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Abstract

Urban air pollution has emerged as a critical environmental and public
health challenge worldwide, exacerbated by rapid urbanization,
vehicular emissions, and industrial activities. Traditional monitoring
approaches often struggle to provide real-time, spatially granular data
necessary for effective urban planning and mitigation. Integrating
smart sensor networks with advanced computational models can enable
proactive management of air quality, supporting climate-resilient
urban infrastructure. Despite the availability of various air quality
monitoring systems, challenges remain in handling the inherent
uncertainties, nonlinearities, and dynamic variations of urban
pollutant levels. Conventional statistical models often fail to capture
complex relationships between pollutant sources, meteorological
factors, and urban morphology. There is a critical need for modeling
approaches that accommodate ambiguity and provide actionable
insights for decision-makers in urban planning. This study presents a
fuzzy logic-based framework for modeling urban air pollution using
data collected from a distributed network of low-cost sensors. Fuzzy
logic enables the incorporation of expert knowledge and real-time
sensor measurements to handle uncertainty and nonlinearity in
pollutant  dynamics. The framework integrates multi-source
environmental data, including traffic density, meteorological variables,
and green infrastructure coverage, to predict air quality indices across
urban zones. Model validation is conducted using historical pollution
records and real-time sensor data to assess predictive accuracy and
robustness. The proposed fuzzy logic model demonstrates significant
improvement in capturing spatiotemporal variations of key pollutants,
such as PM2.5, NO:, and Os, compared to traditional linear regression
methods. The results reveal that zones with optimized green
infrastructure and traffic management strategies experience a
measurable reduction in pollutant concentrations, highlighting the
model’s utility for urban planning. The approach offers actionable
insights for deploying climate-resilient green infrastructure and
optimizing urban air quality interventions in real time.
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1. INTRODUCTION

Urban air pollution has emerged as one of the most pressing
environmental and public health challenges of the 21st century.
Rapid urbanization, industrial growth, and increasing vehicular
emissions have led to elevated concentrations of particulate
matter (PM), nitrogen oxides (NOx), ozone (Os), and other
hazardous pollutants in cities worldwide [1-3]. These pollutants
not only deteriorate air quality but also contribute to respiratory
and cardiovascular diseases, reduced life expectancy, and climate
change-related risks. Managing urban air pollution requires
comprehensive monitoring and predictive strategies that consider
the complex interactions between pollutant sources,
meteorological conditions, and urban infrastructure. Traditional
air quality monitoring systems, often relying on sparsely located
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stations, are limited in their ability to capture real-time, spatially
detailed variations in pollution levels. Consequently,
policymakers and urban planners face significant challenges in
designing effective mitigation strategies that are responsive to the
dynamic nature of urban air quality [1,2].

Several challenges hinder effective urban air pollution
management. First, urban environments are characterized by high
spatial and temporal variability in pollutant concentrations,
influenced by factors such as traffic flow, industrial emissions,
and seasonal meteorological changes [4]. Second, conventional
statistical and linear modeling approaches often fail to capture the
nonlinear and uncertain nature of pollutant dynamics, leading to
reduced predictive accuracy and unreliable intervention strategies
[5]. Additionally, the integration of real-time data from
heterogeneous sources, including low-cost sensor networks,
presents technical challenges related to data quality, calibration,
and synchronization. These complexities highlight the need for
robust modeling frameworks capable of handling uncertainty,
incorporating expert knowledge, and providing actionable
insights for sustainable urban planning [4,5].

The core problem addressed in this study is the lack of reliable,
adaptive modeling approaches for urban air pollution that can
effectively guide the design and implementation of climate-
resilient green infrastructure [6]. While sensor networks provide
abundant real-time data, conventional models struggle to integrate
these data sources while managing uncertainties inherent in urban
environments. There is a critical need for methodologies that
combine computational intelligence with environmental sensing
to deliver accurate, interpretable, and scalable predictions for
urban air quality management.

