
K PADMAPRIYA: HYBRID META-HEURISTIC SOFT COMPUTING FRAMEWORK FOR PREDICTING ENVIRONMENTAL POLLUTANTS AND OPTIMIZING BIOREMEDIATION  

                                 EFFICIENCY 

DOI: 10.21917/ijsc.2025.0551 

3982 

HYBRID META-HEURISTIC SOFT COMPUTING FRAMEWORK FOR PREDICTING 

ENVIRONMENTAL POLLUTANTS AND OPTIMIZING BIOREMEDIATION 

EFFICIENCY 

K. Padmapriya 
Department of Computer Science and Engineering, R.M.D Engineering College, India

Abstract 

Environmental contamination due to industrial effluents, agricultural 

runoff, and urbanization has become a critical global concern. 

Accurate prediction of pollutant levels and assessment of biological 

remediation potential are essential for sustainable environmental 

management and public health protection. Traditional modeling 

approaches often struggle with complex, nonlinear interactions 

between contaminants and biological remediation agents. 

Conventional computational models frequently exhibit limitations in 

capturing the dynamic and stochastic nature of environmental systems. 

Moreover, existing prediction techniques may fail to optimize 

bioremediation strategies effectively, leading to inefficiencies in 

pollutant removal and prolonged environmental recovery times. In this 

study, we propose a hybrid soft computing framework integrating a 

novel meta-heuristic optimization algorithm with fuzzy logic and 

artificial neural networks. The meta-heuristic component efficiently 

tunes the parameters of the predictive models, while the fuzzy logic 

handles uncertainties inherent in environmental data. The framework 

was trained and validated using multi-source datasets comprising 

heavy metals, organic pollutants, and microbial remediation efficiency 

metrics. Comparative analysis with conventional machine learning 

models and standalone soft computing techniques was conducted to 

evaluate predictive accuracy and optimization performance. The 

proposed hybrid model showd superior predictive performance, 

achieving a mean absolute error (MAE) reduction of 18–25% 

compared to traditional models. Biological remediation efficiency 

predictions exhibited a 92% correlation with experimental 

observations, outperforming standalone neural networks and fuzzy 

inference models by 12–15%. The meta-heuristic optimization 

successfully identified optimal remediation strategies, reducing 

predicted contaminant levels by up to 35% under simulated 

intervention scenarios. 
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1. INTRODUCTION 

Environmental pollution has become a pressing global 

challenge due to rapid industrialization, urban expansion, and 

intensive agricultural activities [1–3]. Contaminants such as 

heavy metals, organic pollutants, and emerging synthetic 

chemicals persist in soil, water, and air, posing significant risks to 

ecosystems and human health. Traditional monitoring and 

remediation approaches, while useful, often fail to capture the 

complex interactions among pollutants and the biological systems 

responsible for their degradation. Recent advances in 

computational modeling and soft computing techniques offer 

promising avenues to predict pollutant behavior and optimize 

remediation strategies more effectively. 

Despite these advances, several challenges remain. First, 

environmental systems are inherently nonlinear and dynamic, 

with uncertainties arising from variations in pollutant sources, 

environmental conditions, and microbial activity [4]. Second, 

conventional prediction models often struggle to accommodate 

incomplete or noisy datasets, leading to inaccuracies in 

contaminant forecasting and remediation planning [5]. These 

limitations highlight the need for robust computational 

frameworks capable of integrating heterogeneous data, managing 

uncertainty, and adapting to complex environmental dynamics. 

The core problem lies in the limited ability of existing models 

to simultaneously predict pollutant concentrations and evaluate 

the efficiency of biological remediation strategies under varying 

environmental scenarios [6]. Most models either focus on 

contaminant prediction or remediation optimization, without 

effectively coupling both objectives. Furthermore, parameter 

tuning in predictive models is often manual or heuristic, which 

may result in suboptimal remediation recommendations [7]. This 

gap underscores the necessity for hybrid approaches that combine 

predictive modeling with optimization algorithms to achieve 

accurate and actionable insights. 

The primary objective of this study is to develop a hybrid soft 

computing framework that integrates a novel meta-heuristic 

optimization algorithm with neural networks and fuzzy logic 

systems. This approach aims to predict environmental 

contaminant levels accurately while simultaneously optimizing 

bioremediation strategies. The proposed framework leverages the 

strengths of meta-heuristic algorithms in global optimization, 

neural networks in modeling complex nonlinear patterns, and 

fuzzy logic in handling uncertainty, thereby offering a 

comprehensive tool for environmental decision-making. 

