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Abstract

Metaheuristics have been used to solve combinatorial optimization
problems in recent decades. Metaheuristics inspired by various natural
phenomena have been proposed due to their optimization
characteristics. The Imperialist Competitive Algorithm (ICA) is one
such metaheuristic inspired by the socio-political process of
imperialism. ICA has become popular due to its extensive applications
in various engineering domains. Originally, ICA was designed to solve
continuous optimization problems. This paper presents a binary version
of ICA, dubbed ICA with Binary-encoding (ICAwB), to solve selection
problems. ICAwB works with binary encoding and utilizes new socio-
politically inspired operators. Additional features are incorporated
within ICAwB to develop an improved version dubbed IICAwB. ICAwB
and IICAwB with other binary versions of ICA are compared. IICAwB
shows much better performance than existing binary ICAs and ICAwB.
The proposed IICAwB is quite generic, and its applicability to other
combinatorial optimization problems can be attempted with advantage.
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1. INTRODUCTION

Over the last few decades, evolutionary computation
metaheuristics have been extensively utilized to solve
combinatorial optimization problems. These metaheuristics are
generic population-based computational approaches that provide
iterative improvement to a population of solution individuals
directed by their fitness. Reproduction, mutation, recombination,
selection, and migration are typical natural biological concepts
used in evolutionary algorithms. The under applicability of these
metaheuristics over exact algorithms is due to their simple
concepts, easy implementation, and provision of satisfying results
within reasonable computation time.

Evolution Strategies (ES) [1], Genetic algorithms (GA) [2],
Particle Swarm Optimization (PSO) [3], Ant Colony
Optimization (ACO) [4], and Imperialist Competitive Algorithm
(ICA) [5] are some well-known metaheuristics. Evolution
Strategies (ES) were introduced by [1] and further developed by
[6]. ES uses an asexual reproduction mutation operator only. GA
[2] offers a basic evolutionary computation model. It imitates the
biological process of natural selection. PSO [3] is inspired by the
swarm-intelligence behaviour of organisms in a bird flock or fish
school. ACO [4] derives inspiration from real ants searching for
food. It mimics the path-following behaviour of ants. ICA [5] is
inspired by the socio-political process of imperialism and
imperialistic competition. Recently, ICA has become popular due
to its application in solving complex continuous problems. It has
been used in various application areas, including industrial
engineering, civil engineering, mechanical engineering, electrical
engineering, and computer engineering [7].
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ICA starts with an initial population of solution vectors termed
Countries. These Countries are further classified into Imperialists
and Colonies. The Imperialists acquire Colonies to form Empires.
An Imperialist is a Country with the best cost/fitness in an Empire,
while other Countries are its Colonies. Empires try to enhance
their power by enhancing their Colonies and acquiring weaker
Colonies from other Empires. Assimilation and revolution
processes are used to improve Colonies by moving them toward
their Imperialist. In assimilation, Colonies move some distance
toward their Imperialists. However, in revolution, the movement
of Colonies in the direction of their Imperialist deviates from
some angle. If a Colony outperforms its Imperialist during these
processes, their roles are interchanged. ICA starts an imperialistic
competition between Empires aiming to acquire Colonies from
weaker Empires. This competition leads to better Empires
acquiring more Colonies, which increases exploration in ICA and
eventually to a near-global optimum solution. Finally, only one
Empire remains, which is the desired state to terminate the
algorithm. The pseudo-code of an ICA is provided in Algorithm
1.

Algorithm 1: Pseudo-code of Imperialist Competitive Algorithm

1: Generate some random solutions (Countries)

2: Initialize the Empires

3:

4: Assimilate Empires:
Imperialist

Repeat
move the Colonies toward their

Revolution: move the Colonies toward their Imperialist with
some deviation

Interchange  roles of  Colony  and

if a Colony outperforms Imperialist

Imperialist

Imperialistic competition: Empires fight to acquire more and
more Colonies from weaker Empires

Eliminate Empires with no Colonies
: Until only one Empire remains

As described in Algorithm.1, this basic ICA is designed for
continuous optimization problems. However, many optimization
problems are discrete — travelling salesman problems, subset
selection problems, and vehicle routing problems, to name but a
few. Subset selection problems involve selection rather than
sequencing or ordering. If S is a set of objects, then a subset X of
S(i.e., XCS) is to be found, such that for any other subset X' of S,
fX) = f(X') for a maximization (f(X) < f(X') for a minimization)
problem. A subset selection problem means finding an optimal
feasible subset of objects from a given set. Clique, satisfiability,
and knapsack problems are some well-known subset selection
problems. Knapsack problems (KPs) have multiple real-world
optimization applications: budget control, cutting stock, airline
cargo loading, and others. Several other optimization problems
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can also be reduced or transformed to KPs easily, viz., clique and
dense subgraph problems, to name a few. [8]. The basic KP is a
0-1 or binary knapsack problem. Furthermore, other extensions
and variants of KP have also become standard problems
independently.

