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Abstract

Rapid urbanization and industrialization have significantly increased
air  pollution levels, adversely affecting public health and
environmental sustainability. Traditional monitoring systems often
suffer from limited spatial coverage and delayed data analysis, making
real-time pollution assessment challenging. Existing approaches
struggle to efficiently process the large-scale, heterogeneous data
generated by loT-enabled Cognitive Radio-Based Sensor Networks
(CRSNs). Conventional machine learning models often fail to capture
complex temporal and spatial patterns in pollution dynamics, limiting
predictive accuracy and early warning capabilities. This study proposes
a transformer-based deep learning framework combined with IoT-
enabled CRSNs for accurate and real-time air pollution monitoring.
The CRSN comprises distributed sensors collecting continuous data on
particulate matter (PM2.5, PM10), NO., CO, Os, and other pollutants.
The transformer model controls its self-attention mechanism to capture
temporal dependencies and inter-sensor correlations, enabling robust
prediction of pollution trends. Data preprocessing involves
normalization, anomaly detection, and feature embedding to enhance
model performance. Comparative experiments are conducted against
conventional LSTM and GRU models to evaluate prediction accuracy
and system responsiveness. Experimental results establish that the
transformer-based model achieves superior performance with a mean
absolute error (MAE) of 4.2ug/m’> for PM2.5 prediction,
outperforming LSTM (MAE = 6.1 ug/m>) and GRU
(MAE =5.8 ug/m3). The proposed system provides accurate, fine-
grained pollution maps in real-time, enabling timely alerts and
informed decision-making for environmental authorities.
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1. INTRODUCTION

Air pollution has emerged as one of the most pressing
environmental and public health challenges in the modern era.
Rapid industrialization, urbanization, and increased vehicular
emissions have led to elevated concentrations of pollutants such
as particulate matter (PM2.5 and PM10), nitrogen dioxide (NO-),
carbon monoxide (CO), and ozone (Os), significantly affecting
respiratory and cardiovascular health [1]. Monitoring air quality
is critical not only for regulatory compliance but also for enabling
informed decisions in urban planning, environmental protection,
and public safety. Recent advances in Internet of Things (IoT)
technology have enabled the deployment of dense Cognitive
Radio-Based Sensor Networks (CRSNs) capable of continuously
collecting real-time environmental data across urban landscapes
[2]. These networks provide a promising solution for dynamic air
quality monitoring, overcoming the limitations of traditional,
sparsely located monitoring stations that fail to capture localized
pollution events [3].
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Despite the potential of IoT-enabled CRSNs, several
challenges hinder their full utilization. First, the large volume of
heterogeneous data generated by distributed sensors presents
significant processing and storage demands [4]. Second, sensor
measurements are often affected by environmental noise,
calibration drift, and intermittent connectivity, which can
compromise the reliability and accuracy of collected data [5].
Addressing these issues requires robust computational models
capable of handling uncertainty, integrating multi-source data,
and providing accurate, timely predictions.

The existing approaches for air pollution prediction face
additional problems. Conventional statistical and machine
learning models, including regression-based methods and
recurrent neural networks, often struggle to capture complex
temporal and spatial correlations in pollutant dynamics [6].
Moreover, these models typically require manual feature
engineering and are prone to overfitting when dealing with high-
dimensional, continuous data streams from CRSNs [7]. As a
result, real-time forecasting and fine-grained pollution mapping
remain significant challenges, limiting the practical effectiveness
of air quality monitoring systems [8].

To address these limitations, this study aims to develop a
transformer-based deep learning framework for IoT-enabled
CRSNSs, enabling accurate, real-time air pollution monitoring.
The primary objectives are: (i) to design a scalable and robust
architecture capable of handling multi-sensor, high-dimensional
data; (ii) to leverage transformer-based self-attention mechanisms
to capture both temporal trends and spatial correlations in
pollutant concentrations; and (i) to evaluate the proposed
approach against existing recurrent models such as LSTM and
GRU in terms of prediction accuracy, reliability, and
computational efficiency.

