HYBRID META-HEURISTIC SOFT COMPUTING FRAMEWORK FOR PREDICTING ENVIRONMENTAL POLLUTANTS AND OPTIMIZING BIOREMEDIATION EFFICIENCY

K. Padmapriya

Department of Computer Science and Engineering, R.M.D Engineering College, India

Abstract

Environmental contamination due to industrial effluents, agricultural runoff, and urbanization has become a critical global concern. Accurate prediction of pollutant levels and assessment of biological remediation potential are essential for sustainable environmental management and public health protection. Traditional modeling approaches often struggle with complex, nonlinear interactions between contaminants and biological remediation agents. Conventional computational models frequently exhibit limitations in capturing the dynamic and stochastic nature of environmental systems. Moreover, existing prediction techniques may fail to optimize bioremediation strategies effectively, leading to inefficiencies in pollutant removal and prolonged environmental recovery times. In this study, we propose a hybrid soft computing framework integrating a novel meta-heuristic optimization algorithm with fuzzy logic and artificial neural networks. The meta-heuristic component efficiently tunes the parameters of the predictive models, while the fuzzy logic handles uncertainties inherent in environmental data. The framework was trained and validated using multi-source datasets comprising heavy metals, organic pollutants, and microbial remediation efficiency metrics. Comparative analysis with conventional machine learning models and standalone soft computing techniques was conducted to evaluate predictive accuracy and optimization performance. The proposed hybrid model showd superior predictive performance, achieving a mean absolute error (MAE) reduction of 18-25% compared to traditional models. Biological remediation efficiency predictions exhibited a 92% correlation with experimental observations, outperforming standalone neural networks and fuzzy inference models by 12–15%. The meta-heuristic optimization successfully identified optimal remediation strategies, reducing predicted contaminant levels by up to 35% under simulated intervention scenarios.

Keywords:

Environmental Contaminants, Bioremediation, Hybrid Soft Computing, Meta-Heuristic Optimization, Predictive Modeling

1. INTRODUCTION

Environmental pollution has become a pressing global challenge due to rapid industrialization, urban expansion, and intensive agricultural activities [1–3]. Contaminants such as heavy metals, organic pollutants, and emerging synthetic chemicals persist in soil, water, and air, posing significant risks to ecosystems and human health. Traditional monitoring and remediation approaches, while useful, often fail to capture the complex interactions among pollutants and the biological systems responsible for their degradation. Recent advances in computational modeling and soft computing techniques offer promising avenues to predict pollutant behavior and optimize remediation strategies more effectively.

Despite these advances, several challenges remain. First, environmental systems are inherently nonlinear and dynamic,

with uncertainties arising from variations in pollutant sources, environmental conditions, and microbial activity [4]. Second, conventional prediction models often struggle to accommodate incomplete or noisy datasets, leading to inaccuracies in contaminant forecasting and remediation planning [5]. These limitations highlight the need for robust computational frameworks capable of integrating heterogeneous data, managing uncertainty, and adapting to complex environmental dynamics.

The core problem lies in the limited ability of existing models to simultaneously predict pollutant concentrations and evaluate the efficiency of biological remediation strategies under varying environmental scenarios [6]. Most models either focus on contaminant prediction or remediation optimization, without effectively coupling both objectives. Furthermore, parameter tuning in predictive models is often manual or heuristic, which may result in suboptimal remediation recommendations [7]. This gap underscores the necessity for hybrid approaches that combine predictive modeling with optimization algorithms to achieve accurate and actionable insights.

The primary objective of this study is to develop a hybrid soft computing framework that integrates a novel meta-heuristic optimization algorithm with neural networks and fuzzy logic systems. This approach aims to predict environmental contaminant levels accurately while simultaneously optimizing bioremediation strategies. The proposed framework leverages the strengths of meta-heuristic algorithms in global optimization, neural networks in modeling complex nonlinear patterns, and fuzzy logic in handling uncertainty, thereby offering a comprehensive tool for environmental decision-making.

The novelty of this research lies in its synergistic integration of these techniques, enabling both high-accuracy prediction and optimized remediation under uncertain and dynamic conditions. Unlike conventional approaches, the framework provides actionable insights for environmental managers by linking contaminant forecasts with remediation strategy recommendations.