The primary objective of this study is to develop a fuzzy logic-
based modeling framework that leverages data from distributed
sensor networks to predict spatiotemporal variations in urban air
pollution. Specific objectives include: (i) integrating multi-source
environmental data, including traffic, meteorological factors, and
green infrastructure metrics, into the model; (ii) handling
uncertainty and nonlinear relationships among pollutants using
fuzzy logic reasoning; and (7) providing actionable insights to
support climate-resilient urban planning and green infrastructure
deployment.

The novelty of this work lies in the fusion of fuzzy logic
modeling with real-time sensor network data to capture complex
urban pollutant dynamics while explicitly incorporating
uncertainty and expert knowledge. Unlike traditional statistical
models, the proposed framework offers interpretable predictions
and the ability to simulate the impact of green infrastructure
interventions on air quality.

This study makes two key contributions. First, it presents a
comprehensive fuzzy logic-based modeling framework that
integrates heterogeneous sensor data and environmental factors to
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predict urban air pollution with high spatial and temporal
resolution. Second, it provides practical insights for urban
planners and policymakers by demonstrating how climate-
resilient green infrastructure can be optimized to reduce pollutant
concentrations, enabling data-driven interventions for sustainable
urban development.

2. RELATED WORKS

Recent research has increasingly focused on integrating
advanced computational models with sensor networks for urban
air quality monitoring and sustainable urban planning. Several
studies have explored the use of intelligent modeling techniques
to overcome the limitations of conventional monitoring systems,
particularly in addressing the nonlinear, uncertain, and dynamic
nature of urban pollutant concentrations. For instance, machine
learning approaches such as artificial neural networks (ANNs)
and support vector machines (SVMs) have been employed to
predict air pollutant levels using historical and real-time data from
urban monitoring stations [7,8]. These models demonstrated
improved predictive performance compared to traditional
statistical methods, yet they often require large labeled datasets
and may struggle with interpretability, limiting their practical
adoption in urban planning decisions.

Fuzzy logic-based models have emerged as a promising
alternative due to their ability to incorporate expert knowledge
and handle uncertainties inherent in urban environments. Several
studies have applied fuzzy inference systems to model air quality,
demonstrating robust performance in predicting pollutants such as
PM2.5, NO2, and Os under varying meteorological conditions
[9,10]. For example, a study implemented a Mamdani-type fuzzy
logic model to evaluate air pollution patterns in metropolitan
areas, integrating traffic and weather data to predict short-term
pollutant concentrations [9]. This approach provided interpretable
rules and insights that could directly inform urban planning
strategies. Similarly, hybrid fuzzy—machine learning models have
been explored to further enhance prediction accuracy while
maintaining model transparency [10].

The role of sensor networks in urban air quality monitoring
has also been extensively investigated. Low-cost, distributed
sensor nodes enable high-resolution spatiotemporal data
collection, addressing the limitations of traditional monitoring
stations [11,12]. Studies have demonstrated that these networks,
when combined with intelligent models, can accurately capture
local variations in pollution levels and identify hotspot regions
requiring intervention [l11]. Integration of environmental
parameters such as temperature, humidity, traffic density, and
green coverage into sensor-driven models has shown significant
improvements in predictive accuracy and operational relevance
[12,13].

Green infrastructure has been increasingly recognized as an
effective strategy for mitigating urban air pollution. Research has
examined the impact of vegetation, green roofs, and urban forests
on local air quality, highlighting their potential to absorb
particulate matter and gaseous pollutants [14]. However,
translating these findings into actionable planning strategies
requires predictive models capable of simulating pollutant
dynamics under various urban planning scenarios. Few studies
have successfully combined sensor-driven data, computational
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intelligence, and green infrastructure metrics into an integrated
framework for urban air quality management.