The novelty of this research lies in integrating transformer-
based deep learning with IoT-enabled CRSNs for environmental
monitoring—a combination that, to the best of our knowledge, has
been minimally explored in urban air quality applications. Unlike
conventional models, the transformer can simultaneously model
long-range dependencies and inter-sensor relationships without
requiring extensive feature engineering, providing both accuracy
and interpretability in real-time predictions.

The key contributions of this study are twofold. First, we
propose a transformer-driven predictive framework tailored for
real-time air quality monitoring, capable of handling noisy, high-
volume sensor data with high precision. Second, we demonstrate
the system’s practical applicability by conducting extensive
experiments comparing it with traditional deep learning models,
showing improved mean absolute error (MAE), enhanced
robustness to missing data, and scalability for deployment in
smart city environments. Collectively, these contributions
advance the state-of-the-art in IoT-based environmental
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monitoring and provide actionable insights for policymakers and
urban planners seeking to mitigate the adverse effects of air
pollution.

2. RELATED WORKS

Over the past decade, significant research efforts have been
directed toward leveraging loT-enabled CRSNs and advanced
machine learning techniques for air pollution monitoring and
prediction. Traditional approaches relied on statistical models and
linear regression techniques to estimate pollutant concentrations;
however, these methods often fail to capture the nonlinear,
dynamic behavior of urban air pollution [6]. While effective for
small-scale datasets, conventional models are limited in
scalability and are unable to process the continuous, high-
dimensional data streams produced by dense CRSN deployments.
These limitations have motivated researchers to explore deep
learning-based  approaches that can handle complex
spatiotemporal patterns inherent in air quality data.

Recurrent neural networks (RNNs), particularly long short-
term memory (LSTM) networks, have been widely employed to
address temporal dependencies in pollution data [7]. LSTM
models have shown promising results in short-term forecasting of
PM2.5 and other pollutants, enabling early warning systems for
urban populations. However, LSTMs still exhibit challenges
when modeling long-range temporal dependencies and multiple
interacting sensors simultaneously. Additionally, they often
require extensive tuning and preprocessing to handle missing or
noisy sensor readings, which is common in real-world IoT
deployments. Variants such as gated recurrent units (GRUs) have
been proposed to reduce computational complexity while
maintaining predictive performance, but their capacity to capture
multi-sensor correlations across a city-wide network remains
limited [8].

To overcome these challenges, hybrid models that combine
spatial and temporal information have gained attention.
Convolutional neural networks (CNNs) combined with LSTM
layers have been applied to generate spatiotemporal air pollution
maps, leveraging CNNs to extract local spatial features and
LSTMs to model temporal dynamics [9]. While effective for
medium-scale networks, these models often struggle with high-
dimensional data and long-term dependencies, limiting their real-
time applicability. Moreover, the computational overhead
associated with CNN-LSTM architectures can hinder deployment
on resource-constrained edge devices in [oT networks.

Recent research has turned toward transformer-based
architectures, originally developed for natural language
processing, for handling sequential and high-dimensional sensor
data [10]. Transformers utilize self-attention mechanisms to
weigh the relevance of different input features dynamically,
enabling them to model long-range dependencies efficiently.
Early studies have demonstrated the potential of transformers in
environmental applications, including air pollution prediction and
energy consumption forecasting, showing improved accuracy and
faster convergence compared to traditional RNN-based models.
By capturing both temporal trends and inter-sensor correlations,
transformer models provide a scalable solution for dense urban
CRSN .
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In addition to predictive modeling, several studies have
emphasized the importance of [oT-enabled CRSN design for real-
time monitoring. Sensor placement optimization, fault-tolerant
network protocols, and energy-efficient data transmission
strategies have been explored to enhance data reliability and
system longevity [11]. Integrating advanced predictive models
with well-designed sensor networks allows not only for accurate
forecasting but also for proactive decision-making, such as
dynamic traffic management or targeted emission control
measures.

Despite these advances, there remain gaps in practical
implementation. Most existing studies focus on either model
development or sensor network design in isolation, rather than
combining both into an end-to-end, real-time monitoring
framework [12]. Furthermore, the interpretability of deep learning
models in environmental contexts is limited, making it
challenging for policymakers to understand the rationale behind
predictions. Addressing these gaps requires a comprehensive
framework that combines transformer-based modeling with
robust [oT sensor networks, providing accurate, interpretable, and
actionable insights for urban air quality management.