The contributions of this study are twofold. First, it presents a hybrid meta-heuristic soft computing framework capable of accurately predicting pollutant concentrations across multiple environmental compartments. Second, it shows the application of the framework in optimizing biological remediation processes, providing a data-driven, adaptive tool for sustainable environmental management.

2. RELATED WORKS

Recent years have witnessed significant advancements in computational approaches for predicting environmental contaminants and optimizing biological remediation processes.

Traditional statistical models, though foundational, often fail to capture the complex nonlinear interactions present in environmental systems. To overcome these limitations, researchers have increasingly turned to soft computing techniques such as fuzzy logic, artificial neural networks (ANNs), and hybrid models, which offer flexibility in handling uncertainty and nonlinearities [8].

Fuzzy logic has been widely employed to address the inherent uncertainty and imprecision in environmental data. Several studies showd its efficacy in predicting pollutant levels in air, water, and soil under variable environmental conditions [8]. By translating linguistic knowledge into computational rules, fuzzy systems allow for the incorporation of expert knowledge alongside empirical data, improving predictive reliability. However, standalone fuzzy models often require manual tuning of membership functions and rules, which can limit their scalability for large, heterogeneous datasets.

Artificial neural networks have been extensively applied to model complex environmental processes due to their ability to approximate highly nonlinear relationships. For instance, ANNs have been used to predict heavy metal concentrations in contaminated water and soil, as well as to estimate microbial remediation efficiency under varying environmental factors [9]. While neural networks exhibit strong predictive capability, they are prone to overfitting and require careful selection of hyperparameters, which can be computationally intensive.

Hybrid modeling frameworks have emerged as a promising solution to combine the strengths of multiple techniques. For example, integrating fuzzy logic with neural networks—often referred to as neuro-fuzzy systems—has shown improved prediction accuracy in pollutant modeling, particularly in cases where uncertainty and nonlinearity coexist [10]. These hybrid approaches benefit from the learning capability of neural networks and the interpretability of fuzzy logic, providing both precise predictions and understandable decision rules.

Meta-heuristic algorithms have also gained attention for optimizing environmental models and remediation strategies. Algorithms inspired by natural processes, such as particle swarm optimization, genetic algorithms, and recently developed nature-inspired heuristics, have been employed to fine-tune model parameters and identify optimal remediation interventions [11]. These algorithms can efficiently search large, complex solution spaces, overcoming the limitations of conventional gradient-based optimization techniques.

Recent studies have explored fully integrated frameworks that combine predictive modeling with meta-heuristic optimization. Such approaches not only predict contaminant levels but also generate actionable strategies for pollutant removal, demonstrating superior performance compared to standalone models [12]. For example, hybrid frameworks employing evolutionary algorithms to optimize ANN parameters have shown significant improvements in prediction accuracy for both chemical pollutants and biological remediation efficiency.

Despite these advancements, there remain critical gaps in current research. Most existing studies focus on single contaminants or isolated remediation techniques, limiting their generalizability to real-world multi-pollutant environments [13]. Additionally, many frameworks do not adequately account for uncertainties inherent in environmental datasets or the stochastic

nature of microbial degradation processes. Addressing these gaps requires the development of adaptive, hybrid frameworks that integrate meta-heuristic optimization with soft computing models capable of handling multiple objectives simultaneously.

3. PROPOSED METHOD

The proposed approach is a hybrid soft computing framework designed to accurately predict environmental contaminant levels and optimize biological remediation efficiency. It integrates a novel meta-heuristic optimization algorithm with ANNs and fuzzy logic to handle nonlinearities, uncertainties, and complex interactions in environmental data. The meta-heuristic component automatically tunes model parameters for optimal predictive performance, while the fuzzy logic system incorporates expert knowledge to manage uncertainty in pollutant and remediation datasets. This combination enables both accurate forecasting of contaminant concentrations and identification of effective remediation strategies.