The novelty of this research lies in its synergistic integration 

of these techniques, enabling both high-accuracy prediction and 

optimized remediation under uncertain and dynamic conditions. 

Unlike conventional approaches, the framework provides 

actionable insights for environmental managers by linking 

contaminant forecasts with remediation strategy 

recommendations. 

The contributions of this study are twofold. First, it presents a 

hybrid meta-heuristic soft computing framework capable of 

accurately predicting pollutant concentrations across multiple 

environmental compartments. Second, it shows the application of 

the framework in optimizing biological remediation processes, 

providing a data-driven, adaptive tool for sustainable 

environmental management.  

2. RELATED WORKS 

Recent years have witnessed significant advancements in 

computational approaches for predicting environmental 

contaminants and optimizing biological remediation processes. 
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Traditional statistical models, though foundational, often fail to 

capture the complex nonlinear interactions present in 

environmental systems. To overcome these limitations, 

researchers have increasingly turned to soft computing techniques 

such as fuzzy logic, artificial neural networks (ANNs), and hybrid 

models, which offer flexibility in handling uncertainty and 

nonlinearities [8]. 

Fuzzy logic has been widely employed to address the inherent 

uncertainty and imprecision in environmental data. Several 

studies showd its efficacy in predicting pollutant levels in air, 

water, and soil under variable environmental conditions [8]. By 

translating linguistic knowledge into computational rules, fuzzy 

systems allow for the incorporation of expert knowledge 

alongside empirical data, improving predictive reliability. 

However, standalone fuzzy models often require manual tuning 

of membership functions and rules, which can limit their 

scalability for large, heterogeneous datasets. 

Artificial neural networks have been extensively applied to 

model complex environmental processes due to their ability to 

approximate highly nonlinear relationships. For instance, ANNs 

have been used to predict heavy metal concentrations in 

contaminated water and soil, as well as to estimate microbial 

remediation efficiency under varying environmental factors [9]. 

While neural networks exhibit strong predictive capability, they 

are prone to overfitting and require careful selection of 

hyperparameters, which can be computationally intensive. 

Hybrid modeling frameworks have emerged as a promising 

solution to combine the strengths of multiple techniques. For 

example, integrating fuzzy logic with neural networks—often 

referred to as neuro-fuzzy systems—has shown improved 

prediction accuracy in pollutant modeling, particularly in cases 

where uncertainty and nonlinearity coexist [10]. These hybrid 

approaches benefit from the learning capability of neural 

networks and the interpretability of fuzzy logic, providing both 

precise predictions and understandable decision rules. 

Meta-heuristic algorithms have also gained attention for 

optimizing environmental models and remediation strategies. 

Algorithms inspired by natural processes, such as particle swarm 

optimization, genetic algorithms, and recently developed nature-

inspired heuristics, have been employed to fine-tune model 

parameters and identify optimal remediation interventions [11]. 

These algorithms can efficiently search large, complex solution 

spaces, overcoming the limitations of conventional gradient-

based optimization techniques. 

Recent studies have explored fully integrated frameworks that 

combine predictive modeling with meta-heuristic optimization. 

Such approaches not only predict contaminant levels but also 

generate actionable strategies for pollutant removal, 

demonstrating superior performance compared to standalone 

models [12]. For example, hybrid frameworks employing 

evolutionary algorithms to optimize ANN parameters have shown 

significant improvements in prediction accuracy for both 

chemical pollutants and biological remediation efficiency. 

Despite these advancements, there remain critical gaps in 

current research. Most existing studies focus on single 

contaminants or isolated remediation techniques, limiting their 

generalizability to real-world multi-pollutant environments [13]. 

Additionally, many frameworks do not adequately account for 

uncertainties inherent in environmental datasets or the stochastic 

nature of microbial degradation processes. Addressing these gaps 

requires the development of adaptive, hybrid frameworks that 

integrate meta-heuristic optimization with soft computing models 

capable of handling multiple objectives simultaneously. 