3. PROPOSED METHOD

The proposed method combines IoT-enabled CRSNs with a
transformer-based deep learning model for accurate and real-time
air pollution monitoring. The framework begins with a distributed
CRSN that continuously collects environmental data, including
PM2.5, PM10, NO2, CO, and Os levels, across urban areas. The
collected data undergo preprocessing steps such as normalization,
missing value imputation, and feature embedding to ensure
quality and consistency.

The preprocessed data is then fed into a transformer model,
where the self-attention mechanism captures temporal
dependencies and inter-sensor correlations, enabling robust
prediction of pollution trends. Finally, the model outputs fine-
grained real-time air quality predictions, which can be visualized
as pollution maps or alerts for decision-making.

3.1 SENSOR DEPLOYMENT AND
COLLECTION

DATA

The first step in the proposed framework involves the
deployment of a dense [oT-enabled CRSN across the target urban
environment.

Each sensor node is equipped with pollutant-specific sensing
modules capable of measuring PM2.5, PM10, NO., CO, Os,
temperature, and humidity in real-time. These nodes
communicate via low-power wireless protocols (e.g., LoORaWAN
or ZigBee) to a central gateway, which aggregates the data for
further processing.

The spatial distribution of sensors is designed to maximize
coverage in high-traffic areas and industrial zones, while also
ensuring redundancy to handle potential node failures. Temporal
resolution is configured to capture rapid fluctuations in pollutant
concentrations, typically with measurements taken every 5-10
minutes.
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Table.1. Sensor Data Snapshot

Sensor Location PM2.5| PM10 [ NO:| CO | O;s | Time
ID (ng/m®)|(ng/m?)|(ppb) |(ppm)|(ppb) stamp
2025-
S01 |Downtown| 56 82 30 0.8 | 45 |10-14
10:00
2025-
S02 | Industrial | 68 95 42 1.2 | 38 |10-14
10:00
2025-
S03 |Residential| 35 48 18 | 0.5 | 50 |10-14
10:00

The Table.1 provides a representative snapshot of the raw
sensor data collected across different urban zones. These
heterogeneous data streams form the foundation for subsequent
preprocessing and modeling. The spatial and temporal variability
of pollutants can be represented mathematically as:

X(t,s):[xl(t,s),x2 (2,8),.00%,, (t,s)] )

where X(z,5) denotes the pollutant concentration vector at time ¢
and sensor location s, and mmm represents the number of
pollutant types. This multi-dimensional data is transmitted to the
central processing unit for further cleaning and feature extraction.

3.2 DATA PREPROCESSING

Collected sensor data often contains noise, missing values, or
outliers due to environmental interference or sensor malfunction.
Therefore, preprocessing is critical to ensure data quality before
feeding it into the transformer model. The preprocessing pipeline
includes:

* Missing Value Imputation: Linear interpolation or k-
nearest neighbor (KNN) imputation is used to fill gaps in
sensor readings.

* Normalization: Min-max normalization is applied to scale

pollutant values between 0 and 1 for improved model
convergence.

* Feature Embedding: Each sensor reading is transformed
into a feature vector incorporating pollutant levels,
timestamp embeddings, and spatial coordinates.

Table.2. Preprocessed Sensor Data

Sensor|PM2.5[PM10|NO:[CO[ Os | Time | Location
ID (norm) Embedding Embedding
SO01 | 0.45 | 0.55 [0.33|0.40(0.50 0.10 [0.2,0.3]
S02 | 0.55 | 0.63 [0.47|0.60(0.42 0.10 [0.8,0.1]
S03 | 0.28 | 0.32 {0.20{0.25]0.55 0.10 [0.1,0.7]

The Table.2 illustrates the normalized and embedded sensor
data, ready for input into the transformer network. The feature
embedding can be expressed as:

X, —X . X.
il ‘min,] im
£ =[

x.
; ——]De, De, 2
X X X

‘max,1 ‘min,1 max,m xmin,m

where f, is the embedded feature vector for sensor i, e,is the
temporal embedding, e is the spatial embedding, and b denotes
concatenation.

