
ISSN: 2229-6956 (ONLINE)                                                                                                                     ICTACT JOURNAL ON SOFT COMPUTING, OCTOBER 2025, VOLUME: 16, ISSUE: 03 

DOI: 10.21917/ijsc.2025.0559 

4041 

IMPROVED IMPERIALIST COMPETITIVE ALGORITHM FOR SELECTION 

PROBLEMS IN COMBINATORIAL OPTIMIZATION 

Laxmikant1, C. Vasantha Lakshmi2 and C. Patvardhan3 
1,2Department of Physics and Computer Science, Faculty of Science, Dayalbagh Educational Institute, India 

3Department of Electrical Engineering, Faculty of Engineering, Dayalbagh Educational Institute, India

Abstract 

Metaheuristics have been used to solve combinatorial optimization 

problems in recent decades. Metaheuristics inspired by various natural 

phenomena have been proposed due to their optimization 

characteristics. The Imperialist Competitive Algorithm (ICA) is one 

such metaheuristic inspired by the socio-political process of 

imperialism. ICA has become popular due to its extensive applications 

in various engineering domains. Originally, ICA was designed to solve 

continuous optimization problems. This paper presents a binary version 

of ICA, dubbed ICA with Binary-encoding (ICAwB), to solve selection 

problems. ICAwB works with binary encoding and utilizes new socio-

politically inspired operators. Additional features are incorporated 

within ICAwB to develop an improved version dubbed IICAwB. ICAwB 

and IICAwB with other binary versions of ICA are compared. IICAwB 

shows much better performance than existing binary ICAs and ICAwB. 

The proposed IICAwB is quite generic, and its applicability to other 

combinatorial optimization problems can be attempted with advantage. 

 

Keywords:  

Metaheuristics, Knapsack problem, Discrete optimization, Imperialist 

Competitive Algorithm, Evolutionary Computation 

1. INTRODUCTION 

Over the last few decades, evolutionary computation 

metaheuristics have been extensively utilized to solve 

combinatorial optimization problems. These metaheuristics are 

generic population-based computational approaches that provide 

iterative improvement to a population of solution individuals 

directed by their fitness. Reproduction, mutation, recombination, 

selection, and migration are typical natural biological concepts 

used in evolutionary algorithms. The under applicability of these 

metaheuristics over exact algorithms is due to their simple 

concepts, easy implementation, and provision of satisfying results 

within reasonable computation time. 

Evolution Strategies (ES) [1], Genetic algorithms (GA) [2], 

Particle Swarm Optimization (PSO) [3], Ant Colony 

Optimization (ACO) [4], and Imperialist Competitive Algorithm 

(ICA) [5] are some well-known metaheuristics. Evolution 

Strategies (ES) were introduced by [1] and further developed by 

[6]. ES uses an asexual reproduction mutation operator only. GA 

[2] offers a basic evolutionary computation model. It imitates the 

biological process of natural selection. PSO [3] is inspired by the 

swarm-intelligence behaviour of organisms in a bird flock or fish 

school. ACO [4] derives inspiration from real ants searching for 

food. It mimics the path-following behaviour of ants. ICA [5] is 

inspired by the socio-political process of imperialism and 

imperialistic competition. Recently, ICA has become popular due 

to its application in solving complex continuous problems. It has 

been used in various application areas, including industrial 

engineering, civil engineering, mechanical engineering, electrical 

engineering, and computer engineering [7]. 

ICA starts with an initial population of solution vectors termed 

Countries. These Countries are further classified into Imperialists 

and Colonies. The Imperialists acquire Colonies to form Empires. 

An Imperialist is a Country with the best cost/fitness in an Empire, 

while other Countries are its Colonies. Empires try to enhance 

their power by enhancing their Colonies and acquiring weaker 

Colonies from other Empires. Assimilation and revolution 

processes are used to improve Colonies by moving them toward 

their Imperialist. In assimilation, Colonies move some distance 

toward their Imperialists. However, in revolution, the movement 

of Colonies in the direction of their Imperialist deviates from 

some angle. If a Colony outperforms its Imperialist during these 

processes, their roles are interchanged. ICA starts an imperialistic 

competition between Empires aiming to acquire Colonies from 

weaker Empires. This competition leads to better Empires 

acquiring more Colonies, which increases exploration in ICA and 

eventually to a near-global optimum solution. Finally, only one 

Empire remains, which is the desired state to terminate the 

algorithm. The pseudo-code of an ICA is provided in Algorithm 

1. 