The basic model of ICA applies only to continuous
optimization problems, as its operators do not directly apply to
binary-encoded solution vectors. However, several discrete
versions of ICA have also been developed and reported in the
literature, viz., Discrete Binary ICA (DB-ICA) [9], Discrete ICA
(DICA) [10], Modified ICA (MICA) [11], and Binary ICA
(BICA) [12] and others. DB-ICA uses a two-point crossover to
simulate the binary assimilation process. DICA and MICA use
crossovers for assimilation and are primarily utilized for ordering
problems. BICA wuses nine transfer functions for binary
assimilation. It converts the distance between a Colony and its
Imperialist, say d, into a probability value using a transfer
function F(d) (see Table.1). According to this probability value,
the Colonies move towards their Imperialist by changing Os and
Is. For transfer functions TF1 through TF4, Eq.(1) and TF5
through TF9, Eq.(2) are utilized to update the colony position;
x¢) represents i™ bit of a Country/Colony at time ¢. It is reported
in [12] that BICA outperforms DB-ICA. Therefore, in the present
article, the results of our proposed algorithm are only compared
with those of BICA.

0, ifrand < F(d,(t+1))

xl.(t+1)={1, ifrand > F(d, (¢ +1)) .

{Not(x,, (¢)), ifrand < F(d,(t+1))
x(t+1)= . (2)
x,(1), ifrand > F(d,(t +1))

This paper presents a novel binary version of the Imperialist
Competitive Algorithm (ICA) dubbed ICA with Binary-encoding
(ICAwB). A new intuitive binary assimilation process is devised
for this purpose. Furthermore, an improved version of ICAwWB,
dubbed Improved ICAwB (IICAwB), is proposed with several
enhancements. The computational performance of these new
algorithms is compared with the existing binary version of ICA
(BICA). The proposed algorithms perform much better than the
previously reported ICA algorithms in terms of solution quality
and consistency of convergence. The proposed ICAwB and
IICAWwB are generic, can be employed with an advantage on other
subset selection problems and can be adapted suitably for other
combinatorial optimization problems. The performance of these
algorithms is demonstrated on some standard Knapsack problems.

Table.1. Transfer Functions [12]

Name Transfer function
1
TF1 F(d)=1+efzd
TF2 F(d)= ! —
1+e
TF3 F(d)= %M
1+e
TF4 F(d) =+M
1+e

\/; 2 ﬁd 2
TF5 F(d)=erf[7d :J—;joz e’ dt
TF6 F(d) = tanh(d)
d
TF7 F(d>=‘ :
1+d
2 T
TF8 F(d)= —arctan(—d}‘
V4 2
TF9 F(d)=2x - —0.5‘
1+e

The remainder of the paper is organized as follows. ICAwB
and its improved version, IICAwB, are explained in section 2.
Section 3 describes three problems considered, i.e., Difficult
Knapsack problems (DKP), Quadratic Knapsack problems (QKP)
and Quadratic Multiple Knapsack Problems (QMKP). The
computational experiments and the selection of parameter values
are described in section 4. The computational performance of
BICA, ICAwB, and IICAwB on DKP, QKP and QMKP instances
is reported and discussed in section 5. Conclusions are presented
in section 6.

2. PROPOSED ALGORITHMS

2.1 PROPOSED IMPERIALIST COMPETITIVE
ALGORITHM WITH BINARY-ENCODING
(ICAwB)

ICAwB starts with a random population of solution
individuals termed as Countries. A Country X in ICAwWB is
represented as a binary vector in N,. dimensional search space as
in Eq.(3). In a selection problem, each binary value x; in a Country
X represents either inclusion (1) or exclusion (0) of objects in the
solution.