3.1 DATA COLLECTION AND PREPROCESSING

The first step in the proposed framework involves collecting multi-source environmental datasets, encompassing chemical, physical, and biological parameters. Contaminant data may include heavy metals (e.g., lead, cadmium), organic pollutants (e.g., pesticides, dyes), and physicochemical attributes such as pH, temperature, and dissolved oxygen. Biological remediation efficiency data includes microbial biomass, enzyme activity, and degradation rates. Raw data often contain missing values, outliers, or inconsistencies due to sensor errors or environmental variability, necessitating preprocessing. Techniques such as normalization, interpolation, and outlier removal are applied to standardize the data, ensuring compatibility with soft computing models.

Table.1. Preprocessed Environmental Dataset

ID	pН	Temperature (°C)	Lead (mg/L)	Cadmium (mg/L)	Microbial Degradation (%)
S1	7.2	25	0.45	0.08	62
S2	6.8	27	0.50	0.10	58
S3	7.0	26	0.42	0.07	65

The Table.1 illustrates a of the preprocessed dataset used for modeling. Data normalization is performed using:

$$X' = \frac{X - X_{\min}}{X_{\max} - X_{\min}} \tag{1}$$

where X is the original feature value, X_{\min} and X_{\max} are the minimum and maximum of the feature, and X' is the normalized value used in the ANN and fuzzy models.

3.2 FUZZY LOGIC MODELING

Fuzzy logic is employed to manage uncertainties and vagueness in environmental datasets, such as imprecise microbial activity or fluctuating pollutant concentrations. Linguistic variables are defined for each parameter for instance, "Low," "Medium," and "High" for heavy metal concentration or

remediation efficiency. Membership functions are formulated, and fuzzy rules are constructed to relate contaminant levels to expected biological remediation performance.

Table.2. Fuzzy Rule Base

Rule ID	Lead Level	Cadmium Level	Microbial Activity	Remediation Efficiency
R1	Low	Low	High	High
R2	Medium	Low	Medium	Medium
R3	High	Medium	Low	Low

Table.2 shows an example fuzzy rule base. Fuzzy inference is applied using the Mamdani approach, where the output is computed as:

$$\mu_E(y) = \max_i \left(\min(\mu_{Lead}(x_1), \mu_{Cd}(x_2), \mu_{Microbial}(x_3)) \right)$$
 (2)

where, $\mu_E(y)$ is the membership value of the output remediation efficiency, $\mu_{Lead_i}(x_1)$, $\mu_{Microbial_i}(x_3)$) and $\mu_{Cd_i}(x_2)$ are the membership values of each input parameter for rule i. The defuzzified output provides a crisp estimation of remediation performance.

3.3 NEURAL NETWORK PREDICTION

ANNs model the nonlinear relationships between environmental factors and contaminant behavior. The preprocessed input features (chemical concentrations, pH, temperature) are fed into the ANN, which consists of an input layer, hidden layers with nonlinear activation functions, and an output layer predicting contaminant concentrations or remediation efficiency. The network is trained using backpropagation to minimize prediction error.

Table.3. ANN Architecture

Layer	Neurons	Activation Function		
Input	5	Linear		
Hidden 1	10	ReLU		
Hidden 2	8	Sigmoid		
Output	1	Linear		

The Table.3 describes a representative ANN structure. The ANN is trained to minimize the Mean Squared Error (MSE):

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$
 (3)

where y_i is the actual value of remediation efficiency, \hat{y}_i is the predicted value, and n is the number of samples.

3.4 META-HEURISTIC OPTIMIZATION

A novel meta-heuristic algorithm is used to optimize the parameters of the ANN and fuzzy system, including weights, biases, membership functions, and rule importance. The algorithm simulates a population-based search to explore the solution space and identify parameter combinations that maximize prediction accuracy and remediation effectiveness. Fitness is evaluated using a combined objective function:

$$MAEF = w_1 (1 - R^2) + w_2$$
 (4)

where R^2 is the coefficient of determination of the ANN predictions, MAE is the mean absolute error, and w_1 , w_2 are weighting factors balancing accuracy and error minimization.

Table.4. Optimized Parameters

Parameter	Initial Value		Improvement (%)
ANN Hidden 1 Neurons	10	12	20
Learning Rate	0.01	0.008	20
Membership Function Width	0.5	0.35	30

The Table.4 shows optimized parameters after meta-heuristic tuning, showing improved model performance.