Algorithm 1: Pseudo-code of Imperialist Competitive Algorithm 

1: Generate some random solutions (Countries) 

2: Initialize the Empires 

3: Repeat 

4: Assimilate Empires: move the Colonies toward their 

Imperialist 

5: Revolution: move the Colonies toward their Imperialist with 

some deviation 

6: Interchange roles of Colony and Imperialist  

if a Colony outperforms Imperialist 

7: Imperialistic competition: Empires fight to acquire more and 

more Colonies from weaker Empires 

8: Eliminate Empires with no Colonies 

9: Until only one Empire remains 

As described in Algorithm.1, this basic ICA is designed for 

continuous optimization problems. However, many optimization 

problems are discrete – travelling salesman problems, subset 

selection problems, and vehicle routing problems, to name but a 

few. Subset selection problems involve selection rather than 

sequencing or ordering. If 𝑆 is a set of objects, then a subset X of 

S(i.e., X⊆S) is to be found, such that for any other subset X' of S, 

f (X) ≥ f (X') for a maximization (f (X) ≤ f (X') for a minimization) 

problem. A subset selection problem means finding an optimal 

feasible subset of objects from a given set. Clique, satisfiability, 

and knapsack problems are some well-known subset selection 

problems. Knapsack problems (KPs) have multiple real-world 

optimization applications: budget control, cutting stock, airline 

cargo loading, and others. Several other optimization problems 



LAXMIKANT et al.: IMPROVED IMPERIALIST COMPETITIVE ALGORITHM FOR SELECTION PROBLEMS IN COMBINATORIAL OPTIMIZATION 

4042 

can also be reduced or transformed to KPs easily, viz., clique and 

dense subgraph problems, to name a few. [8]. The basic KP is a 

0-1 or binary knapsack problem. Furthermore, other extensions 

and variants of KP have also become standard problems 

independently. 

The basic model of ICA applies only to continuous 

optimization problems, as its operators do not directly apply to 

binary-encoded solution vectors. However, several discrete 

versions of ICA have also been developed and reported in the 

literature, viz., Discrete Binary ICA (DB-ICA) [9], Discrete ICA 

(DICA) [10], Modified ICA (MICA) [11], and Binary ICA 

(BICA) [12] and others. DB-ICA uses a two-point crossover to 

simulate the binary assimilation process. DICA and MICA use 

crossovers for assimilation and are primarily utilized for ordering 

problems. BICA uses nine transfer functions for binary 

assimilation. It converts the distance between a Colony and its 

Imperialist, say d, into a probability value using a transfer 

function F(d) (see Table.1). According to this probability value, 

the Colonies move towards their Imperialist by changing 0s and 

1s. For transfer functions TF1 through TF4, Eq.(1) and TF5 

through TF9, Eq.(2) are utilized to update the colony position; 

xi(t) represents ith bit of a Country/Colony at time t. It is reported 

in [12] that BICA outperforms DB-ICA. Therefore, in the present 

article, the results of our proposed algorithm are only compared 

with those of BICA. 

 
0, if rand ( ( 1))

( 1)
1, if rand ( ( 1))

i

i

i

F d t
x t

F d t

 +
+ = 

 +
 (1) 

 
Not( ( )), if rand ( ( 1))

( 1)
( ), if rand ( ( 1))

i i

i

i i

x t F d t
x t

x t F d t

 +
+ = 

 +
 (2) 

This paper presents a novel binary version of the Imperialist 

Competitive Algorithm (ICA) dubbed ICA with Binary-encoding 

(ICAwB). A new intuitive binary assimilation process is devised 

for this purpose. Furthermore, an improved version of ICAwB, 

dubbed Improved ICAwB (IICAwB), is proposed with several 

enhancements. The computational performance of these new 

algorithms is compared with the existing binary version of ICA 

(BICA). The proposed algorithms perform much better than the 

previously reported ICA algorithms in terms of solution quality 

and consistency of convergence. The proposed ICAwB and 

IICAwB are generic, can be employed with an advantage on other 

subset selection problems and can be adapted suitably for other 

combinatorial optimization problems. The performance of these 

algorithms is demonstrated on some standard Knapsack problems. 

