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Abstract 

Rapid urbanization and industrialization have significantly increased 

air pollution levels, adversely affecting public health and 

environmental sustainability. Traditional monitoring systems often 

suffer from limited spatial coverage and delayed data analysis, making 

real-time pollution assessment challenging. Existing approaches 

struggle to efficiently process the large-scale, heterogeneous data 

generated by IoT-enabled Cognitive Radio-Based Sensor Networks 

(CRSNs). Conventional machine learning models often fail to capture 

complex temporal and spatial patterns in pollution dynamics, limiting 

predictive accuracy and early warning capabilities. This study proposes 

a transformer-based deep learning framework combined with IoT-

enabled CRSNs for accurate and real-time air pollution monitoring. 

The CRSN comprises distributed sensors collecting continuous data on 

particulate matter (PM2.5, PM10), NO₂, CO, O₃, and other pollutants. 

The transformer model controls its self-attention mechanism to capture 

temporal dependencies and inter-sensor correlations, enabling robust 

prediction of pollution trends. Data preprocessing involves 

normalization, anomaly detection, and feature embedding to enhance 

model performance. Comparative experiments are conducted against 

conventional LSTM and GRU models to evaluate prediction accuracy 

and system responsiveness. Experimental results establish that the 

transformer-based model achieves superior performance with a mean 

absolute error (MAE) of 4.2 µg/m³ for PM2.5 prediction, 

outperforming LSTM (MAE = 6.1 µg/m³) and GRU 

(MAE = 5.8 µg/m³). The proposed system provides accurate, fine-

grained pollution maps in real-time, enabling timely alerts and 

informed decision-making for environmental authorities. 
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1. INTRODUCTION 

Air pollution has emerged as one of the most pressing 

environmental and public health challenges in the modern era. 

Rapid industrialization, urbanization, and increased vehicular 

emissions have led to elevated concentrations of pollutants such 

as particulate matter (PM2.5 and PM10), nitrogen dioxide (NO₂), 

carbon monoxide (CO), and ozone (O₃), significantly affecting 

respiratory and cardiovascular health [1]. Monitoring air quality 

is critical not only for regulatory compliance but also for enabling 

informed decisions in urban planning, environmental protection, 

and public safety. Recent advances in Internet of Things (IoT) 

technology have enabled the deployment of dense Cognitive 

Radio-Based Sensor Networks (CRSNs) capable of continuously 

collecting real-time environmental data across urban landscapes 

[2]. These networks provide a promising solution for dynamic air 

quality monitoring, overcoming the limitations of traditional, 

sparsely located monitoring stations that fail to capture localized 

pollution events [3]. 

Despite the potential of IoT-enabled CRSNs, several 

challenges hinder their full utilization. First, the large volume of 

heterogeneous data generated by distributed sensors presents 

significant processing and storage demands [4]. Second, sensor 

measurements are often affected by environmental noise, 

calibration drift, and intermittent connectivity, which can 

compromise the reliability and accuracy of collected data [5]. 

Addressing these issues requires robust computational models 

capable of handling uncertainty, integrating multi-source data, 

and providing accurate, timely predictions. 

The existing approaches for air pollution prediction face 

additional problems. Conventional statistical and machine 

learning models, including regression-based methods and 

recurrent neural networks, often struggle to capture complex 

temporal and spatial correlations in pollutant dynamics [6]. 

Moreover, these models typically require manual feature 

engineering and are prone to overfitting when dealing with high-

dimensional, continuous data streams from CRSNs [7]. As a 

result, real-time forecasting and fine-grained pollution mapping 

remain significant challenges, limiting the practical effectiveness 

of air quality monitoring systems [8]. 

To address these limitations, this study aims to develop a 

transformer-based deep learning framework for IoT-enabled 

CRSNs, enabling accurate, real-time air pollution monitoring. 

The primary objectives are: (i) to design a scalable and robust 

architecture capable of handling multi-sensor, high-dimensional 

data; (ii) to leverage transformer-based self-attention mechanisms 

to capture both temporal trends and spatial correlations in 

pollutant concentrations; and (i) to evaluate the proposed 

approach against existing recurrent models such as LSTM and 

GRU in terms of prediction accuracy, reliability, and 

computational efficiency. 