3.5 DECISION SUPPORT

The hybrid framework is validated using unseen datasets, and its predictions are compared against conventional models using metrics such as MAE, RMSE, and correlation coefficient. Once validated, the model provides actionable recommendations for environmental remediation, such as optimal microbial strain selection, contaminant-specific intervention strategies, and predicted removal efficiency.

Table.5. Model Performance Comparison

Model	MAE	RMSE	R ²
ANN Only	5.2	6.8	0.81
Fuzzy Only	6.0	7.5	0.77
Proposed Hybrid Model	3.9	5.1	0.92

The Table.5 shows that the hybrid framework outperforms standalone models, confirming the effectiveness of integrating fuzzy logic, ANN, and meta-heuristic optimization. The final output is a robust, data-driven decision-support tool for environmental monitoring and remediation planning.

4. RESULTS AND DISCUSSION

The experimental evaluation of the proposed hybrid metaheuristic soft computing framework was conducted using a combination of simulation and computational experiments. The predictive models were implemented in Python 3.11, utilizing libraries such as TensorFlow for neural networks, scikit-fuzzy for fuzzy logic operations, and custom scripts for the novel metaheuristic optimization algorithm. All computations were performed on a workstation equipped with an Intel Core i9-13900K CPU, 32 GB RAM, and an NVIDIA RTX 4080 GPU to accelerate ANN training and optimization processes.

Table.6. Parameters

Parameter	Value / Range
Heavy Metal Concentration (Pb)	0.1-1.0 mg/L
Organic Pollutants (Dye)	0.05-0.8~mg/L
pН	5 – 9

Temperature	20 − 35 °C
Microbial Biomass	0.2 - 1.0 g/L
ANN Hidden Layers	2
Hidden Layer Neurons	8–12
Learning Rate	0.001 - 0.01
Meta-Heuristic Population Size	30
Iterations / Generations	100

The Table.6 summarizes the key parameters used for simulation, model training, and optimization. These values were selected based on literature ranges and preliminary tuning experiments.

4.1 PERFORMANCE METRICS

The framework was evaluated using five performance metrics:

• Mean Absolute Error (MAE): It measures the average magnitude of prediction errors without considering direction.

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |y_i - \hat{y}_i|$$
 (5)

• Root Mean Squared Error (RMSE): It captures the square root of the average squared differences between predicted and actual values, emphasizing larger errors.

$$RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2}$$
 (6)

• Coefficient of Determination (R²): It represents the proportion of variance in the observed data explained by the model.

$$R^{2} = 1 - \frac{\sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i=1}^{n} (y_{i} - \overline{y})^{2}}$$
(7)

• Mean Absolute Percentage Error (MAPE): It provides error as a percentage of observed values, useful for comparing performance across different scales.

$$MAPE = \frac{100}{n} \sum_{i=1}^{n} \frac{|y_i - \hat{y}_i|}{y_i}$$
 (8)

• Optimization Convergence Rate (OCR): It indicates the efficiency of the meta-heuristic algorithm in reaching an optimal solution. It is measured as the number of iterations required to achieve a stable objective function value.

4.2 DATASET DESCRIPTION

The dataset is comprised of a laboratory-generated measurements and historical environmental monitoring data. Data included heavy metals (Pb, Cd, Hg), organic pollutants (dyes, pesticides), physicochemical parameters (pH, temperature, dissolved oxygen), and microbial remediation metrics (biomass, enzyme activity, degradation percentage).

Table.7. Dataset Overview

ID	Pb (mg/L)	Cd (mg/L)	Dye (mg/L)	pН	Temp (°C)	Microbial Biomass (g/L)	Degradation (%)
S1	0.45	0.08	0.12	7.2	25	0.6	62
S2	0.50	0.10	0.15	6.8	27	0.5	58
S3	0.42	0.07	0.10	7.0	26	0.7	65

The Table.7 shows the variety and scale of the dataset used for model training and validation, ensuring the framework captures realistic environmental conditions.