X =[x,%,,....xy ], wherex; € {0,1} 3)

A random population of N,, such Countries is initially
generated, out of which N, Imperialists are designated. The
selection of Imperialists is based on their profit f{.X;) as given in
Eq.(4), which is a counterpart of fitness in GA.

PIOfit /(X)) = £ (X, XX ) @)

First, Ninp Countries with the best profit are selected as the
Imperialists. These Imperialists create Empires by acquiring the
remaining (Npop - Nimp) Countries as their Colonies. The initial

number of Colonies of the n™" Imperialist (X ) is proportionate

imp,
to its profit, as given in Eq.5. Thus, a better Imperialist occupies
more Colonies and creates an enormous Empire. Colonies are
occupied using the roulette-wheel selection process [13].

f(Ximp,,)
N\mp
2 Koy,
Empires try to improve their Colonies with assimilation and
revolution processes. In assimilation, Imperialists impose better

characteristics on the acquired Colonies to increase their total
power. Assimilation is implemented by moving the Colonies

N.X,

imp,

= round x (Npop - Nimp) (5)
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toward their corresponding Imperialist. The Fig.1 depicts an
example of the assimilation process; Colonies are represented as
dots, and the Imperialist as a star. In ICAwB, the movement of
Colonies is done based on the hamming distance. A Colony at
hamming distance D from its Imperialist will move d bits (Eq.6)
toward the Imperialist. These d bits are randomly selected from
the hamming distance bit-vector. The pseudo-code given in
Algorithm.2 describes the proposed binary assimilation process in
detail.

d ~U(0,D) 6)
where, U is the integer uniform distribution function.

Imperialist

new position
‘olony

Colony

Fig.1. Assimilation process

A random disturbance in a Colony can prevent it from falling
into a local optimum. A revolution process utilized for
exploitation achieves this disturbance. In the revolution process,
an arbitrary change in a Colony is made. In ICAwB, it is
performed using a simple mutation operator.

Variation in Colonies through assimilation and revolution
operators can provide better-performing solutions. If these
solutions are better than their Imperialist, then the roles of the
best-performing Colony and its Imperialist are interchanged. This
mechanism maintains the status of the best local solution
(Imperialist) as an inspirational body, and the assimilation
operator will subsequently use this updated Imperialist to improve
the Colonies.

Algorithm 2: Pseudo-code of the proposed binary assimilation
process

1: Calculate the distance D between the Colony and its
NX,, )

mp,,

Imperialist (
: Calculate the number of bits d to move toward Imperialist
using Eq.(6)
Select Colony’s d bits out of D bits randomly and change
according to (N.X . )

mp,,
If new_colony outperforms the Colony, then
Keep the new_colony, discard the Colony
Else
Discard the new_colony
End If
As in the case of ICA, Empires try to improve their power or
at least maintain it. ICAwB starts a competition between Empires
to increase their power and get more and more Colonies. For this,

better Empires try to capture the weakest Colony (in terms of their
profit) from the worst Empire (Fig.2). The discrimination of

A A
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Empires is done based on their power (PE). The power PE, of an
Empire E, is calculated as an aggregated sum of its Imperialist
and a fraction of its Colonies’ mean power as in Eq.7. The value
of ¢ represents the weightage of the Colonies in an Empire’s
power. A lower value of ¢ (=0.25) is recommended to prioritize
the Imperialist's profit while calculating an Empire’s power.

profit(Colonies of E)
N X,

P.E, =profit(X,,, )+¢- 7

In this imperialistic competition process, weaker Empires
become weaker and collapse into stronger Empires. By acquiring
more Colonies, the better Empires can improve their exploration,
resulting in better solutions. Due to imperialistic competition,
only one Empire remains at last, which is a desirable condition to
terminate the algorithm. However, a maximum number of
generations is also a better termination condition and is utilized in
this article.

Empire 1 weakest

m pire
N

Empire 2 Empire 3

Fig.2. Imperialistic competition

Empire n

weakest
colony

2.2 IMPROVED ICAWB (IICAWB)

The ICAWB is further improved for constrained combinatorial
optimization problems. Various enhancements (summarized in
Table.2) are proposed in the ICAwB framework to improve the
search process.

2.2.1 Better Initialization:

Problem-specific greedy approaches based on the efficiencies
of the objects can be utilized to generate better initial solutions in
the initial run [14]. IICAwB incorporates seeding the initial
population with a solution generated with some problem domain-
specific heuristic. This seeded solution provides a better start-off
and improves the convergence speed.