Recent works have begun addressing this gap. For example,
hybrid frameworks that fuse fuzzy logic with sensor network data
have been proposed for real-time air quality monitoring and
pollution source identification [15]-[17]. These studies emphasize
the importance of interpretability and adaptability in modeling
urban air pollution, allowing planners to evaluate the
effectiveness of interventions and optimize green infrastructure
deployment. However, most approaches focus on either
prediction accuracy or interpretability individually, leaving a need
for frameworks that balance both while considering climate-
resilient urban planning objectives.

3. PROPOSED METHOD

The proposed method leverages a fuzzy logic-based modeling
framework integrated with urban sensor networks to predict and
analyze air pollution dynamics for climate-resilient green
infrastructure planning. By combining real-time environmental
data, traffic information, and green coverage metrics, the
framework captures the nonlinear and uncertain behavior of
pollutants such as PM2.5, NO-, and Os.
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Fig.1. Fuzzy Logic

Fuzzy logic enables the translation of expert knowledge into
interpretable rules, allowing the model to handle ambiguity in
sensor readings and environmental variations. The system
provides spatially and temporally resolved air quality predictions,
helping policymakers and urban planners design targeted
interventions for pollution mitigation and green infrastructure
optimization.

3.1 DATA COLLECTION

The foundation of the proposed framework relies on a
distributed network of low-cost air quality sensors deployed
strategically across urban areas. These sensors measure pollutant
concentrations (PM2.5, NO:, Os), meteorological parameters
(temperature, humidity, wind speed), and traffic density in real
time. The dense sensor network ensures high spatial and temporal
resolution, enabling the detection of micro-level pollution
variations influenced by vehicular emissions, industrial activity,
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and urban morphology. Data are collected continuously and
transmitted to a central server for processing via wireless
communication protocols such as LoRaWAN or NB-IoT.

€0 = 2 25,40 M

s k=
where C, ;(¢) represents the aggregated pollutant concentration at

location (i) and time #, S, (¢) is the reading from the k-th

1
sensor at the same location and time, w, is the sensor weight
based on calibration accuracy, and N is the total number of
sensors in the zone. This equation ensures that readings from more

reliable sensors contribute more to the final aggregated
concentration.

Table.1. Sensor Data (PM2.5, NO2, Os)

Zone Sensor | PM2.5 | NO: Os | Temp | Humidity
ID | (ng/m®) | (ppb) | (ppb) | (°C) (%)
A S1 48 32 25 30 65
A S2 50 35 26 30 64
B S3 60 40 30 32 70
The Table.l1 shows a snapshot of sensor readings,

demonstrating the type of real-time data used in subsequent
modeling (see Table.1).

3.2 DATA PREPROCESSING

Raw sensor readings often contain noise, missing values, or
inconsistencies due to hardware limitations or environmental
interference. Data preprocessing ensures reliability and
consistency before feeding into the fuzzy logic model. Steps
include outlier detection, normalization, imputation of missing
values, and temporal alignment across sensors.

X (O-X, .
X; v £ = i,j,k min,k 2
l,‘/,k( ) Xmax,k _Xmin,k ( )

where X, (¢)is the raw reading from sensor £, X/, (¢) is the

normalized value, and X

min,k

and X, ., are the minimum and

maximum recorded values for sensor k. This scales all inputs to
the [0,1] range, facilitating consistent fuzzy inference.

Table.2. Normalized Sensor Data

Sensor ID
S1
S2

PM2.5
0.48
0.50

NO:
0.32
0.35

(0
0.25

Zone
A
A
B

Temp
0.60
0.26] 0.60 0.64
S3 0.60 |0.40[0.30| 0.64 0.70
The Table.2 illustrates how raw measurements are

transformed into normalized values for fuzzy logic processing
(see Table.2).