Several prior approaches have been employed for contaminant prediction and bioremediation optimization:

- Neural Network-Based Prediction: Standalone ANN models have been applied to predict heavy metal concentrations with moderate accuracy, but they often require manual hyperparameter tuning [8].
- Fuzzy Inference Systems: Fuzzy logic models handle uncertainty in remediation efficiency but lack adaptability to large datasets and optimization capability [9].
- Genetic Algorithm-Optimized Models: GA-based hybrid frameworks combine optimization with prediction but may converge slowly and get trapped in local minima [10].

Table.8. Performance Metrics Comparison Between Existing Methods and Proposed Hybrid Method

Iteration	Method	MAE	RMSE	R²	MAPE (%)	OCR
	ANN Only	5.8	7.2	0.78	12.5	10
10	Fuzzy Only	6.3	7.9	0.74	14.1	11
10	GA-Optimized	5.5	7.0	0.79	12.0	9
	Proposed Hybrid	4.1	5.3	0.91	8.2	7
	ANN Only	5.6	7.0	0.79	12.1	11
20	Fuzzy Only	6.1	7.7	0.75	13.8	12
20	GA-Optimized	5.3	6.8	0.80	11.7	10
	Proposed Hybrid	4.0	5.2	0.92	8.0	7
	ANN Only	5.4	6.9	0.80	11.9	12
30	Fuzzy Only	5.9	7.5	0.76	13.5	12
30	GA-Optimized	5.1	6.6	0.81	11.4	10
	Proposed Hybrid	3.9	5.1	0.92	7.8	7
	ANN Only	5.3	6.8	0.81	11.7	12
40	Fuzzy Only	5.8	7.4	0.77	13.3	12
40	GA-Optimized	5.0	6.5	0.82	11.2	10
	ANN Only 5.8 7.2 Fuzzy Only 6.3 7.9 GA-Optimized 5.5 7.0 Proposed Hybrid 4.1 5.3 ANN Only 5.6 7.0 Fuzzy Only 6.1 7.7 GA-Optimized 5.3 6.8 Proposed Hybrid 4.0 5.2 ANN Only 5.4 6.9 Fuzzy Only 5.9 7.5 GA-Optimized 5.1 6.6 Proposed Hybrid 3.9 5.1 ANN Only 5.3 6.8 Fuzzy Only 5.3 6.8 Fuzzy Only 5.3 6.8	0.93	7.6	7		
	ANN Only	5.2	6.7	0.81	11.5	12
50	Fuzzy Only	5.7	7.3	0.77	13.1	12
30	GA-Optimized	4.9	6.4	0.83	11.0	10
	Proposed Hybrid	3.8	4.9	0.93	7.5	7
	ANN Only	5.1	6.6	0.82	11.3	12
60	Fuzzy Only	5.6	7.2	0.78	12.9	12
	GA-Optimized	4.8	6.3	0.83	10.9	10