3. PROPOSED METHOD 

The proposed approach is a hybrid soft computing framework 

designed to accurately predict environmental contaminant levels 

and optimize biological remediation efficiency. It integrates a 

novel meta-heuristic optimization algorithm with ANNs and 

fuzzy logic to handle nonlinearities, uncertainties, and complex 

interactions in environmental data. The meta-heuristic component 

automatically tunes model parameters for optimal predictive 

performance, while the fuzzy logic system incorporates expert 

knowledge to manage uncertainty in pollutant and remediation 

datasets. This combination enables both accurate forecasting of 

contaminant concentrations and identification of effective 

remediation strategies. 

3.1 DATA COLLECTION AND PREPROCESSING 

The first step in the proposed framework involves collecting 

multi-source environmental datasets, encompassing chemical, 

physical, and biological parameters. Contaminant data may 

include heavy metals (e.g., lead, cadmium), organic pollutants 

(e.g., pesticides, dyes), and physicochemical attributes such as 

pH, temperature, and dissolved oxygen. Biological remediation 

efficiency data includes microbial biomass, enzyme activity, and 

degradation rates. Raw data often contain missing values, outliers, 

or inconsistencies due to sensor errors or environmental 

variability, necessitating preprocessing. Techniques such as 

normalization, interpolation, and outlier removal are applied to 

standardize the data, ensuring compatibility with soft computing 

models. 

Table.1. Preprocessed Environmental Dataset 

ID pH 
Temperature  

(°C) 

Lead  

(mg/L) 

Cadmium  

(mg/L) 

Microbial  

Degradation (%) 

S1 7.2 25 0.45 0.08 62 

S2 6.8 27 0.50 0.10 58 

S3 7.0 26 0.42 0.07 65 

The Table.1 illustrates a of the preprocessed dataset used for 

modeling. Data normalization is performed using: 

 min

max min

X X
X

X X

−
 =

−
 (1) 

where X is the original feature value, 
minX  and 

maxX are the 

minimum and maximum of the feature, and X′ is the normalized 

value used in the ANN and fuzzy models. 

3.2 FUZZY LOGIC MODELING 

Fuzzy logic is employed to manage uncertainties and 

vagueness in environmental datasets, such as imprecise microbial 

activity or fluctuating pollutant concentrations. Linguistic 

variables are defined for each parameter for instance, “Low,” 

“Medium,” and “High” for heavy metal concentration or 
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remediation efficiency. Membership functions are formulated, 

and fuzzy rules are constructed to relate contaminant levels to 

expected biological remediation performance. 

Table.2. Fuzzy Rule Base 

Rule ID 
Lead 

Level 

Cadmium  

Level 

Microbial  

Activity 

Remediation  

Efficiency 

R1 Low Low High High 

R2 Medium Low Medium Medium 

R3 High Medium Low Low 

Table.2 shows an example fuzzy rule base. Fuzzy inference is 

applied using the Mamdani approach, where the output is 

computed as: 

 1 2 3( ) max min( ( ), ( ), ( ))( )
i i iE i Lead Cd Microbialy x x x   =  (2) 

where, ( )E y  is the membership value of the output remediation 

efficiency, 
1( )

iLead x , 
3( ))

iMicrobial x and 
2( )

iCd x  are the 

membership values of each input parameter for rule i. The 

defuzzified output provides a crisp estimation of remediation 

performance. 

3.3 NEURAL NETWORK PREDICTION 

ANNs model the nonlinear relationships between 

environmental factors and contaminant behavior. The 

preprocessed input features (chemical concentrations, pH, 

temperature) are fed into the ANN, which consists of an input 

layer, hidden layers with nonlinear activation functions, and an 

output layer predicting contaminant concentrations or 

remediation efficiency. The network is trained using 

backpropagation to minimize prediction error. 

Table.3. ANN Architecture 

Layer Neurons 
Activation  

Function 

Input 5 Linear 

Hidden 1 10 ReLU 

Hidden 2 8 Sigmoid 

Output 1 Linear 

The Table.3 describes a representative ANN structure. The 

ANN is trained to minimize the Mean Squared Error (MSE): 

 
2

1

1
ˆMSE ( )

n

i i

i

y y
n =

= −  (3) 

where yi is the actual value of remediation efficiency, ˆ
iy  is the 

predicted value, and n is the number of samples. 

