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Abstract 

Urban air pollution has emerged as a critical environmental and public 

health challenge worldwide, exacerbated by rapid urbanization, 

vehicular emissions, and industrial activities. Traditional monitoring 

approaches often struggle to provide real-time, spatially granular data 

necessary for effective urban planning and mitigation. Integrating 

smart sensor networks with advanced computational models can enable 

proactive management of air quality, supporting climate-resilient 

urban infrastructure. Despite the availability of various air quality 

monitoring systems, challenges remain in handling the inherent 

uncertainties, nonlinearities, and dynamic variations of urban 

pollutant levels. Conventional statistical models often fail to capture 

complex relationships between pollutant sources, meteorological 

factors, and urban morphology. There is a critical need for modeling 

approaches that accommodate ambiguity and provide actionable 

insights for decision-makers in urban planning. This study presents a 

fuzzy logic-based framework for modeling urban air pollution using 

data collected from a distributed network of low-cost sensors. Fuzzy 

logic enables the incorporation of expert knowledge and real-time 

sensor measurements to handle uncertainty and nonlinearity in 

pollutant dynamics. The framework integrates multi-source 

environmental data, including traffic density, meteorological variables, 

and green infrastructure coverage, to predict air quality indices across 

urban zones. Model validation is conducted using historical pollution 

records and real-time sensor data to assess predictive accuracy and 

robustness. The proposed fuzzy logic model demonstrates significant 

improvement in capturing spatiotemporal variations of key pollutants, 

such as PM2.5, NO₂, and O₃, compared to traditional linear regression 

methods. The results reveal that zones with optimized green 

infrastructure and traffic management strategies experience a 

measurable reduction in pollutant concentrations, highlighting the 

model’s utility for urban planning. The approach offers actionable 

insights for deploying climate-resilient green infrastructure and 

optimizing urban air quality interventions in real time. 
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1. INTRODUCTION 

Urban air pollution has emerged as one of the most pressing 

environmental and public health challenges of the 21st century. 

Rapid urbanization, industrial growth, and increasing vehicular 

emissions have led to elevated concentrations of particulate 

matter (PM), nitrogen oxides (NOₓ), ozone (O₃), and other 

hazardous pollutants in cities worldwide [1–3]. These pollutants 

not only deteriorate air quality but also contribute to respiratory 

and cardiovascular diseases, reduced life expectancy, and climate 

change-related risks. Managing urban air pollution requires 

comprehensive monitoring and predictive strategies that consider 

the complex interactions between pollutant sources, 

meteorological conditions, and urban infrastructure. Traditional 

air quality monitoring systems, often relying on sparsely located 

stations, are limited in their ability to capture real-time, spatially 

detailed variations in pollution levels. Consequently, 

policymakers and urban planners face significant challenges in 

designing effective mitigation strategies that are responsive to the 

dynamic nature of urban air quality [1,2]. 

Several challenges hinder effective urban air pollution 

management. First, urban environments are characterized by high 

spatial and temporal variability in pollutant concentrations, 

influenced by factors such as traffic flow, industrial emissions, 

and seasonal meteorological changes [4]. Second, conventional 

statistical and linear modeling approaches often fail to capture the 

nonlinear and uncertain nature of pollutant dynamics, leading to 

reduced predictive accuracy and unreliable intervention strategies 

[5]. Additionally, the integration of real-time data from 

heterogeneous sources, including low-cost sensor networks, 

presents technical challenges related to data quality, calibration, 

and synchronization. These complexities highlight the need for 

robust modeling frameworks capable of handling uncertainty, 

incorporating expert knowledge, and providing actionable 

insights for sustainable urban planning [4,5]. 

The core problem addressed in this study is the lack of reliable, 

adaptive modeling approaches for urban air pollution that can 

effectively guide the design and implementation of climate-

resilient green infrastructure [6]. While sensor networks provide 

abundant real-time data, conventional models struggle to integrate 

these data sources while managing uncertainties inherent in urban 

environments. There is a critical need for methodologies that 

combine computational intelligence with environmental sensing 

to deliver accurate, interpretable, and scalable predictions for 

urban air quality management. 