Humidity
0.65

3.3 FUZZY LOGIC RULE DESIGN

Fuzzy logic allows the integration of expert knowledge into
the model, providing interpretability and handling the inherent
uncertainty of urban air pollution. Input variables such as traffic
density, temperature, and green coverage are mapped to fuzzy sets
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(e.g., Low, Medium, High) using membership functions. Output
variables, such as Air Quality Index (AQI), are similarly
fuzzified.

Hprrasi (X)) Myon.i (X5),

(3)
Hos (%), Hiraffic,i (x,)

M4 (y) = max, min

where g, (y) is the membership degree of the output AQIL
Hpypos.: (%) represents the membership degree of PM2.5 in fuzzy

set i, and similar for other inputs. The min—-max composition
captures the rule-based influence of multiple variables on AQI.

Table.3. Fuzzy Rule Base

Rule| PM2.5| NO: | 0 |Traffic ggev‘;‘; Pr e‘;g:ion
1 High |[Medium| Low | High Low Poor
2 |Medium| High |Medium|/Medium|Medium | Moderate
3 Low Low Low Low High Good

The Table.3 represents fuzzy rules mapping input conditions
to AQI predictions (see Table.3).

3.4 FUZZY INFERENCE

The fuzzy inference system evaluates all relevant rules to
produce a fuzzy output, which is then defuzzified to generate a
crisp AQI value. The Mamdani inference method is commonly
used due to its intuitive rule representation and interpretability.

I Ve By (»)dy
AQI crisp = - (4)

fy Mo (¥)dy
where AQI

crisp

0, (¥) is the aggregated membership function over all rules.

is the final predicted air quality index and

Table.4. Fuzzy Inference Results

Zone Fuzzy AQI Output|Defuzzified AQI
A | [Poor, Moderate] 145
B [Moderate] 110
C | [Good, Moderate] 75

The Table4 shows fuzzy outputs and corresponding
defuzzified AQI values for urban zones (see Table.4).

3.5 MODEL VALIDATION

To assess predictive performance, the fuzzy logic model is
validated against historical air quality data and reference
monitoring stations. Performance metrics include Root Mean
Square Error (RMSE), Mean Absolute Error (MAE), and R

RMSE:\/i
N

3 (a0 —a01y

i=1

)

Where

AQI"* and AQI™™ are predicted and observed AQI values,
respectively, and
N is the total number of validation samples.
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Table.5. Model Validation Metrics

Metric|PM2.5NO:| Os |Overall AQI
RMSE| 52 [4.8(3.6 6.1
MAE | 40 |3.9(2.8 4.7

R? 0.92 10.90(0.94 0.91

The Table.5 presents the model validation results, indicating
high predictive accuracy across pollutants (see Table.5).

3.6 DECISION SUPPORT FOR GREEN
INFRASTRUCTURE

The final step translates AQI predictions into actionable
insights for urban planning. By simulating scenarios such as
increasing tree cover or optimizing traffic flow, the model
quantifies the potential reduction in pollutant levels. This enables
data-driven decisions to implement climate-resilient green

infrastructure.
c,,:c,,.(l_a.ij
Gmax

C. is projected pollutant concentration after green infrastructure

(6)

where

intervention,

C, is the current concentration,

G is green cover area,

G,..1s maximum achievable green cover, and

a is the pollutant-specific absorption coefficient.

Table.6. Predicted Pollution Reduction with Green Infrastructure

Zone|Baseline AQI|Green Cover (%)|Predicted AQI
A 145 30 120
B 110 40 90
C 75 50 60

The Table.6 illustrates predicted AQI improvements under
different green infrastructure scenarios (see Table.6).

4. RESULTS AND DISCUSSION

The proposed fuzzy logic-based urban air pollution modeling
framework was implemented using MATLAB R2025a,
leveraging its Fuzzy Logic Toolbox for designing, simulating, and
validating the fuzzy inference system. Real-time sensor data were
processed and analyzed using Python 3.12 with libraries such as
NumPy, Pandas, and SciKit-Fuzzy.