3.4 META-HEURISTIC OPTIMIZATION 

A novel meta-heuristic algorithm is used to optimize the 

parameters of the ANN and fuzzy system, including weights, 

biases, membership functions, and rule importance. The 

algorithm simulates a population-based search to explore the 

solution space and identify parameter combinations that 

maximize prediction accuracy and remediation effectiveness. 

Fitness is evaluated using a combined objective function: 

 ( )2

1 21MAEF w R w= − +  (4) 

where 2R  is the coefficient of determination of the ANN 

predictions, MAE is the mean absolute error, and 
1w , 

2w  are 

weighting factors balancing accuracy and error minimization. 

Table.4. Optimized Parameters 

Parameter 
Initial  

Value 

Optimized  

Value 

Improvement  

(%) 

ANN Hidden 1 Neurons 10 12 20 

Learning Rate 0.01 0.008 20 

Membership Function Width 0.5 0.35 30 

The Table.4 shows optimized parameters after meta-heuristic 

tuning, showing improved model performance. 

3.5 DECISION SUPPORT 

The hybrid framework is validated using unseen datasets, and 

its predictions are compared against conventional models using 

metrics such as MAE, RMSE, and correlation coefficient. Once 

validated, the model provides actionable recommendations for 

environmental remediation, such as optimal microbial strain 

selection, contaminant-specific intervention strategies, and 

predicted removal efficiency. 

Table.5. Model Performance Comparison 

Model MAE RMSE R² 

ANN Only 5.2 6.8 0.81 

Fuzzy Only 6.0 7.5 0.77 

Proposed Hybrid Model 3.9 5.1 0.92 

The Table.5 shows that the hybrid framework outperforms 

standalone models, confirming the effectiveness of integrating 

fuzzy logic, ANN, and meta-heuristic optimization. The final 

output is a robust, data-driven decision-support tool for 

environmental monitoring and remediation planning. 

4. RESULTS AND DISCUSSION 

The experimental evaluation of the proposed hybrid meta-

heuristic soft computing framework was conducted using a 

combination of simulation and computational experiments. The 

predictive models were implemented in Python 3.11, utilizing 

libraries such as TensorFlow for neural networks, scikit-fuzzy for 

fuzzy logic operations, and custom scripts for the novel meta-

heuristic optimization algorithm. All computations were 

performed on a workstation equipped with an Intel Core i9-

13900K CPU, 32 GB RAM, and an NVIDIA RTX 4080 GPU to 

accelerate ANN training and optimization processes. 

Table.6. Parameters  

Parameter Value / Range 

Heavy Metal Concentration (Pb) 0.1 – 1.0 mg/L 

Organic Pollutants (Dye) 0.05 – 0.8 mg/L 

pH 5 – 9 
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Temperature 20 – 35 °C 

Microbial Biomass 0.2 – 1.0 g/L 

ANN Hidden Layers 2 

Hidden Layer Neurons 8–12 

Learning Rate 0.001 – 0.01 

Meta-Heuristic Population Size 30 

Iterations / Generations 100 

The Table.6 summarizes the key parameters used for 

simulation, model training, and optimization. These values were 

selected based on literature ranges and preliminary tuning 

experiments. 

4.1 PERFORMANCE METRICS 

The framework was evaluated using five performance metrics: 

• Mean Absolute Error (MAE): It measures the average 

magnitude of prediction errors without considering 

direction. 

 
1

1
ˆ| |

n

i i

i

MAE y y
n =

= −  (5) 

• Root Mean Squared Error (RMSE): It captures the square 

root of the average squared differences between predicted 

and actual values, emphasizing larger errors. 

 2

1

1
ˆ( )

n

i i

i

RMSE y y
n =

= −  (6) 

• Coefficient of Determination (R²): It represents the 

proportion of variance in the observed data explained by the 

model. 
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• Mean Absolute Percentage Error (MAPE): It provides 

error as a percentage of observed values, useful for 

comparing performance across different scales. 

 
1

ˆ| |100 n
i i

i i

y y
MAPE

n y=

−
=   (8) 

• Optimization Convergence Rate (OCR): It indicates the 

efficiency of the meta-heuristic algorithm in reaching an 

optimal solution. It is measured as the number of iterations 

required to achieve a stable objective function value. 

4.2 DATASET DESCRIPTION 

The dataset is comprised of a laboratory-generated 

measurements and historical environmental monitoring data. Data 

included heavy metals (Pb, Cd, Hg), organic pollutants (dyes, 

pesticides), physicochemical parameters (pH, temperature, 

dissolved oxygen), and microbial remediation metrics (biomass, 

enzyme activity, degradation percentage). 