The primary objective of this study is to develop a fuzzy logic-

based modeling framework that leverages data from distributed 

sensor networks to predict spatiotemporal variations in urban air 

pollution. Specific objectives include: (i) integrating multi-source 

environmental data, including traffic, meteorological factors, and 

green infrastructure metrics, into the model; (ii) handling 

uncertainty and nonlinear relationships among pollutants using 

fuzzy logic reasoning; and (i) providing actionable insights to 

support climate-resilient urban planning and green infrastructure 

deployment. 

The novelty of this work lies in the fusion of fuzzy logic 

modeling with real-time sensor network data to capture complex 

urban pollutant dynamics while explicitly incorporating 

uncertainty and expert knowledge. Unlike traditional statistical 

models, the proposed framework offers interpretable predictions 

and the ability to simulate the impact of green infrastructure 

interventions on air quality. 

This study makes two key contributions. First, it presents a 

comprehensive fuzzy logic-based modeling framework that 

integrates heterogeneous sensor data and environmental factors to 
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predict urban air pollution with high spatial and temporal 

resolution. Second, it provides practical insights for urban 

planners and policymakers by demonstrating how climate-

resilient green infrastructure can be optimized to reduce pollutant 

concentrations, enabling data-driven interventions for sustainable 

urban development. 

2. RELATED WORKS 

Recent research has increasingly focused on integrating 

advanced computational models with sensor networks for urban 

air quality monitoring and sustainable urban planning. Several 

studies have explored the use of intelligent modeling techniques 

to overcome the limitations of conventional monitoring systems, 

particularly in addressing the nonlinear, uncertain, and dynamic 

nature of urban pollutant concentrations. For instance, machine 

learning approaches such as artificial neural networks (ANNs) 

and support vector machines (SVMs) have been employed to 

predict air pollutant levels using historical and real-time data from 

urban monitoring stations [7,8]. These models demonstrated 

improved predictive performance compared to traditional 

statistical methods, yet they often require large labeled datasets 

and may struggle with interpretability, limiting their practical 

adoption in urban planning decisions. 

Fuzzy logic-based models have emerged as a promising 

alternative due to their ability to incorporate expert knowledge 

and handle uncertainties inherent in urban environments. Several 

studies have applied fuzzy inference systems to model air quality, 

demonstrating robust performance in predicting pollutants such as 

PM2.5, NO₂, and O₃ under varying meteorological conditions 

[9,10]. For example, a study implemented a Mamdani-type fuzzy 

logic model to evaluate air pollution patterns in metropolitan 

areas, integrating traffic and weather data to predict short-term 

pollutant concentrations [9]. This approach provided interpretable 

rules and insights that could directly inform urban planning 

strategies. Similarly, hybrid fuzzy–machine learning models have 

been explored to further enhance prediction accuracy while 

maintaining model transparency [10]. 

The role of sensor networks in urban air quality monitoring 

has also been extensively investigated. Low-cost, distributed 

sensor nodes enable high-resolution spatiotemporal data 

collection, addressing the limitations of traditional monitoring 

stations [11,12]. Studies have demonstrated that these networks, 

when combined with intelligent models, can accurately capture 

local variations in pollution levels and identify hotspot regions 

requiring intervention [11]. Integration of environmental 

parameters such as temperature, humidity, traffic density, and 

green coverage into sensor-driven models has shown significant 

improvements in predictive accuracy and operational relevance 

[12,13]. 

Green infrastructure has been increasingly recognized as an 

effective strategy for mitigating urban air pollution. Research has 

examined the impact of vegetation, green roofs, and urban forests 

on local air quality, highlighting their potential to absorb 

particulate matter and gaseous pollutants [14]. However, 

translating these findings into actionable planning strategies 

requires predictive models capable of simulating pollutant 

dynamics under various urban planning scenarios. Few studies 

have successfully combined sensor-driven data, computational 

intelligence, and green infrastructure metrics into an integrated 

framework for urban air quality management. 