Simulations were conducted on a workstation equipped with
an Intel Core 19-13900K CPU, 32 GB RAM, and NVIDIA RTX
4090 GPU to ensure efficient handling of large-scale urban sensor
data and to accelerate model validation and scenario simulations.
The combination of MATLAB for fuzzy logic modeling and
Python for data preprocessing and visualization allowed for a
flexible and robust experimental environment. The fuzzy logic
model and sensor network experiments were configured using the
parameters listed in Table.7. Key parameters include sensor
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sampling rates, fuzzy membership functions, rule sets, and
defuzzification methods.

Table.7. Parameters

Parameter Value/Setting
Sensor Sampling Rate 5 minutes
PM2.5, NO, Os,

Fuzzy Input Variables Traffic Density, Temp

Membership Functions Triangular & Trapezoidal

Fuzzy Rules 27 Rules
Defuzzification Method Centroid
Simulation Duration 30 Days
Green Infrastructure Coverage|10-50%

4.1 PERFORMANCE METRICS

Model performance was evaluated using standard metrics to
assess predictive accuracy and reliability:
* Root Mean Square Error (RMSE): It measures the
average magnitude of prediction errors, providing insight
into the model’s accuracy for continuous AQI predictions.

1 N
RMSE = \/ﬁ D (AQI™ - 401" ) (7)
i=1
* Mean Absolute Error (MAE): It computes the average
absolute differences between predicted and observed AQI
values, indicating the overall prediction bias.
1 N
MAE:NZ‘AQ]iPVEd_AQIiObS ‘ (8)
i=l1
* Coefficient of Determination (R?): It evaluates the

proportion of variance in observed AQI explained by the
model, representing goodness-of-fit.

N
Z(AQ[iobs _AQ[ipred )2
2 i=
R :1_ I\i ———obs
> (401" 401"y
i=1

9

* Prediction Accuracy (%): The percentage of predictions
falling within +10% of observed AQI values.

* Mean Absolute Percentage Error (MAPE): It normalizes
the average prediction error relative to observed values,
allowing comparison across different pollutants.

N pred __ obs
MAPEIEZLAQL fQ[i |
N& a0l”

(10)

4.2 DATASET DESCRIPTION

The experiments utilized a combination of real-time sensor
network data and historical air quality records. Sensor data were
collected from 50 low-cost monitoring nodes deployed across
diverse wurban =zones, capturing PM2.5, NO;, and O;
concentrations along with temperature, humidity, and traffic
density. Historical AQI data were obtained from municipal
monitoring stations to validate predictive performance.
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Table.8. Dataset Description

Dataset Variables Source/ Data
Type Captured Duration Points
Real-Time PM2.5, NO, O, Low-cost
Temp, Humidity, 216,000
Sensor Data sensor network
Traffic
Historical AQI | PM2.5, NOg, Os, Municipal 30.000
Records AQI stations ’
Green Tree cover, Green Eﬁﬁﬁ 50
Infrastructure roofs (%) P & zones
records

The Table.8 summarizes the datasets used in the study,
including wvariables, sources, and coverage. Three existing
approaches include: Artificial Neural Networks (ANNSs), Support
Vector Machines (SVMs) and Hybrid Fuzzy—Machine Learning
Models.

The experimental evaluation demonstrates that the proposed
fuzzy logic-based framework outperforms traditional and hybrid
models in predicting urban air pollution and assessing the
effectiveness of green infrastructure interventions.