3.3 TRANSFORMER-BASED MODELING

The preprocessed data is fed into a transformer network,
which utilizes self-attention to learn complex temporal
dependencies and spatial correlations among sensors. Unlike
RNNs, the transformer allows parallel processing of sequences
and effectively captures long-range dependencies, improving
prediction accuracy. The model architecture consists of an
encoder-decoder setup where the encoder processes historical
pollutant sequences, and the decoder predicts future
concentrations. Multi-head attention layers compute the
importance of each sensor reading relative to others, enabling the
model to weigh contributions dynamically.

Table.3. Predicted vs Actual PM2.5 Values

Timestamp Actual|Predicted| Error
PM2.5| PM2.5 |(ug/m?)
2025-10-14 10:00| 56 54 2
2025-10-14 10:05| 58 57 1
2025-10-14 10:10| 60 61 1

The Table.3 demonstrates the transformer’s predictive
performance, showing high accuracy and low error. The self-
attention mechanism is mathematically represented as:

Attention(Q, K, V') = softmax [ oK ] 3)

NA

where Q, K, and V are query, key, and value matrices derived from
input features, and d is the dimensionality of the key vectors. This
equation allows the model to learn interdependencies between all
sensors across time efficiently.

3.4 PREDICTION

Once trained, the transformer outputs real-time pollutant
forecasts for each sensor node. These predictions are aggregated
to generate dynamic air quality maps, providing a spatially
resolved view of urban pollution. Alerts are generated for regions
exceeding threshold pollutant levels, enabling proactive decision-
making for environmental management.

Table.4. Real-Time Air Quality Alert

Predicted] AQI Alert
PM2.5 |Category| Level

Unhealthy| High
Unhealthy| High
Moderate [Medium

Location

Downtown 65
Industrial 72
Residential 40
The Table.4 shows actionable insights derived from

transformer predictions, useful for city authorities and public
advisories. The final prediction can be formulated as:
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X(t+At,5)= f,(F) @)

where X (t + At,s) is the forecasted pollutant vector at time ¢+ A¢
for sensor s, and f, represents the trained transformer network
applied to the feature sequence F, .

The model’s performance is evaluated using metrics such as
Mean Absolute Error (MAE), Root Mean Square Error (RMSE),
and R2. Optimization involves hyperparameter tuning of attention
heads, embedding dimensions, and learning rates to balance

accuracy and computational efficiency. The model is also tested
for robustness against missing sensor data and noise.

Table.5. Model Performance Metrics

Model |MAE (ng/m?*)|RMSE (ng/m?)| R?
LSTM 6.1 7.8 0.82
GRU 5.8 7.5 0.84
Transformer 4.2 5.1 0.91

The Table.5 highlights the superior performance of the
transformer model over traditional deep learning approaches.
Mathematically, MAE and RMSE are expressed as:

MAE:%iU’i_yi |7 (5)
RMSE:Q’%i(ﬁ,—y,)Z (6)

where J, and ); are the predicted and actual pollutant

concentrations, respectively.
4. EXPERIMENTS

The experimental evaluation of the proposed transformer-
based air pollution monitoring framework was conducted using
Python 3.11 with TensorFlow 2.13 as the primary deep learning
library. Simulations were performed on a workstation equipped
with an Intel Core 19-13900K CPU, 64 GB RAM, and an NVIDIA
RTX 4090 GPU to support parallel training of high-dimensional
IoT sensor data. The [oT-CRSN environment was emulated using
a combination of real-world sensor datasets and synthetic data
streams generated to simulate temporal and spatial variations in
pollutant concentrations. Sensor readings were collected at a 5-
minute interval for PM2.5, PMI10, NO., CO, and Os.
Preprocessing, feature embedding, and transformer training were
performed on this platform, with hyperparameter tuning
conducted using grid search and cross-validation to optimize
model performance. The experimental setup includes both CRSN
parameters and transformer model configurations. The Table.6
summarizes the key parameters used in the simulation.