2.2.2 Assimilation between Imperialists:

Fast convergence due to seeding better solutions sometimes
invites the problem of falling in local optima, as enunciated in the
No Free Lunch theorem [15] [16]. Thus, better exploration is
required to be incorporated with heuristics in initialization. For
this purpose, in IICAwB, assimilation is also performed between
the Imperialists, i.e., Imperialists move toward the best
Imperialist.

2.2.3 Repair Operator:

The problem-specific heuristics utilized for better
initialization can also be used for repairing infeasible solutions.
The sequence or sequences generated using heuristics provide an
ordering mechanism considered while selecting an object before
others in selection problems [17]. The reverse of the sequence is
utilized to remove objects from an infeasible solution vector.
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2.2.4 Local Improvement:

A problem domain-specific local improvement mechanism
can improve a partial or complete solution. In a selection problem,
objects in a solution are replaced repetitively with those not in the
solution if this swapping process improves the solution quality.
Moreover, if the given constraint is not violated, one or more
objects already in the solution are selected randomly, and
excluded objects are selected for inclusion following a greedy
approach.

Table.2. Algorithmic level comparison between ICAwWB and

IICAwWB
Step ICAwWB|IICAwB| Implementation details
The best solution generated
Initializing the using heuristic-based greedy
best solution order is included in the initial
. No Yes . . .
using a population. This solution
heuristic provides the initial best
solution for the first run.
Assimilation Imperialists also moved
between No Yes |toward the best Imperialist to
Imperialists maintain exploration.
Infeasible solutions are
repaired using a greedy
order. Objects are included in
Repairin decreasing order of their
P & No Yes |profitability, defined by their
using heuristic . .
value-weight ratio. However,
their exclusion is based on
their increasing order of
value-weight ratio.
Random objects are excluded
Local from the solution and
No Yes |. .
Improvement included using a random or
greedy order.
3. PROBLEM DESCRIPTIONS AND
DATASETS

The effectiveness of these proposed ICAwB and [ICAwB for
solving real-life NP-hard combinatorial optimization problems is
demonstrated on three subset selection problems — Difficult 0-1
knapsack problems, Quadratic knapsack problems and Quadratic
multiple knapsack problems. These problems are described as
follows.

3.1 DIFFICULT 0-1 KNAPSACK PROBLEMS

In a 0-1 KP, a set of n items and a knapsack with a positive
capacity C are given. Each item i in general KP has some
associated positive weight w; and value v;. Several subsets of
items can be generated from this set. The problem is to find a
subset of such items that maximizes the overall sum of values
while the sum of their weight does not exceed the knapsack
capacity C.

n
maximizeZv,x,.

i=1

®)
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subject to:Zw,.x,. <C,

i=1

©)

x, €{0,1},wherei=1,2,...,n

(10)

0-1 KPs are considered one of the easier NP-hard problems.
These can be solved in pseudo-polynomial time using dynamic
programming [18]. However, benchmark knapsack instances are
difficult in practice [19], [20]. Most exact algorithms perform
poorly on them. These instances are termed Difficult Knapsack
Problems (DKPs). [21] reported nine such instance categories:
uncorrelated data instances, weakly correlated instances, strongly
correlated instances, inverse strongly correlated instances, almost
strongly correlated instances, subset-sum, uncorrelated instances
with similar weights, even-odd subset, and even-odd knapsack.
These instances are categorized according to the correlation
between the weights and values of items. Among these,
uncorrelated instances are sometimes easy to solve. However,
other instances are of varying difficulty.

For this study, three hard knapsack category instances are
picked: uncorrelated, weakly correlated, and strongly correlated.
In these instances, weights (w;) of the objects were generated
using uniform distribution in the data range R=1000, while values
(vi) were generated as a weights function. In uncorrelated data
instances, values and weights of objects are chosen randomly in
[1,R]. Hence, there is no visible correlation between w;s and v;s. In
weakly correlated data instances, the weights are chosen
randomly in [1,R] and the non-zero values in [w;-R/10,w;+R/10].
All instances' values are chosen as v=w+R/10 in strongly
correlated data instances.