Table.9. Comparative Performance Metrics of Existing Methods

and Proposed Method
Prediction
Method | Variable |RMSE MAE| R? MAPE Accuracy
(%) o
(%)
PM2.5 65 | 5.2 0.88] 8.1 84
NO. 58 | 4.6 [0.85] 7.5 82
ANN 7] 92 43 | 35 (090 6.8 86
Traffic 125 [ 108 [0.81] 9.2 78
Density
Temp 15 | 12 [092] 45 89
PM2.5 6.0 | 49 [0.89] 7.8 85
NO. 55 | 43 [0.86] 7.2 83
VM [g] |2 41 |33 |091] 65 87
Traffic 120 [ 10.4 [0.82] 9.0 79
Density
Temp 1.4 | 1.1 |093] 43 90
PM2.5 55 | 4.4 (090 7.0 87
Hybrid  |[NO: 50 | 4.0 [0.88] 6.7 85
Fuzzy— |Os 38 | 3.1 1092 6.1 88
ML
Traffic
[10] Density 115 | 98 [0.84| 8.7 81
Temp 13 | 1.0 [0.94] 4.0 91
PM2.5 48 |39 (092 6.1 90
NO. 43 | 3.5 (090 5.8 88
Proposed | 32 | 2.7 [094] 52 91
Fuzzy
Logic ~ |Traffic 100 | 87 [0.87 7.8 84
Density
Temp 1.1 |09 |095 3.8 93
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Table.10. Comparative Performance Metrics for Existing
Methods and Proposed Method (PM2.5, NO-, Os, AQI)

Prediction
Method |Variable RMSE MAE| R? M?PE Accuracy
(/0) )
(%)
PM2.5 6.7 | 54 (087 84 83
NO:2 5.9 | 4.7 (0.85] 7.6 82
ANN [7]
(OF 44 | 3.6 |0.89] 6.9 85
AQI 12.5 | 10.8 |0.86] 9.5 80
PM2.5 6.2 | 5.0 [0.88] 7.9 85
NO: 5.5 | 4.3 [0.86] 7.3 83
SVM [8]
(OF 42 | 3.4 10.90| 6.6 86
AQI 11.8 | 10.2 10.87| 9.0 82
PM2.5 5.6 | 4.5 {0.90] 7.1 87
Hybrid NO: | 5.1 | 40 088 6.8 85
Fuzzy-
ML [10] (OF 39 | 32 1091 6.2 88
AQI 10.5 | 9.0 [0.89| 8.5 84
PM25 | 49 | 39 (0.92| 6.2 90
Proposed NO: 44 | 3.5 (090 5.9 88
Fuzzy
Logic (OF 33 | 2.7 1094] 5.3 91
AQI 92 | 7.8 10.92| 7.2 87

Table.11. Comparative Performance Metrics for Existing
Methods and Proposed Method (Tree Cover, Green Roofs)

Prediction
Method | Variable RMSE MAE| R? N?;I;E Accuracy
° (%)
Tree
Cover (%) 6.8 5.6 |0.85| 8.5 82
ANN [7] G
reen
Roofs (%) 7.2 5.9 (0.83| 8.9 80
Tree
Cover (%) 6.2 5.0 (0.87| 8.0 84
SVM [8] G
reen
Roofs (%) 6.8 54 10.85| 8.3 82
. Tree
Hybrid Cover (%) 5.7 4.5 10.89] 7.2 86
Fuzzy- G
ML [10] | JTeen
[ ]Roofs(%) 6.1 | 48 [0.87| 7.5 85
Tree
Proposed Cover (%) 4.8 3.9 {0.92] 6.2 90
Fuzzy G
Logic reen
g Roofs (%) 5.0 4.0 (091 6.5 89

The Table.9 presents a comparison of PM2.5, NO-, O3, traffic
density, and temperature between existing methods (ANN, SVM,
Hybrid Fuzzy—ML) and the proposed method. For PM2.5, the
proposed method achieved an RMSE of 4.8 pg/m?, a reduction of
12.7% relative to the hybrid fuzzy—ML model (5.5 pg/m?), and an
MAE of 3.9 pg/m? indicating highly accurate prediction of
particulate matter.
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Similarly, NO: predictions showed an RMSE of 4.3 ppb,
outperforming the hybrid method by 15.7%, while Os predictions
reached an RMSE of 3.2 ppb, confirming the framework’s ability
to capture nonlinear pollutant dynamics effectively. The high R?
values (0.92-0.95) across all pollutants highlight the model’s
capability to explain a large proportion of variance, a notable
improvement over ANN (0.87-0.92) and SVM (0.85-0.93).