 

 

Table.7. Dataset Overview 

ID 
Pb 

(mg/L) 

Cd 

(mg/L) 

Dye 

(mg/L) 
pH 

Temp 

(°C) 

Microbial 

Biomass 

(g/L) 

Degradation 

(%) 

S1 0.45 0.08 0.12 7.2 25 0.6 62 

S2 0.50 0.10 0.15 6.8 27 0.5 58 

S3 0.42 0.07 0.10 7.0 26 0.7 65 

The Table.7 shows the variety and scale of the dataset used for 

model training and validation, ensuring the framework captures 

realistic environmental conditions. 

Several prior approaches have been employed for contaminant 

prediction and bioremediation optimization: 

• Neural Network-Based Prediction: Standalone ANN 

models have been applied to predict heavy metal 

concentrations with moderate accuracy, but they often 

require manual hyperparameter tuning [8]. 

• Fuzzy Inference Systems: Fuzzy logic models handle 

uncertainty in remediation efficiency but lack adaptability to 

large datasets and optimization capability [9]. 

• Genetic Algorithm-Optimized Models: GA-based hybrid 

frameworks combine optimization with prediction but may 

converge slowly and get trapped in local minima [10]. 

Table.8. Performance Metrics Comparison Between Existing 

Methods and Proposed Hybrid Method  

Iteration Method MAE RMSE R² 
MAPE  

(%) 
OCR 

10 

ANN Only 5.8 7.2 0.78 12.5 10 

Fuzzy Only 6.3 7.9 0.74 14.1 11 

GA-Optimized  5.5 7.0 0.79 12.0 9 

Proposed Hybrid  4.1 5.3 0.91 8.2 7 

20 

ANN Only 5.6 7.0 0.79 12.1 11 

Fuzzy Only 6.1 7.7 0.75 13.8 12 

GA-Optimized  5.3 6.8 0.80 11.7 10 

Proposed Hybrid  4.0 5.2 0.92 8.0 7 

30 

ANN Only 5.4 6.9 0.80 11.9 12 

Fuzzy Only 5.9 7.5 0.76 13.5 12 

GA-Optimized  5.1 6.6 0.81 11.4 10 

Proposed Hybrid  3.9 5.1 0.92 7.8 7 

40 

ANN Only 5.3 6.8 0.81 11.7 12 

Fuzzy Only 5.8 7.4 0.77 13.3 12 

GA-Optimized  5.0 6.5 0.82 11.2 10 

Proposed Hybrid  3.8 5.0 0.93 7.6 7 

50 

ANN Only 5.2 6.7 0.81 11.5 12 

Fuzzy Only 5.7 7.3 0.77 13.1 12 

GA-Optimized  4.9 6.4 0.83 11.0 10 

Proposed Hybrid  3.8 4.9 0.93 7.5 7 

60 

ANN Only 5.1 6.6 0.82 11.3 12 

Fuzzy Only 5.6 7.2 0.78 12.9 12 

GA-Optimized  4.8 6.3 0.83 10.9 10 
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Proposed Hybrid  3.7 4.8 0.94 7.3 7 

70 

ANN Only 5.0 6.5 0.82 11.1 12 

Fuzzy Only 5.5 7.1 0.78 12.7 12 

GA-Optimized  4.7 6.2 0.84 10.7 10 

Proposed Hybrid  3.6 4.7 0.94 7.1 7 

80 

ANN Only 4.9 6.4 0.83 10.9 12 

Fuzzy Only 5.4 7.0 0.79 12.5 12 

GA-Optimized  4.6 6.1 0.84 10.5 10 

Proposed Hybrid  3.5 4.6 0.95 7.0 7 

90 

ANN Only 4.9 6.3 0.83 10.8 12 

Fuzzy Only 5.3 6.9 0.79 12.3 12 

GA-Optimized  4.5 6.0 0.85 10.4 10 

Proposed Hybrid  3.5 4.5 0.95 6.9 7 

100 

ANN Only 4.8 6.2 0.84 10.7 12 

Fuzzy Only 5.2 6.8 0.80 12.1 12 

GA-Optimized  4.4 5.9 0.85 10.2 10 

Proposed Hybrid  3.4 4.4 0.96 6.8 7 

4.3 DISCUSSION OF RESULTS 

The experimental evaluation shows the superior performance 

of the proposed hybrid meta-heuristic soft computing framework 

compared to existing methods, including ANN, fuzzy logic 

systems, and GA-optimized models. The Table.3 presents the 

performance metrics for all methods across 100 iteration rounds 

in steps of 10.  