A good greedy solution to these problems is the selection of
elements in non-increasing order of their corresponding value-
weight ratios (vi/w;) until the knapsack constraint is not violated.
However, the problem instances with poor greedy solutions tend
to be harder to tackle [14]. This greedy order provides an
improved repairing mechanism for infeasible solution vectors; see
Algorithm.3.

Algorithm 3: Pseudo-code for RepairSolutionGreedy(X)
1: Knapsack overfilled < false

2: we iwixi
i=1
3: If w> capacity, then
4: Knapsack overfilled < true
5: End If
6: While Knapsack overfilled Do
7: Select i object with the smallest value-weight ratio from the

knapsack
8: x;0 (i.e., remove i object from the knapsack)
9:
10: If w < capacity, then

W—W-w;

11:Knapsack_overfilled « false
12: End If
13: End While

14: For each i object not in knapsack considered in decreasing
order of value-weight ratio, do

15:1f w + w; < capacity then
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16:x; < 1 (i.e., include i" object into knapsack)
17:w—w+w;

18: End If

19: End For

3.2 . QUADRATIC KNAPSACK PROBLEMS

QKP is a quadratic counterpart of the canonical or 0-1
knapsack problem. It is reported as one of the most challenging
combinatorial optimization problems in the NP-hard class [22],
[23]. In a QKP, each pair of items: i and ;j has an associated non-
negative integer value v;, added to the knapsack profit when both
the items are selected in the solution. These value pairs form a
nxn non-negative integer matrix O=(v;). Diagonal values v; in
this matrix represent the selection values of the i item, while
other values v; represent additional profit when both items i and j
are selected. The weight and capacity constraints are unchanged
from 0-1 KP.

maxz VXX an
i=1 j=1

subject to:Zw,.x,. <C, (12)
i=1

x,x; €{0,1},i=1,2,....n (13)

QKP reverts to KP when all the quadratic values vj (i.e., profit,
when item i#j) become zero. It has been applied in the fields of
compiler design [24], VLSI design [25], clique problem [26], [27]
and others.

Julstrom [28] provided a greedy Genetic Algorithm (GGA)
with the use of three popular heuristics for QKP — Absolute Value
Density (AVD), Relative Value Density (RVD), and Dual
Heuristic. The Absolute Value Density (AVD) heuristic of an
object 7 is given as the ratio of the total linear as well as quadratic
values associated with that object to its weight, see Eq.(14).
However, the Relative Value Density (RVD) heuristic utilizes
only objects already in the knapsack. The RVD value of any
excluded object i concerning a (partially filled) knapsack K is
calculated as in Eq.(15).

vit Z jz‘ivif

AVD, = - ” (14)
v+ v
RVD, :% (15)

i

The pseudo-code given in Algorithm.4 is used to generate an
RVD heuristic-based greedy order. This greedy order is utilized
to repair an overfilled or partially filled knapsack. Pseudo-code
given in Algorithm.5 presents this greedy repairing process.
Algorithm.4. Pseudo-code for RVD-based GreedyOrder
l: PS—Q,j1
2: Let i«—max(vii/w;) (i.e., item with best diagonal value-weight
ratio)

3: GOJjl+i
PS—PSuUi
5: For j€[2,n] Do
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6: let i<—max(RI/D,,GO)
igPS

7: GOJjli

8: PS—PSUi

9: End For

10: Return (GO)

Algorithm 5: Pseudo-code for RepairSolutionGreedyOrder(X)
1: Knapsack overfilled « false

2: we iwixi
i=l1
3: If w>capacity then
4: Knapsack overfilled « true
5: End If
6: While Knapsack overfilled Do
7: For i from GO[n] to GO[1] Do
8: Ifx;=1 then
9: x;«<0
10: we—w - w;
11:End If
12: End For

13: If w<capacity, then

14: Knapsack overfilled < false
15:End If

16: End While

17:For i from GO[1] to GO[0] Do
18: If x=0 and w + w;<capacity, then
19:x;+1

20: we—w+w;

21:End If

22:End For

The dual heuristic utilizes both AVD and RVD heuristics. It
starts with a filled knapsack. Objects from this knapsack are
iteratively removed with a greedy approach if the knapsack
capacity is violated. Pseudo-code for generating such a greedy
solution is presented in Algorithm.6. The solution thus generated
is further improved using local improvement (see Algorithm.7).