The novelty of this research lies in integrating transformer-

based deep learning with IoT-enabled CRSNs for environmental 

monitoring—a combination that, to the best of our knowledge, has 

been minimally explored in urban air quality applications. Unlike 

conventional models, the transformer can simultaneously model 

long-range dependencies and inter-sensor relationships without 

requiring extensive feature engineering, providing both accuracy 

and interpretability in real-time predictions. 

The key contributions of this study are twofold. First, we 

propose a transformer-driven predictive framework tailored for 

real-time air quality monitoring, capable of handling noisy, high-

volume sensor data with high precision. Second, we demonstrate 

the system’s practical applicability by conducting extensive 

experiments comparing it with traditional deep learning models, 

showing improved mean absolute error (MAE), enhanced 

robustness to missing data, and scalability for deployment in 

smart city environments. Collectively, these contributions 

advance the state-of-the-art in IoT-based environmental 
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monitoring and provide actionable insights for policymakers and 

urban planners seeking to mitigate the adverse effects of air 

pollution. 

2. RELATED WORKS 

Over the past decade, significant research efforts have been 

directed toward leveraging IoT-enabled CRSNs and advanced 

machine learning techniques for air pollution monitoring and 

prediction. Traditional approaches relied on statistical models and 

linear regression techniques to estimate pollutant concentrations; 

however, these methods often fail to capture the nonlinear, 

dynamic behavior of urban air pollution [6]. While effective for 

small-scale datasets, conventional models are limited in 

scalability and are unable to process the continuous, high-

dimensional data streams produced by dense CRSN deployments. 

These limitations have motivated researchers to explore deep 

learning-based approaches that can handle complex 

spatiotemporal patterns inherent in air quality data. 

Recurrent neural networks (RNNs), particularly long short-

term memory (LSTM) networks, have been widely employed to 

address temporal dependencies in pollution data [7]. LSTM 

models have shown promising results in short-term forecasting of 

PM2.5 and other pollutants, enabling early warning systems for 

urban populations. However, LSTMs still exhibit challenges 

when modeling long-range temporal dependencies and multiple 

interacting sensors simultaneously. Additionally, they often 

require extensive tuning and preprocessing to handle missing or 

noisy sensor readings, which is common in real-world IoT 

deployments. Variants such as gated recurrent units (GRUs) have 

been proposed to reduce computational complexity while 

maintaining predictive performance, but their capacity to capture 

multi-sensor correlations across a city-wide network remains 

limited [8]. 

To overcome these challenges, hybrid models that combine 

spatial and temporal information have gained attention. 

Convolutional neural networks (CNNs) combined with LSTM 

layers have been applied to generate spatiotemporal air pollution 

maps, leveraging CNNs to extract local spatial features and 

LSTMs to model temporal dynamics [9]. While effective for 

medium-scale networks, these models often struggle with high-

dimensional data and long-term dependencies, limiting their real-

time applicability. Moreover, the computational overhead 

associated with CNN-LSTM architectures can hinder deployment 

on resource-constrained edge devices in IoT networks. 

Recent research has turned toward transformer-based 

architectures, originally developed for natural language 

processing, for handling sequential and high-dimensional sensor 

data [10]. Transformers utilize self-attention mechanisms to 

weigh the relevance of different input features dynamically, 

enabling them to model long-range dependencies efficiently. 

Early studies have demonstrated the potential of transformers in 

environmental applications, including air pollution prediction and 

energy consumption forecasting, showing improved accuracy and 

faster convergence compared to traditional RNN-based models. 

By capturing both temporal trends and inter-sensor correlations, 

transformer models provide a scalable solution for dense urban 

CRSNs. 

In addition to predictive modeling, several studies have 

emphasized the importance of IoT-enabled CRSN design for real-

time monitoring. Sensor placement optimization, fault-tolerant 

network protocols, and energy-efficient data transmission 

strategies have been explored to enhance data reliability and 

system longevity [11]. Integrating advanced predictive models 

with well-designed sensor networks allows not only for accurate 

forecasting but also for proactive decision-making, such as 

dynamic traffic management or targeted emission control 

measures. 

Despite these advances, there remain gaps in practical 

implementation. Most existing studies focus on either model 

development or sensor network design in isolation, rather than 

combining both into an end-to-end, real-time monitoring 

framework [12]. Furthermore, the interpretability of deep learning 

models in environmental contexts is limited, making it 

challenging for policymakers to understand the rationale behind 

predictions. Addressing these gaps requires a comprehensive 

framework that combines transformer-based modeling with 

robust IoT sensor networks, providing accurate, interpretable, and 

actionable insights for urban air quality management. 

