computational economy, advanced
imputation techniques like model-based imputation (like
MissForest) and k-nearest neighbors (KNN) imputation were not
utilized here, while they can be used for greater accuracy.

4.2.2 Normalization or Encoding

Medical features often span vastly different scales (e.g.,
glucose in mg/dL vs. heart rate in beats/min), which can skew
learning algorithms. Therefore, normalization ensures features
contribute comparably during model training.

* Normalization of Continuous Features: Each continuous
feature f; is standardized using z-score normalization:
nom Ji(x)—p
f," 0] ( xj) — J
where, u;is the mean of f;, o;is the standard deviation of f;, f"*™(x;)
is the normalized value for patient x;.This transformation
produces features with zero mean and unit variance, which
improves convergence of gradient-based learning algorithms.

* Encoding of Categorical Features: Categorical variables
(e.g., gender, admission type) are converted to numerical
representations:

* One-Hot Encoding: For a categorical feature with k
unique classes, one-hot encoding creates k binary
features indicating the presence of each class. For
instance, a “Gender” feature with categories {Male,
Female} becomes two binary features:

Gender Male, Gender Female,

where each patient has a 1 in the corresponding column and 0
in the other.

* Label Encoding (if necessary): For ordinal categories
(e.g., GCS scores), integers preserving the order are
assigned:
Category€{Low=0,Medium=1,High=2}.
Missing data handling reduces bias by either imputing or
discarding unreliable features. Normalization makes continuous
features comparable in scale. Encoding transforms categorical

features into numerical form, enabling their inclusion in
algorithms like ACO, GNN, and ReliefF.
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4.3 EXPERIMENTAL SETUP

Experiments were carried out using the publicly accessible
MIMIC-III dataset, which comprises more than 112,000
comprehensive ICU records including vital signs, laboratory
measurements, medications, diagnostic and procedure codes
(ICD-9), and clinical observations, in order to assess the
effectiveness of the suggested ACO-GNN-ReliefF framework on
high-dimensional clinical data.

Each record in the dataset typically contains an average of 7.6
ICD-9 codes per patient encounter, offering a rich feature space
for predictive modeling. Data preprocessing included handling
missing values through threshold-based feature removal and
mean/mode imputation, normalizing numerical features using z-
score scaling, and encoding categorical variables via one-hot
encoding. Every experiment was conducted using Python 3.8 and
ran on a Windows 10 computer with an Intel i7 processor, 16 GB
of RAM, and a 1 TB hard drive. A local computer without GPU
acceleration was used for the experiments.

Three feature selection techniques were compared in this
study. The proposed method, ACO-GNN-ReliefF, integrates Ant
Colony Optimization for candidate feature subset generation,
Graph Neural Networks for modeling complex relational
dependencies among features, and ReliefF for final discriminative
feature ranking. As baselines, two widely used methods were
included: KNN-ReliefF, which applies ReliefF feature
importance scores followed by classification using k-Nearest
Neighbors, and XGB-SHAP, which leverages XGBoost’s SHAP
feature importance scores as an interpretable benchmark for
feature selection.

The hyperparameters for the proposed ACO-GNN-ReliefF
framework were carefully tuned to balance exploration and
performance. For the ACO component, 30 ants were used with a
maximum of 50 iterations, a pheromone evaporation rate (p) of
0.2, a pheromone influence coefficient (a) of 1.0, a heuristic
information influence coefficient (f) of 2.0, and an initial
pheromone level (7o) of 0.1. The GNN component was configured
with two graph convolutional layers, each with a hidden
dimension of 64, using ReLU as the activation function. The GNN
was trained with a learning rate of 0.001, optimized using Adam,
and run for 30 epochs per candidate feature subset graph. For the
ReliefF component, the number of nearest neighbors (k) was set
to 10, the number of sampled instances (m) to 1000, and the
feature importance threshold (zw) to 0.05.For the baseline
methods, hyperparameters were set as follows: in KNN-ReliefF,
the k-Nearest Neighbors classifier used =5 and ReliefF was
applied with k=10 nearest neighbors and 1000 sampled instances.
For XGB-SHAP, XGBoost was configured with 100 trees, a
maximum tree depth of 6, and a learning rate of 0.05, with SHAP
values calculated on the trained model to determine feature
importance rankings. All feature selection methods were
evaluated by training a lightweight classifier either logistic
regression or a shallow recurrent neural network on the features
selected by each technique. Performance was assessed on a held-
out test set using the following evaluation metrics: accuracy,
precision, recall, F1-score, and AUC-ROC, along with execution
time (total runtime of feature selection and model training) and
subset size (number of features selected), to comprehensively
measure both the predictive performance and efficiency of each
feature selection approach.
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Finding the 15 most pertinent characteristics from the
analytical dataset was the main goal of each feature selection
technique. The best neighborhood size was then determined by
evaluating K={4,8,12,16,20,24} across the techniques in order to
improve pattern recognition performance. The experimental
results demonstrate that all classifiers achieved strong
performance, with seven features consistently appearing among
the top-ranked selections across runs using the proposed ACO-
GNN-ReliefF framework. These repeatedly identified features
highlight their stability and potential clinical significance.

The consistently selected features in the ACO-GNN-ReliefF
pipeline suggest the method’s ability to capture clinically
meaningful predictors of patient outcomes in intensive care.