Algorithm 6: Dual
GreedySolution

1: GS—{1,2,...,n}

weDw,
i=1
3: While true Do
let ilmin(RVD™)
ieGS

Pseudo-code for heuristic-based

2:

=

If w>capacity then
GS—GS/i
W—W-w;

Else
ImproveLocal(GS)

LW
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10: return (GS)

11:End If

12: End While

Algorithm.7. Pseudo-code for ImproveLocal(X)
1: While true Do

bg«—0

m=-1

mj=-1

For VigX Do

If w, < capacity — > w, then

keX

AN AN

7 g=v, + ZVka

keX
8: If g>b, then
9:
10: m=i
11:End If
12:Else
13:For VjeX Do
14: g=p,—p; + Z (v,.vk —v/.vk)

keX/j

be—g

15:1f g>b, then
16:bg—g
17:m=i

18: m=j
19:End If
20:End For
21:End If
22:End For
23:1f b=0 then
24: exit
25:End If

26: X—XUm;
27:1f mi#-1 then
28: Xe—X/m;
29:End If

30: End While

For QKP instances, in this study, a benchmark dataset of 100
instances with 100, 200, and 300 objects is taken from [29]. These
instances are classified into 4 groups according to their quadratic
value density distributions: 0.25, 0.5, 0.75 and 1.0. This quadratic
value density of objects represents the proportion of object pairs
that provide additional benefit when selected together. A lower-
density instance has more independent objects in quadratic terms.

3.3 QUADRATIC MULTIPLE KNAPSACK
PROBLEMS

A multiple knapsack problem (MKP) places objects into (X,
where K>2) knapsacks. The capacity of such multiple knapsacks
could be identical. The solution to such a problem is to search for
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the best way to put the objects without repetition into different
available knapsacks to maximize their total value without
exceeding corresponding capacity constraints. The mixture of
multiple and quadratic knapsack concepts yields the quadratic
multiple knapsack problem (QMKP).

The total value of a particular knapsack (k) in QMKP is
calculated by totalling the values (v;) of the included objects
(Vi€k) along with their quadratic values (v;: i#,Vj€k). QMKP
maximizes the total value of all the knapsacks at once. A greedy
heuristic for such a problem can be prepared from already defined
AVD, RVD, or dual heuristic concepts.

For QMKP, instances from the QKP benchmark dataset are
taken. Ten 25% density QKP instances are the first five instances
of 100 and 200 objects. These instances are solved for three
knapsack configurations, 3, 5, and 10, making 30 QKP instances
with 25% density. Similarly, ten instances with 75% density are
chosen; this study considers 60 QMKP instances. For each of
these instances, capacity constraints are recalculated. An 80% of
the total objects’ weight is used as the complete capacity, divided
by the number of knapsacks, to calculate each knapsack's
capacity. Hence, each knapsack’s capacity constraints are
identical and calculated as in Eq.(16) for these instances.

0.8x3" w
C :—EH L VkeK

k

(16)

4. COMPUTATIONAL EXPERIMENTS

In a metaheuristic algorithm, exploration and exploitation are
the fundamental operations to search for the optimum solution. A
proper balance in the computational effort devoted to these two
operations is critical to the success of a metaheuristic algorithm.
Exploration is used to explore the feasible solution space to find
better solutions. Exploitation searches for the solution space
around the solution in hand to find more promising solutions
nearby. These exploration and exploitation activities are
controlled using various algorithmic parameters. The
performance of a population-based metaheuristic algorithm varies
with the change in its underlying parameter values. In
conformance with the general principle in population-based
search and optimization algorithms, the initial phase has more
exploration, and the later phase is devoted to exploitation. Hence,
proper parameter tuning can provide better results.

The initial number of population individuals to be generated
is one of the basic parameters in any metaheuristic algorithm. A
larger population size provides a high exploration rate. However,
it increases the computational time, while a smaller population
size utilized to decrease the computational effort can show slower
convergence speed or premature convergence due to less
exploration. Therefore, a balanced number of individuals in the
initial population is essential.

During population initialization, ICA has an extra parameter
in addition to population size (N,p), the number of Imperialists
(Nimp). It is typically considered 10-13% of the population [7]. The
remaining Countries (Nyop-Nimp) become Colonies; hence, no
separate parameter is required for the number of Colonies. A
population size of 100 Countries and 10 Imperialists is used in all
the experiments reported in this paper.
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Metaheuristic algorithms with too many parameters require
extra experimental work to tune the best parameters for a given
problem. One of the disadvantages of ICA is its increased number
of parameters. In ICAwB, one ICA parameter: assimilation rate
() is omitted. In the case of binary encoding, it is impossible to
move Colonies toward their Imperialist with certain bits more
than their difference. Thus, the new assimilation process devised
in this paper does not require an assimilation rate (f) parameter.