3. PROPOSED METHOD 

The proposed method combines IoT-enabled CRSNs with a 

transformer-based deep learning model for accurate and real-time 

air pollution monitoring. The framework begins with a distributed 

CRSN that continuously collects environmental data, including 

PM2.5, PM10, NO₂, CO, and O₃ levels, across urban areas. The 

collected data undergo preprocessing steps such as normalization, 

missing value imputation, and feature embedding to ensure 

quality and consistency.  

The preprocessed data is then fed into a transformer model, 

where the self-attention mechanism captures temporal 

dependencies and inter-sensor correlations, enabling robust 

prediction of pollution trends. Finally, the model outputs fine-

grained real-time air quality predictions, which can be visualized 

as pollution maps or alerts for decision-making.  

3.1 SENSOR DEPLOYMENT AND DATA 

COLLECTION 

The first step in the proposed framework involves the 

deployment of a dense IoT-enabled CRSN across the target urban 

environment.  

Each sensor node is equipped with pollutant-specific sensing 

modules capable of measuring PM2.5, PM10, NO₂, CO, O₃, 

temperature, and humidity in real-time. These nodes 

communicate via low-power wireless protocols (e.g., LoRaWAN 

or ZigBee) to a central gateway, which aggregates the data for 

further processing.  

The spatial distribution of sensors is designed to maximize 

coverage in high-traffic areas and industrial zones, while also 

ensuring redundancy to handle potential node failures. Temporal 

resolution is configured to capture rapid fluctuations in pollutant 

concentrations, typically with measurements taken every 5–10 

minutes. 
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Table.1. Sensor Data Snapshot 

Sensor  

ID 
Location 

PM2.5  

(µg/m³) 

PM10  

(µg/m³) 

NO₂  

(ppb) 

CO  

(ppm) 

O₃  

(ppb) 

Time 

stamp 

S01 Downtown 56 82 30 0.8 45 

2025-

10-14  

10:00 

S02 Industrial 68 95 42 1.2 38 

2025-

10-14  

10:00 

S03 Residential 35 48 18 0.5 50 

2025-

10-14  

10:00 

The Table.1 provides a representative snapshot of the raw 

sensor data collected across different urban zones. These 

heterogeneous data streams form the foundation for subsequent 

preprocessing and modeling. The spatial and temporal variability 

of pollutants can be represented mathematically as: 

 ( ) ( ) ( ) ( )1 2, , , , ,..., ,mX t s x t s x t s x t s=     (1) 

where X(t,s) denotes the pollutant concentration vector at time t 

and sensor location s, and mmm represents the number of 

pollutant types. This multi-dimensional data is transmitted to the 

central processing unit for further cleaning and feature extraction. 

3.2 DATA PREPROCESSING 

Collected sensor data often contains noise, missing values, or 

outliers due to environmental interference or sensor malfunction. 

Therefore, preprocessing is critical to ensure data quality before 

feeding it into the transformer model. The preprocessing pipeline 

includes: 

• Missing Value Imputation: Linear interpolation or k-

nearest neighbor (KNN) imputation is used to fill gaps in 

sensor readings. 

• Normalization: Min-max normalization is applied to scale 

pollutant values between 0 and 1 for improved model 

convergence. 

• Feature Embedding: Each sensor reading is transformed 

into a feature vector incorporating pollutant levels, 

timestamp embeddings, and spatial coordinates. 

Table.2. Preprocessed Sensor Data 

Sensor 

ID 

PM2.5 PM10 NO₂ CO O₃ Time  

Embedding 

Location  

Embedding (norm) 

S01 0.45 0.55 0.33 0.40 0.50 0.10 [0.2, 0.3] 

S02 0.55 0.63 0.47 0.60 0.42 0.10 [0.8, 0.1] 

S03 0.28 0.32 0.20 0.25 0.55 0.10 [0.1, 0.7] 

The Table.2 illustrates the normalized and embedded sensor 

data, ready for input into the transformer network. The feature 

embedding can be expressed as: 

 
1 ,1 ,

,1 ,1 , ,

[ ,..., ]
i min im min m

i t s

max min max m min m

x x x x

x x x x

− −
=  

− −
f e e  (2) 

where 
if  is the embedded feature vector for sensor i, 

te is the 

temporal embedding, 
se is the spatial embedding, and ⊕ denotes 

concatenation. 