4.4 PERFORMANCE EVALUATION

The top K=15 features found by KNN-ReliefF, XGB-SHAP,
and the suggested ACO-GNN-ReliefF pipeline were used to train
a logistic regression classifier in order to assess the predictive
potential of feature subsets chosen by each technique. Using
common classification criteria, performance was evaluated on a
stratified 20% hold-out test set from the MIMIC-III dataset. These
measurements offer a thorough understanding of class
discrimination as well as overall prediction capacity.
The suggested ACO-GNN-ReliefF continuously outperformed
the baseline selection of features techniques in all measures,
according to the experimental findings, which are compiled in
Fig.1. Notably, it demonstrated robust generalization with
balanced precision-recall performance and higher AUC-ROC
scores, showing greater discriminative potential.

The superior performance of the proposed ACO-GNN-
ReliefF framework can be attributed to several key factors.

* First, the global search capability of Ant Colony
Optimization (ACO) allows the method to explore a broader
combinatorial space of feature subsets, effectively avoiding
the local optima that often limit purely filter-based
approaches.

Second, the relational modeling provided by Graph Neural
Networks (GNNSs) captures complex, nonlinear interactions
among features including dependencies between laboratory
measurements, diagnostic codes, and vital signs  which
traditional methods such as ReliefF or SHAP-based feature
importance cannot adequately represent.

Third, ReliefF’s local neighborhood ranking refines the
selected features by evaluating their discriminative power
within the feature space, ensuring that the final subset
includes features most relevant to distinguishing ICU
outcomes.

By integrating swarm intelligence through ACO, deep
relational learning with GNN, and discriminative ranking using
ReliefF, the proposed ACO-GNN-ReliefF method produces a
feature subset that not only maximizes predictive performance but
also maintains clinical interpretability, setting it apart from
conventional feature selection techniques.
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Fig.3. Performance metrics on the MIMIC-III test set using the
top K=15 features selected by each method

The Fig.3 shown, the proposed ACO-GNN-ReliefF achieved
the highest performance across all metrics compared to KNN-
ReliefF and XGB-SHAP, with precision (0.82), recall (0.85), F1-
score (0.83), accuracy (0.86), and AUC-ROC (0.91),
demonstrating its superior ability to identify relevant features and
predict ICU outcomes more accurately and reliably. The proposed
ACO-GNN-ReliefF improved AUC-ROC by 10-13% over KNN-
ReliefF and XGB-SHAP, indicating superior ability to distinguish
between positive and negative ICU outcomes. Precision and recall
gains suggest that ACO-GNN-ReliefF not only identified the
correct positive cases more often but did so with fewer false
alarms. The consistent improvement across metrics demonstrates
the effectiveness of integrating global feature search (ACO),
relational modeling (GNN), and local ranking (ReliefF).

4.4.1 Execution Time:

Execution time is an important metric in evaluating the
efficiency of feature selection algorithms, especially when
working with large-scale medical datasets like MIMIC-III, which
contains high-dimensional, heterogeneous patient records.
Execution time measures the total wall-clock duration required by
each feature selection method to preprocess data, perform feature
selection, train the predictive model on the selected features, and
evaluate performance metrics on the test set. It reflects both
computational complexity and practical feasibility in clinical or
real-time settings. The execution time 7ev. for each method can
be formally defined as:

Texec:Tprep"']}fv""TtminJ"Teval,

where, Ty 1s the time for data preprocessing, T is the time spent
on feature selection, T4, 1S the time to train the classifier on the
selected features, Tevis the time to compute evaluation metrics
on the test set. The Fig.4 shown the proposed ACO-GNN-ReliefF
required more time (28.4 minutes) than KNN-ReliefF (7.8
minutes) and XGB-SHAP (10.5 minutes), reflecting its more
complex but more thorough feature selection process.
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Fig.4. Total execution time for KNN-ReliefF, XGB-SHAP, and

the proposed ACO-GNN-ReliefF

While the proposed ACO-GNN-ReliefF requires more
computational time than the baseline methods (approximately
three times longer than KNN-ReliefF), its superior predictive
performance, demonstrated by higher precision, recall, F1-score,
accuracy, and AUC-ROC, justifies this additional computational
cost. The extended execution time is mainly attributed to the
iterative global search by ACO and the graph-based modeling of
feature relationships using GNNs, both of which enable ACO-
GNN-ReliefF to identify more informative, robust, and clinically
meaningful features. Unlike KNN-ReliefF and XGB-SHAP,
which rely on local or univariate feature relevance scores, the
proposed method captures complex interdependence between
features, providing a more holistic feature selection process that
improves generalization on ICU outcome prediction tasks.

5. CONCLUSION

In this paper, we developed a new hybrid feature selection
framework, ACO-GNN-ReliefF, which integrates Ant Colony
Optimization for global exploration of feature subsets, Graph
Neural Networks for modeling complex, nonlinear relationships
among clinical variables, and ReliefF for fine-grained
discriminative ranking of features. Applied to the high-
dimensional MIMIC-III intensive care dataset, the proposed
method demonstrated substantial improvements in predictive
performance over traditional approaches such as KNN-ReliefF
and XGB-SHAP, achieving higher recall, precision ,F1-score,
accuracy, and AUC-ROC. The results highlight the potential of
combining swarm intelligence with deep relational learning for
robust and interpretable feature selection in critical care analytics.
Despite its superior performance, ACO-GNN-ReliefF incurs
greater computational cost, which is a trade-off for its more
comprehensive feature evaluation process.

In subsequent work, we intend to use early halting techniques
and parallel processing to maximize the ACO-GNN-ReliefF
framework’s computational efficiency. Additionally, by
including sequential models like LSTM-based GNNs, we want to
expand this methodology to handle temporal changes in time-
series ICU data. The suggested method’s generalizability and
clinical relevance will be established with additional validation on
external datasets from various institutions and patient
demographics. The interpretability and applicability of the chosen
features for actual healthcare decision support systems may also
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be improved by including domain knowledge, such as ontologies
or clinical guidelines, into the graph generation process.
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