Revolution introduces random changes in the solution
individuals. It prevents ICAwWB from falling in local optima and
is implemented using a mutation operator. A low revolution rate
(y) is enough to provide good exploitation. However, a more
significant revolution rate provides more exploration than
exploitation [30]. The revolution (or mutation) rate (y) is 0.05 for
good exploitation in our implementations carried out by empirical
experimentations.
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Fig.3(a). Comparison of solution quality for a DKP instance

In ICA, while calculating the overall power of an Empire
(P.E,), Imperialists and a proportion (¢) of Colonies’ mean power
are aggregated. The power of an Empire represents its
possessiveness over other weaker Colonies. The value of ¢&
determines the Colonies’ role while calculating an Empire’s
power. A high value of ¢ may lead to the possession of most of
the weaker Colonies to a particular Empire having the highest
number of Colonies. However, a small value may emphasize the
possessiveness of an Empire depending only upon its Imperialist
giving less preference to its possessed Colonies. {=0.3 is taken in
this study based on computational experiments.

5. RESULTS AND DISCUSSIONS

All the algorithms are implemented in C++ using JetBrains
Clion. The experiments were done on Intel® Core™ 17-7700 CPU
(3.60GHz) with 8M cache and 8GB RAM. The machine uses
Windows 10 as the operating system.

First, the computational experiments have been performed on
the 21 DKP instances mentioned for the data range R=1000 and
the number of items ranging from 100 to 10000. For BICA,
optimal parameters - assimilation rate ($)=1.5, revolution rate
(»)=0.8 and value of &=0.77 as suggested in [12] are utilized.
ICAwB and IICAwB are demonstrated on these DKP instances
with parameter values y=0.05 and &=0.3. These parameter values
are summarized in Table.3. In all experiments, the number of

4047

ICTACT JOURNAL ON SOFT COMPUTING, OCTOBER 2025, VOLUME: 16, ISSUE: 03

initial populations and Imperialists are taken as 100 and 10,
respectively, and the number of maximum decades/iterations is
taken as 1000. The Table.4 reports computational results of BICA
on these benchmark DKP instances. BS and WS are the best and
worst solutions found in a run, and MBS is the average of best
solutions in 30 runs.

Table.3. Parameter values used in BICA, ICAwB and IICAwB

Algorithm Parameter Settings
BICA f=15,9=08,£=0.77
Proposed ICAwWB |y=10.05,£=0.3
Proposed IICAwB|y =0.05, £=0.3

It is clear from Table.4 that BICA with TF9 outperforms other
versions of BICA in most instances. A comparison between the
best results demonstrated by any version of BICA, ICAwB, and
IICAwB on DKP instances is given in Table.5. ICAwB performed
better than the best BICA in 18 out of 21 instances. ICAwWB
performed even better and provided optimal solutions for 16 out
of 21 instances. In the remaining 5 instances, ICAwB is near the
optimal. The Fig.3(a) illustrates the comparison of solution
quality for a DKP instance; the upper horizontal line represents
the optimal solution.

In addition, the performance of these algorithms is
demonstrated and compared on QKP instances of 100, 200 and
300 objects. The Table.6, Table.7 and Table.8 provide the results
of these algorithms on different object sizes. It is clear from
Table.6 that ICAwB provided near-optimal solutions and
performed better than BICA in all instances. ICAwB provided
near-optimal solutions with a maximum gap of 0.01%.

The Table.7 shows the results of 40 QKP instances of size 200.
Again, for object size 200, ICAwWB performed better than BICA
for all the instances. However, IICAwB provided the best results
for most instances, with a maximum gap of 0.34%.

20 QKP instances of 300 objects are solved with these
algorithms in Table.8. In these instances, [ICAwB provided the
best results with a maximum gap of 0.5% from the optimal. A
graphical comparison of these algorithms on a QKP instance is
presented in Fig.3b.
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Fig.3(b). Comparison of solution quality for a QKP instance

The Table.9 and Table.10 provide the results of the best BICA,
ICAwB, and IICAwB on QMKP instances with three knapsack
configurations. The results provided by ICAwB and IICAwB
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easily outperform the best BICA. Our IICAwB provides the best
solutions to the maximum gap of 0.22% on 25% density instances
and 0.1% on 75% density instances.