Proposed Hybrid	3.7	4.8	0.94	7.3	7
ANN Only	5.0	6.5	0.82	11.1	12
Fuzzy Only	5.5	7.1	0.78	12.7	12
GA-Optimized	4.7	6.2	0.84	10.7	10
Proposed Hybrid	3.6	4.7	0.94	7.1	7
ANN Only	4.9	6.4	0.82 11.1 0.78 12.7 0.84 10.7 0.94 7.1 0.83 10.9 0.79 12.5 0.84 10.5 0.95 7.0 0.83 10.8 0.79 12.3 0.85 10.4 0.95 6.9 0.84 10.7	12	
Fuzzy Only	5.4	7.0	0.79	12.5	12
GA-Optimized	4.6	6.1	0.84	10.5	10
Proposed Hybrid	3.5	4.6	.5 0.82 11.1 .1 0.78 12.7 .2 0.84 10.7 .7 0.94 7.1 .4 0.83 10.9 .0 0.79 12.5 .1 0.84 10.5 .6 0.95 7.0 .3 0.83 10.8 .9 0.79 12.3 .0 0.85 10.4 .5 0.95 6.9 .2 0.84 10.7 .8 0.80 12.1 .9 0.85 10.2	7	
ANN Only	4.9	6.3	0.83	10.8	12
Fuzzy Only	5.3	6.9	0.79	12.3	12
GA-Optimized	4.5	6.0	0.85	10.4	10
Proposed Hybrid	3.5	4.5	0.95	6.9	7
ANN Only	4.8	6.2	0.84	10.7	12
Fuzzy Only	5.2	6.8	0.80	12.1	12
ANN Only 5.0 6.5 0.1 Fuzzy Only 5.5 7.1 0.7 GA-Optimized 4.7 6.2 0.7 Proposed Hybrid 3.6 4.7 0.9 ANN Only 4.9 6.4 0.7 Fuzzy Only 5.4 7.0 0.7 GA-Optimized 4.6 6.1 0.7 Proposed Hybrid 3.5 4.6 0.7 ANN Only 4.9 6.3 0.7 Fuzzy Only 5.3 6.9 0.7 GA-Optimized 4.5 6.0 0.7 Proposed Hybrid 3.5 4.5 0.7 ANN Only 4.8 6.2 0.7 Fuzzy Only 5.2 6.8 0.7 GA-Optimized 4.4 5.9 0.7	0.85	10.2	10		
Proposed Hybrid	3.4	4.4	0.96	6.8	7
	ANN Only Fuzzy Only GA-Optimized Proposed Hybrid ANN Only Fuzzy Only GA-Optimized	ANN Only 5.0 Fuzzy Only 5.5 GA-Optimized 4.7 Proposed Hybrid 3.6 ANN Only 4.9 Fuzzy Only 5.4 GA-Optimized 4.6 Proposed Hybrid 3.5 ANN Only 4.9 Fuzzy Only 5.3 GA-Optimized 4.5 Proposed Hybrid 3.5 ANN Only 4.9 Fuzzy Only 5.3 GA-Optimized 4.5 Proposed Hybrid 3.5 ANN Only 4.8 Fuzzy Only 5.2 GA-Optimized 4.4	ANN Only 5.0 6.5 Fuzzy Only 5.5 7.1 GA-Optimized 4.7 6.2 Proposed Hybrid 3.6 4.7 ANN Only 4.9 6.4 Fuzzy Only 5.4 7.0 GA-Optimized 4.6 6.1 Proposed Hybrid 3.5 4.6 ANN Only 4.9 6.3 Fuzzy Only 5.3 6.9 GA-Optimized 4.5 6.0 Proposed Hybrid 3.5 4.5 ANN Only 4.8 6.2 Fuzzy Only 5.2 6.8 GA-Optimized 4.4 5.9	ANN Only 5.0 6.5 0.82 Fuzzy Only 5.5 7.1 0.78 GA-Optimized 4.7 6.2 0.84 Proposed Hybrid 3.6 4.7 0.94 ANN Only 4.9 6.4 0.83 Fuzzy Only 5.4 7.0 0.79 GA-Optimized 4.6 6.1 0.84 Proposed Hybrid 3.5 4.6 0.95 ANN Only 4.9 6.3 0.83 Fuzzy Only 5.3 6.9 0.79 GA-Optimized 4.5 6.0 0.85 Proposed Hybrid 3.5 4.5 0.95 ANN Only 4.8 6.2 0.84 Fuzzy Only 5.2 6.8 0.80 GA-Optimized 4.4 5.9 0.85	ANN Only 5.0 6.5 0.82 11.1 Fuzzy Only 5.5 7.1 0.78 12.7 GA-Optimized 4.7 6.2 0.84 10.7 Proposed Hybrid 3.6 4.7 0.94 7.1 ANN Only 4.9 6.4 0.83 10.9 Fuzzy Only 5.4 7.0 0.79 12.5 GA-Optimized 4.6 6.1 0.84 10.5 Proposed Hybrid 3.5 4.6 0.95 7.0 ANN Only 4.9 6.3 0.83 10.8 Fuzzy Only 5.3 6.9 0.79 12.3 GA-Optimized 4.5 6.0 0.85 10.4 Proposed Hybrid 3.5 4.5 0.95 6.9 ANN Only 4.8 6.2 0.84 10.7 Fuzzy Only 5.2 6.8 0.80 12.1 GA-Optimized 4.4 5.9 0.85 10.2

4.3 DISCUSSION OF RESULTS

The experimental evaluation shows the superior performance of the proposed hybrid meta-heuristic soft computing framework compared to existing methods, including ANN, fuzzy logic systems, and GA-optimized models. The Table.3 presents the performance metrics for all methods across 100 iteration rounds in steps of 10.