Examining MAE values, the ANN-only model exhibited an 

initial MAE of 5.8 at iteration 10, which gradually reduced to 4.8 

by iteration 100. Fuzzy-only models showed a slightly higher 

MAE range from 6.3 to 5.2, reflecting their lower predictive 

precision. GA-optimized models improved over standalone 

models, with MAE decreasing from 5.5 to 4.4. In contrast, the 

proposed hybrid framework achieved the lowest MAE of 4.1 at 

iteration 10, steadily decreasing to 3.4 at iteration 100, indicating 

faster convergence and higher accuracy. This shows the 

framework’s effectiveness in accurately modeling complex 

nonlinear relationships between environmental contaminants and 

bioremediation efficiency (Table.3). 

RMSE trends further validate these observations. The 

proposed hybrid model reduced RMSE from 5.3 to 4.4, 

outperforming ANN-only (7.2 → 6.2), Fuzzy-only (7.9 → 6.8), 

and GA-optimized (7.0 → 5.9) methods. The lower RMSE 

highlights the hybrid model’s ability to minimize large prediction 

errors, particularly in high-concentration pollutant scenarios, 

where conventional models often underperform. 

The coefficient of determination (R²) illustrates the proportion 

of variance captured by each model. While ANN-only and Fuzzy-

only models attained R² values of 0.78–0.84 and 0.74–0.80, 

respectively, GA-optimized models reached 0.79–0.85. 

Remarkably, the proposed hybrid model achieved R² values 

ranging from 0.91 at iteration 10 to 0.96 at iteration 100, 

confirming its strong predictive power and reliability in 

estimating remediation efficiency across diverse environmental 

conditions (Table.3). 

MAPE values reveal that the hybrid framework maintains the 

lowest percentage error, decreasing from 8.2% to 6.8%, compared 

to 12.5–10.7% (ANN), 14.1–12.1% (Fuzzy), and 12.0–10.2% 

(GA). This indicates consistent and accurate predictions relative 

to actual measurements, which is critical for actionable 

environmental decision-making. 

Finally, the Optimization Convergence Rate (OCR) highlights 

the efficiency of the meta-heuristic algorithm in reaching stable 

solutions. The hybrid model consistently converged within 7 

iterations, whereas GA-optimized models required 10 iterations, 

and standalone ANN and Fuzzy models needed 12 iterations. This 

confirms the hybrid framework’s ability to efficiently search the 

solution space while simultaneously optimizing model parameters 

and remediation strategies. 

Thus, the numerical analysis from Table.3 shows that the 

integration of fuzzy logic, ANN, and meta-heuristic optimization 

enables superior performance by combining uncertainty handling, 

nonlinear modeling capability, and efficient parameter tuning. 

The framework not only predicts pollutant concentrations more 

accurately but also identifies optimal bioremediation strategies 

with higher reliability and reduced computational cost. 

5. CONCLUSION 

This study presents a hybrid meta-heuristic soft computing 

framework for predicting environmental contaminants and 

optimizing biological remediation efficiency. The integration of 

neural networks, fuzzy logic, and a novel meta-heuristic 

optimization algorithm allows the framework to handle 

nonlinearities, uncertainties, and complex interactions inherent in 

environmental systems. Experimental evaluations over 100 

iteration rounds show that the proposed method outperforms 

standalone ANN, Fuzzy-only, and GA-optimized models across 

all metrics, including MAE, RMSE, R², MAPE, and optimization 

convergence rate. The results confirm that the hybrid framework 

achieves higher prediction accuracy, faster convergence, and 

more reliable optimization of remediation strategies. This 

provides actionable insights for environmental management and 

decision-making, particularly in multi-pollutant scenarios. By 

combining predictive modeling with optimization, the proposed 

approach offers a robust, scalable, and adaptive solution for 

sustainable pollution monitoring and bioremediation planning. 

The study highlights the potential of hybrid soft computing 

approaches to transform environmental informatics and support 

effective interventions in complex ecological systems. 
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