Further, to clarify the significant differences between the
algorithms, two statistical non-parametric tests (Wilcoxon signed
rank test and Friedman test) are performed and summarized in
Table.11, Table.12, and Table.13. The Table.11 shows how
ICAwB and IICAwWB outperformed BICA on all the problems
considered in this article. The Table.12 compares ICAwB and
IICAwB using the Wilcoxon signed rank test. [CAwB performs
comparably to IICAwWB on QKP with 100 objects, while on other
problems, IICAWB easily overperforms ICAwWB.

Table.11. Performance comparison summary of BICA with
ICAwB and IICAwB using Wilcoxon signed rank test

Problem |BICA vsR*| R | p |+|=| - |Dec.

ICAwWB | 9 |222|0.00{3|0|18| -
DKP

IICAwWB | 0 |231/0.00{0|0|21| -

ICAwWB | 0 {820(0.00{0(0|40| -
QKP (100)

[ICAwB| 0 {820]0.00|0|0(40| -

ICAwB | 0 {820(0.00{0(0|40| -
QKP (200)

[ICAwB| 0 {820]0.00|0|0(40| -

ICAwB | 0 {210(0.00{0(0|20| -
QKP (300)

IICAwWB | 0 {210/0.00{0|0|20| -

ICAwWB | 0 |465|0.00{0(0|30| -
QMKP (25%)

IICAwWB | 0 |465/0.00{0|0|30| -

ICAwB | 0 |465(0.00(0(0|30| -
QMKP (75%)

IICAwB | 0 |465|0.00{0|0|30| -

Table.12. Comparing ICAwB with ICAwB using Wilcoxon
signed rank test

Problem |R*|R | p = | - |Dec
DKP 0 [230(0.00{ 0|1 (20| -
QKP (100) (353|297|0.74(12|18|10| =
QKP (200) |45 [774]0.00| 5 | 1 [34] -
QKP (300) | 0 [210[0.00{ 0|0 [20] -
QMKP (25%)| 7 |458|0.00{2 |0 |28| -
QMKP (75%)| 0 |465(0.00{0 |0 |30| -

Additionally, Table.13 shows the algorithms' ranks on
different problems calculated using the Friedman test. Again, only
on QKP with 100 objects IICAwB ranked second; otherwise, it
was first. BICA always performed the last, while ICAwB ranked
second on average.

Table.13. Ranking of all algorithms on each problem by
Friedman test

Problem |BICA [ICAwB|IICAwB
DKP 2.8571|2.1190 | 1.0238
QKP (100) |3.0000{ 1.4750 | 1.5250
QKP (200) |3.0000{ 1.8625 | 1.1375
QKP (300) {3.0000{ 2.0000 | 1.0000
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QMKP (25%)
QMKP (75%)

3.0000
3.0000

1.9333
2.0000

1.0667
1.0000

6. CONCLUSIONS AND FUTURE WORKS

This paper proposes a binary version of the Imperialist
Competitive algorithm dubbed ICAwB. A novel binary
assimilation process is devised for this purpose. Furthermore, an
improved version of our proposed ICAwB, dubbed IICAWB, is
also proposed. For better exploration, IICAwB also utilizes
assimilation between Imperialists. The proposed algorithms are
first demonstrated on 21 DKP benchmark problem instances, and
then the results obtained are compared with a discrete version of
ICA, namely the Binary Imperialist Competitive Algorithm
(BICA). Results show that our algorithm works better than BICA
for all DKP instances.

Furthermore, to establish the superiority of our proposed
algorithm, BICA, ICAwB, and IICAwB are demonstrated and
compared on benchmark QKP and QMKP instances. ICAwWB
outperformed BICA in finding the best and average best solutions.
However, IICAwWB provided the best results for most of the
instances.

A recent development in the ICA field is mainly devoted to
combining ICA with well-known state-of-the-art algorithms. In
future works, ICAwB can also be hybridized with these state-of-
the-art algorithms. Parallelization of these algorithms for faster
computational results for large-scale problems can also be
attempted with advantage.
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