Examining MAE values, the ANN-only model exhibited an initial MAE of 5.8 at iteration 10, which gradually reduced to 4.8 by iteration 100. Fuzzy-only models showed a slightly higher MAE range from 6.3 to 5.2, reflecting their lower predictive precision. GA-optimized models improved over standalone models, with MAE decreasing from 5.5 to 4.4. In contrast, the proposed hybrid framework achieved the lowest MAE of 4.1 at iteration 10, steadily decreasing to 3.4 at iteration 100, indicating faster convergence and higher accuracy. This shows the framework's effectiveness in accurately modeling complex nonlinear relationships between environmental contaminants and bioremediation efficiency (Table.3).

RMSE trends further validate these observations. The proposed hybrid model reduced RMSE from 5.3 to 4.4, outperforming ANN-only (7.2 \rightarrow 6.2), Fuzzy-only (7.9 \rightarrow 6.8), and GA-optimized (7.0 \rightarrow 5.9) methods. The lower RMSE highlights the hybrid model's ability to minimize large prediction errors, particularly in high-concentration pollutant scenarios, where conventional models often underperform.

The coefficient of determination (R²) illustrates the proportion of variance captured by each model. While ANN-only and Fuzzy-only models attained R² values of 0.78–0.84 and 0.74–0.80, respectively, GA-optimized models reached 0.79–0.85. Remarkably, the proposed hybrid model achieved R² values ranging from 0.91 at iteration 10 to 0.96 at iteration 100, confirming its strong predictive power and reliability in estimating remediation efficiency across diverse environmental conditions (Table.3).

MAPE values reveal that the hybrid framework maintains the lowest percentage error, decreasing from 8.2% to 6.8%, compared to 12.5–10.7% (ANN), 14.1–12.1% (Fuzzy), and 12.0–10.2% (GA). This indicates consistent and accurate predictions relative to actual measurements, which is critical for actionable environmental decision-making.

Finally, the Optimization Convergence Rate (OCR) highlights the efficiency of the meta-heuristic algorithm in reaching stable solutions. The hybrid model consistently converged within 7 iterations, whereas GA-optimized models required 10 iterations, and standalone ANN and Fuzzy models needed 12 iterations. This confirms the hybrid framework's ability to efficiently search the solution space while simultaneously optimizing model parameters and remediation strategies.

Thus, the numerical analysis from Table.3 shows that the integration of fuzzy logic, ANN, and meta-heuristic optimization enables superior performance by combining uncertainty handling, nonlinear modeling capability, and efficient parameter tuning. The framework not only predicts pollutant concentrations more accurately but also identifies optimal bioremediation strategies with higher reliability and reduced computational cost.

5. CONCLUSION

This study presents a hybrid meta-heuristic soft computing framework for predicting environmental contaminants and optimizing biological remediation efficiency. The integration of neural networks, fuzzy logic, and a novel meta-heuristic optimization algorithm allows the framework to handle nonlinearities, uncertainties, and complex interactions inherent in environmental systems. Experimental evaluations over 100 iteration rounds show that the proposed method outperforms standalone ANN, Fuzzy-only, and GA-optimized models across all metrics, including MAE, RMSE, R², MAPE, and optimization convergence rate. The results confirm that the hybrid framework achieves higher prediction accuracy, faster convergence, and more reliable optimization of remediation strategies. This provides actionable insights for environmental management and decision-making, particularly in multi-pollutant scenarios. By combining predictive modeling with optimization, the proposed approach offers a robust, scalable, and adaptive solution for sustainable pollution monitoring and bioremediation planning. The study highlights the potential of hybrid soft computing approaches to transform environmental informatics and support effective interventions in complex ecological systems.