3.3 TRANSFORMER-BASED MODELING 

The preprocessed data is fed into a transformer network, 

which utilizes self-attention to learn complex temporal 

dependencies and spatial correlations among sensors. Unlike 

RNNs, the transformer allows parallel processing of sequences 

and effectively captures long-range dependencies, improving 

prediction accuracy. The model architecture consists of an 

encoder-decoder setup where the encoder processes historical 

pollutant sequences, and the decoder predicts future 

concentrations. Multi-head attention layers compute the 

importance of each sensor reading relative to others, enabling the 

model to weigh contributions dynamically. 

Table.3. Predicted vs Actual PM2.5 Values 

Timestamp 
Actual  

PM2.5 

Predicted  

PM2.5 

Error  

(µg/m³) 

2025-10-14 10:00 56 54 2 

2025-10-14 10:05 58 57 1 

2025-10-14 10:10 60 61 1 

The Table.3 demonstrates the transformer’s predictive 

performance, showing high accuracy and low error. The self-

attention mechanism is mathematically represented as: 

 Attention( , , ) softmax

k

QK
Q K V

d

 
=  

 
 

•

 (3) 

where Q, K, and V are query, key, and value matrices derived from 

input features, and dk is the dimensionality of the key vectors. This 

equation allows the model to learn interdependencies between all 

sensors across time efficiently. 

3.4 PREDICTION 

Once trained, the transformer outputs real-time pollutant 

forecasts for each sensor node. These predictions are aggregated 

to generate dynamic air quality maps, providing a spatially 

resolved view of urban pollution. Alerts are generated for regions 

exceeding threshold pollutant levels, enabling proactive decision-

making for environmental management. 

Table.4. Real-Time Air Quality Alert 

Location 
Predicted 

PM2.5 

AQI  

Category 

Alert  

Level 

Downtown 65 Unhealthy High 

Industrial 72 Unhealthy High 

Residential 40 Moderate Medium 

The Table.4 shows actionable insights derived from 

transformer predictions, useful for city authorities and public 

advisories. The final prediction can be formulated as: 
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 ˆ ( , ) ( )tX t t s f+ = F  (4) 

where ˆ ( , )X t t s+ is the forecasted pollutant vector at time t t+

for sensor s, and f  represents the trained transformer network 

applied to the feature sequence 
tF  . 

The model’s performance is evaluated using metrics such as 

Mean Absolute Error (MAE), Root Mean Square Error (RMSE), 

and R². Optimization involves hyperparameter tuning of attention 

heads, embedding dimensions, and learning rates to balance 

accuracy and computational efficiency. The model is also tested 

for robustness against missing sensor data and noise. 

Table.5. Model Performance Metrics 

Model MAE (µg/m³) RMSE (µg/m³) R² 

LSTM 6.1 7.8 0.82 

GRU 5.8 7.5 0.84 

Transformer 4.2 5.1 0.91 

The Table.5 highlights the superior performance of the 

transformer model over traditional deep learning approaches. 

Mathematically, MAE and RMSE are expressed as: 

 
1

1
ˆMAE | |,

n

i i

i

y y
n =

= −  (5) 

 
2

1

1
ˆRMSE ( )

n

i i

i

y y
n =

= −  (6) 

where ˆ
iy   and yi are the predicted and actual pollutant 

concentrations, respectively. 

4. EXPERIMENTS 

The experimental evaluation of the proposed transformer-

based air pollution monitoring framework was conducted using 

Python 3.11 with TensorFlow 2.13 as the primary deep learning 

library. Simulations were performed on a workstation equipped 

with an Intel Core i9-13900K CPU, 64 GB RAM, and an NVIDIA 

RTX 4090 GPU to support parallel training of high-dimensional 

IoT sensor data. The IoT-CRSN environment was emulated using 

a combination of real-world sensor datasets and synthetic data 

streams generated to simulate temporal and spatial variations in 

pollutant concentrations. Sensor readings were collected at a 5-

minute interval for PM2.5, PM10, NO₂, CO, and O₃. 

Preprocessing, feature embedding, and transformer training were 

performed on this platform, with hyperparameter tuning 

conducted using grid search and cross-validation to optimize 

model performance. The experimental setup includes both CRSN 

parameters and transformer model configurations. The Table.6 

summarizes the key parameters used in the simulation. 