Table.6. Experimental Setup

Parameter Value / Setting
Number of sensors 50
Sampling interval 5 min
Pollutants measured PM2.5, PM10, NO2, CO, Os
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Transformer encoder layers 4
Transformer decoder layers 4
Attention heads 8
Embedding dimension 128
Batch size 64
Learning rate 0.001
Epochs 100

The Table.6 highlights the critical experimental settings and
transformer configurations, which ensure reproducible results and
robust performance evaluation.

4.1 PERFORMANCE METRICS

The evaluation of the proposed framework was conducted

using metrics:

* Mean Absolute Error (MAE): It measures the average
magnitude of prediction errors. Lower values indicate better
accuracy.

1 & .

MAE=—D -v| ()

i=1
* Root Mean Square Error (RMSE): It provides an

aggregated measure of error magnitude, penalizing larger
deviations.

RMSE = 132G, -3 @

* Coefficient of Determination (R?): It represents the
proportion of variance in the measured data explained by the
model.

Z()A}z _yi)2
2 —
D -y
* Mean Absolute Percentage Error (MAPE): It indicates
relative prediction accuracy in percentage terms.
100 &

MAPE = — "
n oo

R 0

)A/f_yi

Vi

0

¢ Prediction Latency (PL): It measures the computational
efficiency of the framework in generating real-time
forecasts, crucial for IoT-enabled monitoring.

4.2 DATASET

The evaluation utilized a combination of real-world and
synthetic datasets. Real-world data was sourced from urban air
quality monitoring stations, comprising pollutant measurements
over a period of 12 months. Synthetic data streams were generated
to simulate additional sensor nodes for urban expansion scenarios.
The Table.7 provides a brief description of the dataset.

Table.7. Dataset Description

Dataset Source |No. of Samples| Features |Duration
Real-World PM2.5, PM10,
Sensor Data 105,120 NO., CO, Os 12 months
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Synthetic PM2.5, PM10, CNN-
CRSN Simulation 50,000 NOs, CO, Os 6 months LSTM 5.4 6.8 (0.86] 7.3 20
The Table.7 illustrates the diversity and volume of the dataset, Proposed 45 54 1090 6.0 17
combining both empirical and simulated sensor data to evaluate Transformer| ' ] '
the robustness and generalizability of the proposed framework. LSTM 6.8 8.5 10.79! 9.0 18
For comparative evaluation, three methods: LSTM-Based GRU 6.3 8.0 10.82] 85 14
Prediction, GRU-Based Forecasting and CNN-LSTM Hybrid CNN
30 -
Models. LSTM 5.6 7.0 10.85] 7.5 23
Table.8. Comparative Performance of Existing Methods and Proposed 47 56 1089 6.2 18
Proposed Transformer Model Across Sensor Rounds Transformer
- LSTM 7.0 | 88 [0.78] 9.3 20
No. of MAE [RMSE | ., [Mapg| Prediction GRU 65 | 82 |0.81] 88 16
Method R o R o Latency
Sensors (ng/m®)|(ng/m?) (%) CNN-
(ms) 40 LST™ 58 7.2 10.84| 7.8 25
LSTM 6.2 79 |0.81| 8.5 12
GRU 59 | 76 |0.83 8.1 10 Proposed 149 | 55 lo.88| 6.5 20
CNN Transformer
10 -
LSTM 5.1 6.5 (087 7.0 18 LSTM 7.2 9.0 (0.77| 9.5 22
Proposed GRU 6.7 8.4 10.80[ 9.0 18
4.3 52 1091 5.8 15
Transformer s0  |CNN- 60 | 7.5 [0.83 80 28
Y 65 | 82 |0.80] 8.8 15 LST™M
GRU 6.1 | 7.8 [0.82] 83 12 Proposed 51 | 60 [0.87] 68 22
Transformer

Table.9. Comparative Performance of Existing Methods and Proposed Transformer Model on Real and Synthetic Datasets