REFERENCES

- [1] S.I. Abba, H.C. Kilinc, M.L. Tan, V. Demir, I. Ahmadianfar, B. Halder and Z.M. Yaseen, "Bio-Communal Wastewater Treatment Plant Real-Time Modeling using an Intelligent Meta-Heuristic Approach: A Sustainable and Green Ecosystem", *Journal of Water Process Engineering*, Vol. 53, pp. 1-7, 2023.
- [2] U.M. Ismail, K. Bani-Melhem, M.F. Khan and H. Elnakar, "Optimizing Membrane Bioreactor Performance in Wastewater Treatment using Machine Learning and Meta-Heuristic Techniques", *Results in Engineering*, Vol. 25, pp. 1-12, 2025.

- [3] H. Khoshdast, A. Gholami, A. Hassanzadeh, T. Niedoba and A. Surowiak, "Advanced Simulation of Removing Chromium from a Synthetic Wastewater by Rhamnolipidic Bioflotation using Hybrid Neural Networks with Metaheuristic Algorithms", *Materials*, Vol. 14, No. 11, pp. 1-24, 2021.
- [4] M.A. Abdelkareem, S.I. Alshathri, M.S. Masdar and A.G. Olabi, "Adaptive Neuro-Fuzzy Inference System Modeling and Optimization of Microbial Fuel Cells for Wastewater Treatment", *Water*, Vol. 15, No. 20, pp. 1-15, 2023.
- [5] S. Mantena, V. Mahammood and K.N. Rao, "Prediction of Salinity Intrusion in the East Upputeru Estuary of India using Hybrid Metaheuristic Algorithms", *Modeling Earth Systems and Environment*, Vol. 10, No. 1, pp. 833-843, 2024.
- [6] O.S. Kushwaha, H. Uthayakumar and K. Kumaresan, "Modeling of Carbon Dioxide Fixation by Microalgae using Hybrid Artificial Intelligence (AI) and Fuzzy Logic (FL) Methods and Optimization by Genetic Algorithm (GA)", Environmental Science and Pollution Research, Vol. 30, No. 10, pp. 24927-24948, 2023.
- [7] J. Piri, M.R.R. Kahkha and O. Kisi, "Hybrid Machine Learning Approach Integrating GMDH and SVR for Heavy Metal Concentration Prediction in Dust Samples", Environmental Science and Pollution Research, pp. 1-20, 2024.
- [8] M.A. Marquez-Vera, M.F. Avila-Diaz, A.G. Noriega-Sanchez and E.V. Tafoya-Ribera, "Transformative Intelligence: Advancing Wastewater Treatment Efficiency through AI", *Machine and Deep Learning Solutions for*

- Achieving the Sustainable Development Goals, pp. 323-338, 2025
- [9] A. Saad, A.M. Ahmed, M. Shaban and A.A. Elngar, "Explainable Machine Learning Framework for Predicting Cobalt ion Removal by Natural Hematite", *Scientific Reports*, Vol. 15, No. 1, pp. 1-17, 2025.
- [10] P. Kumar, S. Bhattacharyya and B. Debnath, "Advancement in Machine Learning-Aided Advanced Oxidation Processes for Water Treatment", *Machine Learning in Water Treatment*, pp. 293-322, 2025.
- [11] J.S. Chou, P.C. Yeh, C.Y. Liu and K.J. Chen, "Improving Detection of Pollution Fee Declarations for Environmental Policy Compliance through Metaheuristic-Optimized Ensemble Learning", *Engineering, Construction and Architectural Management*, pp. 1-8, 2025.
- [12] E.T. Brantson, H. Osei, M.S.K. Aidoo, P.O. Appau, F.N. Issaka, N. Liu and K.S. Kouamelan, "Coconut Oil and Fermented Palm Wine Biodiesel Production for Oil Spill Cleanup: Experimental, Numerical and Hybrid Metaheuristic Modeling Approaches", Environmental Science and Pollution Research, Vol. 29, No. 33, pp. 50147-50165, 2022.
- [13] H. Tao, Z.S. Al-Khafaji, C. Qi, M. Zounemat-Kermani, O. Kisi, T. Tiyasha and Z.M. Yaseen, "Artificial Intelligence Models for Suspended River Sediment Prediction: State-of-the Art, Modeling Framework Appraisal and Proposed Future Research Directions", Engineering Applications of Computational Fluid Mechanics, Vol. 15, No. 1, pp. 1585-1612, 2021.