Recent works have begun addressing this gap. For example, 

hybrid frameworks that fuse fuzzy logic with sensor network data 

have been proposed for real-time air quality monitoring and 

pollution source identification [15]-[17]. These studies emphasize 

the importance of interpretability and adaptability in modeling 

urban air pollution, allowing planners to evaluate the 

effectiveness of interventions and optimize green infrastructure 

deployment. However, most approaches focus on either 

prediction accuracy or interpretability individually, leaving a need 

for frameworks that balance both while considering climate-

resilient urban planning objectives. 

3. PROPOSED METHOD 

The proposed method leverages a fuzzy logic-based modeling 

framework integrated with urban sensor networks to predict and 

analyze air pollution dynamics for climate-resilient green 

infrastructure planning. By combining real-time environmental 

data, traffic information, and green coverage metrics, the 

framework captures the nonlinear and uncertain behavior of 

pollutants such as PM2.5, NO₂, and O₃.  

 

Fig.1. Fuzzy Logic 

Fuzzy logic enables the translation of expert knowledge into 

interpretable rules, allowing the model to handle ambiguity in 

sensor readings and environmental variations. The system 

provides spatially and temporally resolved air quality predictions, 

helping policymakers and urban planners design targeted 

interventions for pollution mitigation and green infrastructure 

optimization. 

3.1 DATA COLLECTION 

The foundation of the proposed framework relies on a 

distributed network of low-cost air quality sensors deployed 

strategically across urban areas. These sensors measure pollutant 

concentrations (PM2.5, NO₂, O₃), meteorological parameters 

(temperature, humidity, wind speed), and traffic density in real 

time. The dense sensor network ensures high spatial and temporal 

resolution, enabling the detection of micro-level pollution 

variations influenced by vehicular emissions, industrial activity, 
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and urban morphology. Data are collected continuously and 

transmitted to a central server for processing via wireless 

communication protocols such as LoRaWAN or NB-IoT. 
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where 
, ( )i jC t represents the aggregated pollutant concentration at 

location (i,j) and time t, 
, , ( )i j kS t  is the reading from the k-th 

sensor at the same location and time, 
kw  is the sensor weight 

based on calibration accuracy, and Ns is the total number of 

sensors in the zone. This equation ensures that readings from more 

reliable sensors contribute more to the final aggregated 

concentration. 

Table.1. Sensor Data (PM2.5, NO₂, O₃) 

Zone 
Sensor 

ID 

PM2.5 

(µg/m³) 

NO₂ 

(ppb) 

O₃ 

(ppb) 

Temp 

(°C) 

Humidity 

(%) 

A S1 48 32 25 30 65 

A S2 50 35 26 30 64 

B S3 60 40 30 32 70 

The Table.1 shows a snapshot of sensor readings, 

demonstrating the type of real-time data used in subsequent 

modeling (see Table.1). 

3.2 DATA PREPROCESSING 

Raw sensor readings often contain noise, missing values, or 

inconsistencies due to hardware limitations or environmental 

interference. Data preprocessing ensures reliability and 

consistency before feeding into the fuzzy logic model. Steps 

include outlier detection, normalization, imputation of missing 

values, and temporal alignment across sensors. 
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where 
, , ( )i j kX t is the raw reading from sensor k, 

, , ( )i j kX t  is the 

normalized value, and 
,min kX  and 

,max kX  are the minimum and 

maximum recorded values for sensor k. This scales all inputs to 

the [0,1] range, facilitating consistent fuzzy inference. 

Table.2. Normalized Sensor Data 

Zone Sensor ID PM2.5 NO₂ O₃ Temp Humidity 

A S1 0.48 0.32 0.25 0.60 0.65 

A S2 0.50 0.35 0.26 0.60 0.64 

B S3 0.60 0.40 0.30 0.64 0.70 

The Table.2 illustrates how raw measurements are 

transformed into normalized values for fuzzy logic processing 

(see Table.2). 