Dataset |Method Pollutant MAE|[RMSE| R: |MAPE| Prediction
(%) |Latency (ms)
LSTM 6.1 | 7.8 10.82| 8.5 12
GRU 58 | 7.5 |0.84| 8.1 10
PM2.5
CNN-LSTM 50 | 64 ]0.87| 7.0 18
Proposed Transformer 42 | 51 (091] 58 15
LSTM 7.0 | 85 ]0.81] 9.0 12
GRU 6.6 | 8.1 |0.83 8.5 10
PM10
CNN-LSTM 58 | 7.0 |0.86] 7.2 18
Proposed Transformer 48 | 5.7 (0.90] 6.3 15
LSTM 45| 58 |0.80| 7.5 12
Real-
World |GRU NO 42 | 55 |0.82| 7.1 10
Sensor |CNN-LSTM ’ 3.8 | 50 |0.85 6.5 18
Data Proposed Transformer 32| 42 (090 5.0 15
LSTM 09| 1.2 ]0.79] 6.5 12
GRU co 0.8 | 1.1 |0.81] 6.0 10
CNN-LSTM 0.7 | 09 [0.85 5.2 18
Proposed Transformer 0.6 | 0.8 |0.90| 4.5 15
LSTM 55| 6.8 |0.78] 7.8 12
GRU o 52| 6.4 ]0.80] 7.3 10
CNN-LSTM 47| 55 |0s4] 65 18
Proposed Transformer 39 | 46 (089 5.5 15
Synthetic LSTM 6.5 | 82 |0.80] 8.8 15
CRSN |GRU PM2.5 | 6.1 | 7.8 |0.82| 8.3 12
Simulation| CNN-LSTM 54| 68 |0.86 7.3 20
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Proposed Transformer 45| 54 10.90] 6.0 17
LSTM 72 | 87 |0.79] 9.2 15
GRU 6.7 | 82 |0.81] 8.7 12
PM10
CNN-LSTM 6.0 | 7.5 |0.84] 8.0 20
Proposed Transformer 5.1 6.0 |0.87| 6.8 17
LSTM 48 | 6.0 |0.78| 7.9 15
GRU NO» 44 | 57 |0.80| 7.4 12
CNN-LSTM 39 | 52 |0.83] 6.8 20
Proposed Transformer 33| 45 |0.88] 5.3 17
LSTM 1.0 | 1.3 (0.77] 6.7 15
GRU 09 | 1.2 |0.79| 6.2 12
CNN-LSTM o 0.8 | 1.0 |0.83] 5.5 20
Proposed Transformer 0.6 | 0.8 |0.88] 4.6 17
LSTM 58 | 7.1 |0.76] 8.0 15
GRU 54 | 6.6 |0.78| 7.6 12
CNN-LSTM O 4o 57 Jos2| 63 20
Proposed Transformer 40 | 4.8 |0.87| 5.6 17

The performance evaluation of the proposed transformer-
based air pollution monitoring framework was conducted using
both real-world sensor data and synthetic CRSN simulations. The
experimental results, summarized in Table.3 and Table.4,
demonstrate the superior predictive capability and robustness of
the transformer model compared to conventional methods
including LSTM, GRU, and CNN-LSTM. Across all
experiments, the transformer model consistently achieved lower
MAE and RMSE values, higher R? and lower MAPE,
highlighting its  effectiveness in modeling complex
spatiotemporal dependencies among multiple pollutants.

Analyzing the sensor round experiments presented in Table.3,
it is evident that as the number of sensors increases from 10 to 50,
all models experience a gradual increase in MAE and RMSE due
to the higher data complexity and potential sensor noise. For
instance, the LSTM model’s MAE increased from 6.2 ug/m?® to
7.2 png/m?, while the GRU model’s MAE increased from
5.9 pg/m?® to 6.7 pg/m*. In comparison, the transformer’s MAE
increased only from 4.3 pg/m? to 5.1 pg/m?3, maintaining superior
predictive accuracy even under larger sensor deployments.
Similarly, RMSE values demonstrate a similar trend, with the
transformer consistently showing the lowest values across all
sensor rounds (5.2-6.0 ug/m?®), indicating better handling of
outliers and extreme pollutant variations.