Table.6.  Experimental Setup  

Parameter Value / Setting 

Number of sensors 50 

Sampling interval 5 min 

Pollutants measured PM2.5, PM10, NO₂, CO, O₃ 

Transformer encoder layers 4 

Transformer decoder layers 4 

Attention heads 8 

Embedding dimension 128 

Batch size 64 

Learning rate 0.001 

Epochs 100 

The Table.6 highlights the critical experimental settings and 

transformer configurations, which ensure reproducible results and 

robust performance evaluation. 

4.1 PERFORMANCE METRICS 

The evaluation of the proposed framework was conducted 

using metrics: 

• Mean Absolute Error (MAE): It measures the average 

magnitude of prediction errors. Lower values indicate better 

accuracy. 

1

1
ˆMAE | |

n

i i

i

y y
n =

= −  (7) 

• Root Mean Square Error (RMSE): It provides an 

aggregated measure of error magnitude, penalizing larger 

deviations. 

2

1

1
ˆRMSE ( )

n

i i

i

y y
n =

= −  (8) 

• Coefficient of Determination (R²): It represents the 

proportion of variance in the measured data explained by the 

model. 

2

2

2

ˆ( )

1
( )

i i

i

i

i

y y

R
y y

−

= −
−




 () 

• Mean Absolute Percentage Error (MAPE): It indicates 

relative prediction accuracy in percentage terms. 

 
1

ˆ100
MAPE

n
i i

i i

y y

n y=

−
=   () 

• Prediction Latency (PL): It measures the computational 

efficiency of the framework in generating real-time 

forecasts, crucial for IoT-enabled monitoring. 

4.2 DATASET 

The evaluation utilized a combination of real-world and 

synthetic datasets. Real-world data was sourced from urban air 

quality monitoring stations, comprising pollutant measurements 

over a period of 12 months. Synthetic data streams were generated 

to simulate additional sensor nodes for urban expansion scenarios. 

The Table.7 provides a brief description of the dataset. 

Table.7. Dataset Description 

Dataset Source No. of Samples Features Duration 

Real-World  

Sensor Data 
105,120 

PM2.5, PM10,  

NO₂, CO, O₃ 
12 months 
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Synthetic  

CRSN Simulation 
50,000 

PM2.5, PM10,  

NO₂, CO, O₃ 
6 months 

The Table.7 illustrates the diversity and volume of the dataset, 

combining both empirical and simulated sensor data to evaluate 

the robustness and generalizability of the proposed framework. 

For comparative evaluation, three methods: LSTM-Based 

Prediction, GRU-Based Forecasting and CNN-LSTM Hybrid 

Models. 

Table.8. Comparative Performance of Existing Methods and 

Proposed Transformer Model Across Sensor Rounds 

No. of  

Sensors 
Method 

MAE  

(µg/m³) 

RMSE  

(µg/m³) 
R² 

MAPE  

(%) 

Prediction  

Latency 

(ms) 

10 

LSTM 6.2 7.9 0.81 8.5 12 

GRU 5.9 7.6 0.83 8.1 10 

CNN-

LSTM 
5.1 6.5 0.87 7.0 18 

Proposed  

Transformer 
4.3 5.2 0.91 5.8 15 

20 
LSTM 6.5 8.2 0.80 8.8 15 

GRU 6.1 7.8 0.82 8.3 12 

CNN-

LSTM 
5.4 6.8 0.86 7.3 20 

Proposed  

Transformer 
4.5 5.4 0.90 6.0 17 

30 

LSTM 6.8 8.5 0.79 9.0 18 

GRU 6.3 8.0 0.82 8.5 14 

CNN-

LSTM 
5.6 7.0 0.85 7.5 23 

Proposed  

Transformer 
4.7 5.6 0.89 6.2 18 

40 

LSTM 7.0 8.8 0.78 9.3 20 

GRU 6.5 8.2 0.81 8.8 16 

CNN-

LSTM 
5.8 7.2 0.84 7.8 25 

Proposed  

Transformer 
4.9 5.8 0.88 6.5 20 

50 

LSTM 7.2 9.0 0.77 9.5 22 

GRU 6.7 8.4 0.80 9.0 18 

CNN-

LSTM 
6.0 7.5 0.83 8.0 28 

Proposed  

Transformer 
5.1 6.0 0.87 6.8 22 

Table.9. Comparative Performance of Existing Methods and Proposed Transformer Model on Real and Synthetic Datasets 

Dataset Method Pollutant MAE RMSE R² 
MAPE  

(%) 