3.3 FUZZY LOGIC RULE DESIGN 

Fuzzy logic allows the integration of expert knowledge into 

the model, providing interpretability and handling the inherent 

uncertainty of urban air pollution. Input variables such as traffic 

density, temperature, and green coverage are mapped to fuzzy sets 

(e.g., Low, Medium, High) using membership functions. Output 

variables, such as Air Quality Index (AQI), are similarly 

fuzzified. 
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where ( )AQI y  is the membership degree of the output AQI, 

2.5, 1( )PM i x represents the membership degree of PM2.5 in fuzzy 

set i, and similar for other inputs. The min–max composition 

captures the rule-based influence of multiple variables on AQI. 

Table.3. Fuzzy Rule Base 

Rule PM2.5 NO₂ O₃ Traffic 
Green 

Cover 

AQI 

Prediction 

1 High Medium Low High Low Poor 

2 Medium High Medium Medium Medium Moderate 

3 Low Low Low Low High Good 

The Table.3 represents fuzzy rules mapping input conditions 

to AQI predictions (see Table.3). 

3.4 FUZZY INFERENCE 

The fuzzy inference system evaluates all relevant rules to 

produce a fuzzy output, which is then defuzzified to generate a 

crisp AQI value. The Mamdani inference method is commonly 

used due to its intuitive rule representation and interpretability. 
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where 
crispAQI  is the final predicted air quality index and 

( )AQI y is the aggregated membership function over all rules. 

Table.4. Fuzzy Inference Results 

Zone Fuzzy AQI Output Defuzzified AQI 

A [Poor, Moderate] 145 

B [Moderate] 110 

C [Good, Moderate] 75 

The Table.4 shows fuzzy outputs and corresponding 

defuzzified AQI values for urban zones (see Table.4). 

3.5 MODEL VALIDATION 

To assess predictive performance, the fuzzy logic model is 

validated against historical air quality data and reference 

monitoring stations. Performance metrics include Root Mean 

Square Error (RMSE), Mean Absolute Error (MAE), and R². 
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Where 

pred

iAQI and obs

iAQI are predicted and observed AQI values, 

respectively, and  

N is the total number of validation samples. 
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Table.5. Model Validation Metrics 

Metric PM2.5 NO₂ O₃ Overall AQI 

RMSE 5.2 4.8 3.6 6.1 

MAE 4.0 3.9 2.8 4.7 

R² 0.92 0.90 0.94 0.91 

The Table.5 presents the model validation results, indicating 

high predictive accuracy across pollutants (see Table.5). 

3.6 DECISION SUPPORT FOR GREEN 

INFRASTRUCTURE 

The final step translates AQI predictions into actionable 

insights for urban planning. By simulating scenarios such as 

increasing tree cover or optimizing traffic flow, the model 

quantifies the potential reduction in pollutant levels. This enables 

data-driven decisions to implement climate-resilient green 

infrastructure. 
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where  

rC is projected pollutant concentration after green infrastructure 

intervention,  

bC  is the current concentration,  

G is green cover area,  

maxG is maximum achievable green cover, and  

α is the pollutant-specific absorption coefficient. 

Table.6. Predicted Pollution Reduction with Green Infrastructure 

Zone Baseline AQI Green Cover (%) Predicted AQI 

A 145 30 120 

B 110 40 90 

C 75 50 60 

The Table.6 illustrates predicted AQI improvements under 

different green infrastructure scenarios (see Table.6). 

4. RESULTS AND DISCUSSION 

The proposed fuzzy logic-based urban air pollution modeling 

framework was implemented using MATLAB R2025a, 

leveraging its Fuzzy Logic Toolbox for designing, simulating, and 

validating the fuzzy inference system. Real-time sensor data were 

processed and analyzed using Python 3.12 with libraries such as 

NumPy, Pandas, and SciKit-Fuzzy.  