R? wvalues also highlight the transformer’s robustness,
maintaining values above 0.87 even for 50 sensors, whereas
LSTM and GRU drop below 0.80 in high-density scenarios. This
suggests that the transformer effectively captures long-range
temporal dependencies and inter-sensor spatial correlations,
which conventional recurrent models struggle to handle. MAPE
values, reflecting relative prediction errors, remained below 7%
for the transformer across all sensor rounds, compared to up to
9.5% for LSTM at 50 sensors, indicating superior reliability in
urban monitoring contexts. Additionally, the prediction latency
for the transformer remained competitive (15-22 ms), slightly
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higher than GRU but substantially lower than CNN-LSTM, that
shows its feasibility for real-time applications in IoT networks.

The results from the pollutant-specific evaluation across real-
world and synthetic datasets, summarized in Table.4, further
reinforce these conclusions. For PM2.5, a critical pollutant with
high health impact, the transformer achieved MAE values of
42 ug/m* (real) and 4.5pg/m® (synthetic), significantly
outperforming LSTM (6.1-6.5 ng/m?®) and GRU (5.8-6.1 pg/m?).
PM10 results show a similar trend, with transformer MAE values
of 4.8-5.1 ug/m?, reflecting its ability to handle particulate
pollution, which exhibits both local and regional variability. For
gaseous pollutants like NO2, CO, and Os, the transformer also
demonstrates consistent superiority. For example, NO. MAE
reduced to 3.2 pg/m® in real-world datasets, compared to
4.5 pg/m® for LSTM, while CO MAE reached only 0.6 ppm
versus 0.9 ppm for LSTM. These reductions are significant in
real-world monitoring, where small deviations can affect health
risk assessment and policy decisions.

R? values for all pollutants consistently remained above 0.87
for the transformer, compared to 0.76—0.84 for conventional
models, confirming enhanced model explainability and fit. MAPE
improvements are also notable, with transformer errors reduced
by approximately 20-30% relative to LSTM and GRU across all
pollutants. The low prediction latency (15—17 ms) ensures that the
system can generate timely air quality alerts for both high-density
sensor networks and real-world urban monitoring, which is
crucial for actionable decision-making.

Another key observation from the synthetic CRSN simulation
is the model’s ability to maintain performance under increased
network density. As the number of synthetic sensors increased,
conventional models exhibited greater degradation in MAE and
RMSE due to difficulty in modeling the higher dimensional data.
In contrast, the transformer maintained relatively stable
performance, that shows its scalability and suitability for smart
city implementations where high-density CRSN deployments are
increasingly common. The self-attention mechanism allows the
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model to weigh contributions from all sensors dynamically,
effectively mitigating noise and redundancy, which explains the
improved R? and reduced MAPE even in dense networks.

The experimental analysis confirms that the transformer-
based framework provides a robust and scalable solution for [oT-
enabled air pollution monitoring. The model’s ability to
consistently achieve lower error rates, maintain high R? values,
and provide real-time predictions across multiple pollutants and
sensor densities highlights its practical applicability in urban
environmental monitoring and public health management. The
comparative analysis validates the significant advantages of
integrating self-attention mechanisms over conventional recurrent
architectures for both temporal and spatiotemporal pollution
prediction.

5. CONCLUSION

In this study, a transformer-based deep learning framework
was proposed for real-time air pollution monitoring using [oT-
enabled Cognitive Radio-Based Sensor Networks. Experimental
evaluation on both real-world sensor datasets and synthetic CRSN
simulations demonstrated that the proposed model significantly
outperforms conventional methods including LSTM, GRU, and
CNN-LSTM. Across all sensor densities and pollutants, the
transformer achieved lower MAE and RMSE, higher R2, and
reduced MAPE, while maintaining competitive prediction latency
suitable for real-time applications. The results confirm that the
self-attention mechanism effectively captures long-range
temporal dependencies and inter-sensor spatial correlations,
ensuring robustness and scalability in dense urban environments.
By providing accurate and timely pollutant forecasts, the
proposed framework facilitates informed decision-making for
urban planning, public health advisories, and environmental
management. This study establishes transformer-based modeling
as a promising solution for next-generation IoT-enabled air
quality monitoring systems that addresses the limitations of
traditional recurrent approaches and advancing the state-of-the-art
in smart environmental monitoring.
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