Prediction  

Latency (ms) 

Real- 

World  

Sensor  

Data 

LSTM 

PM2.5 

6.1 7.8 0.82 8.5 12 

GRU 5.8 7.5 0.84 8.1 10 

CNN-LSTM 5.0 6.4 0.87 7.0 18 

Proposed Transformer 4.2 5.1 0.91 5.8 15 

LSTM 

PM10 

7.0 8.5 0.81 9.0 12 

GRU 6.6 8.1 0.83 8.5 10 

CNN-LSTM 5.8 7.0 0.86 7.2 18 

Proposed Transformer 4.8 5.7 0.90 6.3 15 

LSTM 

NO₂ 

4.5 5.8 0.80 7.5 12 

GRU 4.2 5.5 0.82 7.1 10 

CNN-LSTM 3.8 5.0 0.85 6.5 18 

Proposed Transformer 3.2 4.2 0.90 5.0 15 

LSTM 

CO 

0.9 1.2 0.79 6.5 12 

GRU 0.8 1.1 0.81 6.0 10 

CNN-LSTM 0.7 0.9 0.85 5.2 18 

Proposed Transformer 0.6 0.8 0.90 4.5 15 

LSTM 

O₃ 

5.5 6.8 0.78 7.8 12 

GRU 5.2 6.4 0.80 7.3 10 

CNN-LSTM 4.7 5.5 0.84 6.5 18 

Proposed Transformer 3.9 4.6 0.89 5.5 15 

Synthetic  

CRSN  

Simulation 

LSTM 

PM2.5 

6.5 8.2 0.80 8.8 15 

GRU 6.1 7.8 0.82 8.3 12 

CNN-LSTM 5.4 6.8 0.86 7.3 20 
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Proposed Transformer 4.5 5.4 0.90 6.0 17 

LSTM 

PM10 

7.2 8.7 0.79 9.2 15 

GRU 6.7 8.2 0.81 8.7 12 

CNN-LSTM 6.0 7.5 0.84 8.0 20 

Proposed Transformer 5.1 6.0 0.87 6.8 17 

LSTM 

NO₂ 

4.8 6.0 0.78 7.9 15 

GRU 4.4 5.7 0.80 7.4 12 

CNN-LSTM 3.9 5.2 0.83 6.8 20 

Proposed Transformer 3.3 4.5 0.88 5.3 17 

LSTM 

CO 

1.0 1.3 0.77 6.7 15 

GRU 0.9 1.2 0.79 6.2 12 

CNN-LSTM 0.8 1.0 0.83 5.5 20 

Proposed Transformer 0.6 0.8 0.88 4.6 17 

LSTM 

O₃ 

5.8 7.1 0.76 8.0 15 

GRU 5.4 6.6 0.78 7.6 12 

CNN-LSTM 4.9 5.7 0.82 6.8 20 

Proposed Transformer 4.0 4.8 0.87 5.6 17 

The performance evaluation of the proposed transformer-

based air pollution monitoring framework was conducted using 

both real-world sensor data and synthetic CRSN simulations. The 

experimental results, summarized in Table.3 and Table.4, 

demonstrate the superior predictive capability and robustness of 

the transformer model compared to conventional methods 

including LSTM, GRU, and CNN-LSTM. Across all 

experiments, the transformer model consistently achieved lower 

MAE and RMSE values, higher R², and lower MAPE, 

highlighting its effectiveness in modeling complex 

spatiotemporal dependencies among multiple pollutants. 

Analyzing the sensor round experiments presented in Table.3, 

it is evident that as the number of sensors increases from 10 to 50, 

all models experience a gradual increase in MAE and RMSE due 

to the higher data complexity and potential sensor noise. For 

instance, the LSTM model’s MAE increased from 6.2 µg/m³ to 

7.2 µg/m³, while the GRU model’s MAE increased from 

5.9 µg/m³ to 6.7 µg/m³. In comparison, the transformer’s MAE 

increased only from 4.3 µg/m³ to 5.1 µg/m³, maintaining superior 

predictive accuracy even under larger sensor deployments. 

Similarly, RMSE values demonstrate a similar trend, with the 

transformer consistently showing the lowest values across all 

sensor rounds (5.2–6.0 µg/m³), indicating better handling of 

outliers and extreme pollutant variations. 