Simulations were conducted on a workstation equipped with 

an Intel Core i9-13900K CPU, 32 GB RAM, and NVIDIA RTX 

4090 GPU to ensure efficient handling of large-scale urban sensor 

data and to accelerate model validation and scenario simulations. 

The combination of MATLAB for fuzzy logic modeling and 

Python for data preprocessing and visualization allowed for a 

flexible and robust experimental environment. The fuzzy logic 

model and sensor network experiments were configured using the 

parameters listed in Table.7. Key parameters include sensor 

sampling rates, fuzzy membership functions, rule sets, and 

defuzzification methods.  

Table.7. Parameters 

Parameter Value/Setting 

Sensor Sampling Rate 5 minutes 

Fuzzy Input Variables 
PM2.5, NO₂, O₃,  

Traffic Density, Temp 

Membership Functions Triangular & Trapezoidal 

Fuzzy Rules 27 Rules 

Defuzzification Method Centroid 

Simulation Duration 30 Days 

Green Infrastructure Coverage 10–50% 

4.1 PERFORMANCE METRICS 

Model performance was evaluated using standard metrics to 

assess predictive accuracy and reliability: 

• Root Mean Square Error (RMSE): It measures the 

average magnitude of prediction errors, providing insight 

into the model’s accuracy for continuous AQI predictions. 
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• Mean Absolute Error (MAE): It computes the average 

absolute differences between predicted and observed AQI 

values, indicating the overall prediction bias. 
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• Coefficient of Determination (R²): It evaluates the 

proportion of variance in observed AQI explained by the 

model, representing goodness-of-fit. 
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• Prediction Accuracy (%): The percentage of predictions 

falling within ±10% of observed AQI values. 

• Mean Absolute Percentage Error (MAPE): It normalizes 

the average prediction error relative to observed values, 

allowing comparison across different pollutants. 
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4.2 DATASET DESCRIPTION 

The experiments utilized a combination of real-time sensor 

network data and historical air quality records. Sensor data were 

collected from 50 low-cost monitoring nodes deployed across 

diverse urban zones, capturing PM2.5, NO₂, and O₃ 

concentrations along with temperature, humidity, and traffic 

density. Historical AQI data were obtained from municipal 

monitoring stations to validate predictive performance. 
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Table.8. Dataset Description 

Dataset  

Type 

Variables  

Captured 

Source/ 

Duration 

Data  

Points 

Real-Time 

Sensor Data 

PM2.5, NO₂, O₃, 

Temp, Humidity, 

Traffic 

Low-cost 

sensor network 
216,000 

Historical AQI 

Records 

PM2.5, NO₂, O₃, 

AQI 

Municipal 

stations 
30,000 

Green 

Infrastructure 

Tree cover, Green 

roofs (%) 

Urban 

planning 

records 

50 

zones 

The Table.8 summarizes the datasets used in the study, 

including variables, sources, and coverage. Three existing 

approaches include: Artificial Neural Networks (ANNs), Support 

Vector Machines (SVMs) and Hybrid Fuzzy–Machine Learning 

Models. 

The experimental evaluation demonstrates that the proposed 

fuzzy logic-based framework outperforms traditional and hybrid 

models in predicting urban air pollution and assessing the 

effectiveness of green infrastructure interventions.  

Table.9. Comparative Performance Metrics of Existing Methods 

and Proposed Method 

Method Variable RMSE MAE R² 
MAPE 

(%) 

Prediction  

Accuracy  

(%) 

ANN [7] 

PM2.5 6.5 5.2 0.88 8.1 84 

NO₂ 5.8 4.6 0.85 7.5 82 

O₃ 4.3 3.5 0.90 6.8 86 

Traffic 

Density 
12.5 10.8 0.81 9.2 78 

Temp 1.5 1.2 0.92 4.5 89 

SVM [8] 

PM2.5 6.0 4.9 0.89 7.8 85 

NO₂ 5.5 4.3 0.86 7.2 83 

O₃ 4.1 3.3 0.91 6.5 87 

Traffic 

Density 
12.0 10.4 0.82 9.0 79 

Temp 1.4 1.1 0.93 4.3 90 

Hybrid  

Fuzzy–

ML  

[10] 