The proposed framework also demonstrated enhanced
predictive reliability, with MAPE values consistently lower than
existing approaches. For instance, PM2.5 MAPE decreased from
7.0% in the hybrid model to 6.1%, while prediction accuracy
increased from 87% to 90%, reflecting the model’s robustness in
capturing both temporal and spatial variations in pollutant levels.
Temperature and traffic density predictions similarly showed
reduced errors (RMSE of 1.1°C and 10.0 units, respectively),
demonstrating the model’s utility for multi-variable
environmental monitoring and its integration potential with urban
planning decisions (see Table.3).

The Table.10 provides a comparative assessment for PM2.5,
NO2, Os, and AQI derived from historical records. The proposed
fuzzy logic approach reduced RMSE for AQI predictions from
10.5 (Hybrid Fuzzy—ML) to 9.2, while MAE decreased from 9.0
to 7.8, and R? improved to 0.92. MAPE also declined from 8.5%
to 7.2%, confirming the framework’s superior accuracy in
reconstructing historical air quality indices. Prediction accuracy
for AQI increased to 87%, ensuring reliable guidance for urban
air quality management. These improvements underscore the
effectiveness of integrating real-time sensor networks with fuzzy
logic rules, which allow the model to handle uncertainty,
nonlinearity, and missing data effectively.

The impact of green infrastructure on pollutant mitigation was
evaluated using Tree Cover and Green Roofs (%) as input
parameters (Table.11). For Tree Cover, RMSE decreased from
5.7 (Hybrid Fuzzy—ML) to 4.8, and MAE from 4.5 to 3.9, while
R? improved to 0.92. Green Roof predictions achieved RMSE of
5.0, MAE of 4.0, and R? of 0.91. MAPE values for both
parameters decreased to 6.2—-6.5%, while prediction accuracy
reached 89-90%. These results highlight the framework’s
capacity to quantify the effect of green infrastructure
interventions, providing actionable insights for planners to
optimize urban vegetation and built-environment design to
achieve measurable air quality improvements.

The improvements can be attributed to the combination of
real-time heterogeneous sensor data, expert-defined fuzzy rules,
and defuzzification via the centroid method. The fuzzy logic
system allows for the integration of qualitative knowledge and
quantitative data, enabling accurate predictions even under
uncertain and dynamic urban conditions. Furthermore, scenario
simulations demonstrated that increasing tree cover from 10% to
50% in targeted zones could reduce AQI by approximately 18—
22%, emphasizing the practical utility of the proposed framework
for climate-resilient urban planning.

5. CONCLUSION

This study presents a fuzzy logic-based modeling framework
that effectively integrates sensor network data, environmental
variables, and green infrastructure metrics to predict urban air
pollution and support climate-resilient planning. The proposed
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method consistently outperforms traditional ANN, SVM, and
hybrid fuzzy—ML approaches, achieving lower RMSE and MAE,
higher R?, and improved prediction accuracy across pollutants,
AQI, and green infrastructure indicators (see Tables 3-5). By
capturing nonlinear, uncertain, and dynamic interactions between
pollutants, traffic, meteorology, and vegetation, the framework
provides interpretable and actionable insights for urban planners.
The results highlight the practical utility of deploying the
proposed framework in real-world urban environments,
demonstrating that targeted interventions in tree cover and green
roofs can significantly reduce pollutant concentrations and
improve overall air quality. This work contributes a robust,
scalable, and explainable approach to urban air pollution
management, bridging the gap between real-time environmental
sensing, intelligent modeling, and climate-resilient infrastructure
planning. The framework is poised to guide future urban
sustainability initiatives and support evidence-based policy
decisions for healthier, greener cities.
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