R² values also highlight the transformer’s robustness, 

maintaining values above 0.87 even for 50 sensors, whereas 

LSTM and GRU drop below 0.80 in high-density scenarios. This 

suggests that the transformer effectively captures long-range 

temporal dependencies and inter-sensor spatial correlations, 

which conventional recurrent models struggle to handle. MAPE 

values, reflecting relative prediction errors, remained below 7% 

for the transformer across all sensor rounds, compared to up to 

9.5% for LSTM at 50 sensors, indicating superior reliability in 

urban monitoring contexts. Additionally, the prediction latency 

for the transformer remained competitive (15–22 ms), slightly 

higher than GRU but substantially lower than CNN-LSTM, that 

shows its feasibility for real-time applications in IoT networks. 

The results from the pollutant-specific evaluation across real-

world and synthetic datasets, summarized in Table.4, further 

reinforce these conclusions. For PM2.5, a critical pollutant with 

high health impact, the transformer achieved MAE values of 

4.2 µg/m³ (real) and 4.5 µg/m³ (synthetic), significantly 

outperforming LSTM (6.1–6.5 µg/m³) and GRU (5.8–6.1 µg/m³). 

PM10 results show a similar trend, with transformer MAE values 

of 4.8–5.1 µg/m³, reflecting its ability to handle particulate 

pollution, which exhibits both local and regional variability. For 

gaseous pollutants like NO₂, CO, and O₃, the transformer also 

demonstrates consistent superiority. For example, NO₂ MAE 

reduced to 3.2 µg/m³ in real-world datasets, compared to 

4.5 µg/m³ for LSTM, while CO MAE reached only 0.6 ppm 

versus 0.9 ppm for LSTM. These reductions are significant in 

real-world monitoring, where small deviations can affect health 

risk assessment and policy decisions. 

R² values for all pollutants consistently remained above 0.87 

for the transformer, compared to 0.76–0.84 for conventional 

models, confirming enhanced model explainability and fit. MAPE 

improvements are also notable, with transformer errors reduced 

by approximately 20–30% relative to LSTM and GRU across all 

pollutants. The low prediction latency (15–17 ms) ensures that the 

system can generate timely air quality alerts for both high-density 

sensor networks and real-world urban monitoring, which is 

crucial for actionable decision-making. 

Another key observation from the synthetic CRSN simulation 

is the model’s ability to maintain performance under increased 

network density. As the number of synthetic sensors increased, 

conventional models exhibited greater degradation in MAE and 

RMSE due to difficulty in modeling the higher dimensional data. 

In contrast, the transformer maintained relatively stable 

performance, that shows its scalability and suitability for smart 

city implementations where high-density CRSN deployments are 

increasingly common. The self-attention mechanism allows the 
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model to weigh contributions from all sensors dynamically, 

effectively mitigating noise and redundancy, which explains the 

improved R² and reduced MAPE even in dense networks. 

The experimental analysis confirms that the transformer-

based framework provides a robust and scalable solution for IoT-

enabled air pollution monitoring. The model’s ability to 

consistently achieve lower error rates, maintain high R² values, 

and provide real-time predictions across multiple pollutants and 

sensor densities highlights its practical applicability in urban 

environmental monitoring and public health management. The 

comparative analysis validates the significant advantages of 

integrating self-attention mechanisms over conventional recurrent 

architectures for both temporal and spatiotemporal pollution 

prediction. 

5. CONCLUSION 

In this study, a transformer-based deep learning framework 

was proposed for real-time air pollution monitoring using IoT-

enabled Cognitive Radio-Based Sensor Networks. Experimental 

evaluation on both real-world sensor datasets and synthetic CRSN 

simulations demonstrated that the proposed model significantly 

outperforms conventional methods including LSTM, GRU, and 

CNN-LSTM. Across all sensor densities and pollutants, the 

transformer achieved lower MAE and RMSE, higher R², and 

reduced MAPE, while maintaining competitive prediction latency 

suitable for real-time applications. The results confirm that the 

self-attention mechanism effectively captures long-range 

temporal dependencies and inter-sensor spatial correlations, 

ensuring robustness and scalability in dense urban environments. 

By providing accurate and timely pollutant forecasts, the 

proposed framework facilitates informed decision-making for 

urban planning, public health advisories, and environmental 

management. This study establishes transformer-based modeling 

as a promising solution for next-generation IoT-enabled air 

quality monitoring systems that addresses the limitations of 

traditional recurrent approaches and advancing the state-of-the-art 

in smart environmental monitoring. 
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