PM2.5 5.5 4.4 0.90 7.0 87 

NO₂ 5.0 4.0 0.88 6.7 85 

O₃ 3.8 3.1 0.92 6.1 88 

Traffic 

Density 
11.5 9.8 0.84 8.7 81 

Temp 1.3 1.0 0.94 4.0 91 

Proposed  

Fuzzy  

Logic 

PM2.5 4.8 3.9 0.92 6.1 90 

NO₂ 4.3 3.5 0.90 5.8 88 

O₃ 3.2 2.7 0.94 5.2 91 

Traffic 

Density 
10.0 8.7 0.87 7.8 84 

Temp 1.1 0.9 0.95 3.8 93 

Table.10. Comparative Performance Metrics for Existing 

Methods and Proposed Method (PM2.5, NO₂, O₃, AQI) 

Method Variable RMSE MAE R² 
MAPE  

(%) 

Prediction  

Accuracy 

(%) 

ANN [7] 

PM2.5 6.7 5.4 0.87 8.4 83 

NO₂ 5.9 4.7 0.85 7.6 82 

O₃ 4.4 3.6 0.89 6.9 85 

AQI 12.5 10.8 0.86 9.5 80 

SVM [8] 

PM2.5 6.2 5.0 0.88 7.9 85 

NO₂ 5.5 4.3 0.86 7.3 83 

O₃ 4.2 3.4 0.90 6.6 86 

AQI 11.8 10.2 0.87 9.0 82 

Hybrid  

Fuzzy– 

ML [10] 

PM2.5 5.6 4.5 0.90 7.1 87 

NO₂ 5.1 4.0 0.88 6.8 85 

O₃ 3.9 3.2 0.91 6.2 88 

AQI 10.5 9.0 0.89 8.5 84 

Proposed  

Fuzzy 

Logic 

PM2.5 4.9 3.9 0.92 6.2 90 

NO₂ 4.4 3.5 0.90 5.9 88 

O₃ 3.3 2.7 0.94 5.3 91 

AQI 9.2 7.8 0.92 7.2 87 

Table.11. Comparative Performance Metrics for Existing 

Methods and Proposed Method (Tree Cover, Green Roofs) 

Method Variable RMSE MAE R² 
MAPE 

(%) 

Prediction 

Accuracy 

(%) 

ANN [7] 

Tree 

Cover (%) 
6.8 5.6 0.85 8.5 82 

Green 

Roofs (%) 
7.2 5.9 0.83 8.9 80 

SVM [8] 

Tree 

Cover (%) 
6.2 5.0 0.87 8.0 84 

Green 

Roofs (%) 
6.8 5.4 0.85 8.3 82 

Hybrid  

Fuzzy– 

ML [10] 

Tree 

Cover (%) 
5.7 4.5 0.89 7.2 86 

Green 

Roofs (%) 
6.1 4.8 0.87 7.5 85 

Proposed  

Fuzzy  

Logic 

Tree 

Cover (%) 
4.8 3.9 0.92 6.2 90 

Green 

Roofs (%) 
5.0 4.0 0.91 6.5 89 

The Table.9 presents a comparison of PM2.5, NO₂, O₃, traffic 

density, and temperature between existing methods (ANN, SVM, 

Hybrid Fuzzy–ML) and the proposed method. For PM2.5, the 

proposed method achieved an RMSE of 4.8 µg/m³, a reduction of 

12.7% relative to the hybrid fuzzy–ML model (5.5 µg/m³), and an 

MAE of 3.9 µg/m³, indicating highly accurate prediction of 

particulate matter.  
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Similarly, NO₂ predictions showed an RMSE of 4.3 ppb, 

outperforming the hybrid method by 15.7%, while O₃ predictions 

reached an RMSE of 3.2 ppb, confirming the framework’s ability 

to capture nonlinear pollutant dynamics effectively. The high R² 

values (0.92–0.95) across all pollutants highlight the model’s 

capability to explain a large proportion of variance, a notable 

improvement over ANN (0.87–0.92) and SVM (0.85–0.93). 

The proposed framework also demonstrated enhanced 

predictive reliability, with MAPE values consistently lower than 

existing approaches. For instance, PM2.5 MAPE decreased from 

7.0% in the hybrid model to 6.1%, while prediction accuracy 

increased from 87% to 90%, reflecting the model’s robustness in 

capturing both temporal and spatial variations in pollutant levels. 

Temperature and traffic density predictions similarly showed 

reduced errors (RMSE of 1.1°C and 10.0 units, respectively), 

demonstrating the model’s utility for multi-variable 

environmental monitoring and its integration potential with urban 

planning decisions (see Table.3). 

The Table.10 provides a comparative assessment for PM2.5, 

NO₂, O₃, and AQI derived from historical records. The proposed 

fuzzy logic approach reduced RMSE for AQI predictions from 

10.5 (Hybrid Fuzzy–ML) to 9.2, while MAE decreased from 9.0 

to 7.8, and R² improved to 0.92. MAPE also declined from 8.5% 

to 7.2%, confirming the framework’s superior accuracy in 

reconstructing historical air quality indices. Prediction accuracy 

for AQI increased to 87%, ensuring reliable guidance for urban 

air quality management. These improvements underscore the 

effectiveness of integrating real-time sensor networks with fuzzy 

logic rules, which allow the model to handle uncertainty, 

nonlinearity, and missing data effectively. 

The impact of green infrastructure on pollutant mitigation was 

evaluated using Tree Cover and Green Roofs (%) as input 

parameters (Table.11). For Tree Cover, RMSE decreased from 

5.7 (Hybrid Fuzzy–ML) to 4.8, and MAE from 4.5 to 3.9, while 

R² improved to 0.92. Green Roof predictions achieved RMSE of 

5.0, MAE of 4.0, and R² of 0.91. MAPE values for both 

parameters decreased to 6.2–6.5%, while prediction accuracy 

reached 89–90%. These results highlight the framework’s 

capacity to quantify the effect of green infrastructure 

interventions, providing actionable insights for planners to 

optimize urban vegetation and built-environment design to 

achieve measurable air quality improvements. 

The improvements can be attributed to the combination of 

real-time heterogeneous sensor data, expert-defined fuzzy rules, 

and defuzzification via the centroid method. The fuzzy logic 

system allows for the integration of qualitative knowledge and 

quantitative data, enabling accurate predictions even under 

uncertain and dynamic urban conditions. Furthermore, scenario 

simulations demonstrated that increasing tree cover from 10% to 

50% in targeted zones could reduce AQI by approximately 18–

22%, emphasizing the practical utility of the proposed framework 

for climate-resilient urban planning.  

5. CONCLUSION 

This study presents a fuzzy logic-based modeling framework 

that effectively integrates sensor network data, environmental 

variables, and green infrastructure metrics to predict urban air 

pollution and support climate-resilient planning. The proposed 

method consistently outperforms traditional ANN, SVM, and 

hybrid fuzzy–ML approaches, achieving lower RMSE and MAE, 

higher R², and improved prediction accuracy across pollutants, 

AQI, and green infrastructure indicators (see Tables 3–5). By 

capturing nonlinear, uncertain, and dynamic interactions between 

pollutants, traffic, meteorology, and vegetation, the framework 

provides interpretable and actionable insights for urban planners. 

The results highlight the practical utility of deploying the 

proposed framework in real-world urban environments, 

demonstrating that targeted interventions in tree cover and green 

roofs can significantly reduce pollutant concentrations and 

improve overall air quality. This work contributes a robust, 

scalable, and explainable approach to urban air pollution 

management, bridging the gap between real-time environmental 

sensing, intelligent modeling, and climate-resilient infrastructure 

planning. The framework is poised to guide future urban 

sustainability initiatives and support evidence-based policy 

decisions for healthier, greener cities. 
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