Table.1. Transfer Functions [12] 

Name Transfer function 

TF1 
2

1
( )

1 d
F d

e−
=

+
 

TF2 
1

( )
1 d

F d
e−

=
+

 

TF3 
/2

1
( )

1 d
F d

e−
=

+
 

TF4 
/3

1
( )

1 d
F d

e−
=

+
 

TF5 
2

2

0

2
( ) erf

2

d
tF d d e dt






−
 

= =  
 

  

TF6 ( ) tanh( )F d d=  

TF7 
2

( )
1

d
F d

d
=

+
 

TF8 
2

( ) arctan
2

F d d




 
=  

 
 

TF9 
1

( ) 2 0.5
1 d

F d
e−

=  −
+

 

The remainder of the paper is organized as follows. ICAwB 

and its improved version, IICAwB, are explained in section 2. 

Section 3 describes three problems considered, i.e., Difficult 

Knapsack problems (DKP), Quadratic Knapsack problems (QKP) 

and Quadratic Multiple Knapsack Problems (QMKP). The 

computational experiments and the selection of parameter values 

are described in section 4. The computational performance of 

BICA, ICAwB, and IICAwB on DKP, QKP and QMKP instances 

is reported and discussed in section 5. Conclusions are presented 

in section 6. 

2. PROPOSED ALGORITHMS 

2.1 PROPOSED IMPERIALIST COMPETITIVE 

ALGORITHM WITH BINARY-ENCODING 

(ICAwB) 

ICAwB starts with a random population of solution 

individuals termed as Countries. A Country X in ICAwB is 

represented as a binary vector in Nvar dimensional search space as 

in Eq.(3). In a selection problem, each binary value xi in a Country 

X represents either inclusion (1) or exclusion (0) of objects in the 

solution. 

 
var1 2[ , , , ], {0,1}whereN iX x x x x=    (3) 

A random population of Npop such Countries is initially 

generated, out of which Nimp Imperialists are designated. The 

selection of Imperialists is based on their profit f(Xi) as given in 

Eq.(4), which is a counterpart of fitness in GA. 

 
var1 2profit  ( ) ( , , , )i i i iNf X f x x x=   (4) 

First, Nimp Countries with the best profit are selected as the 

Imperialists. These Imperialists create Empires by acquiring the 

remaining (Npop - Nimp) Countries as their Colonies. The initial 

number of Colonies of the nth Imperialist ( )impn
X  is proportionate 

to its profit, as given in Eq.5. Thus, a better Imperialist occupies 

more Colonies and creates an enormous Empire. Colonies are 

occupied using the roulette-wheel selection process [13]. 

 
imp

imp

imp pop imp

imp1

( )
. round ( )

( )

n

n

i

N

i

f X
N X N N

f X
=

=  −


 (5) 

Empires try to improve their Colonies with assimilation and 

revolution processes. In assimilation, Imperialists impose better 

characteristics on the acquired Colonies to increase their total 

power. Assimilation is implemented by moving the Colonies 



ISSN: 2229-6956 (ONLINE)                                                                                                                     ICTACT JOURNAL ON SOFT COMPUTING, OCTOBER 2025, VOLUME: 16, ISSUE: 03 

4043 

toward their corresponding Imperialist. The Fig.1 depicts an 

example of the assimilation process; Colonies are represented as 

dots, and the Imperialist as a star. In ICAwB, the movement of 

Colonies is done based on the hamming distance. A Colony at 

hamming distance 𝐷 from its Imperialist will move 𝑑 bits (Eq.6) 

toward the Imperialist. These 𝑑 bits are randomly selected from 

the hamming distance bit-vector. The pseudo-code given in 

Algorithm.2 describes the proposed binary assimilation process in 

detail. 

 (0, )d U D  (6) 

where, U is the integer uniform distribution function. 

 

Fig.1. Assimilation process 

A random disturbance in a Colony can prevent it from falling 

into a local optimum. A revolution process utilized for 

exploitation achieves this disturbance. In the revolution process, 

an arbitrary change in a Colony is made. In ICAwB, it is 

performed using a simple mutation operator. 

Variation in Colonies through assimilation and revolution 

operators can provide better-performing solutions. If these 

solutions are better than their Imperialist, then the roles of the 

best-performing Colony and its Imperialist are interchanged. This 

mechanism maintains the status of the best local solution 

(Imperialist) as an inspirational body, and the assimilation 

operator will subsequently use this updated Imperialist to improve 

the Colonies. 

Algorithm 2: Pseudo-code of the proposed binary assimilation 

process 

1: Calculate the distance D between the Colony and its 

Imperialist ( )imp.
n

N X  

2: Calculate the number of bits d to move toward Imperialist 

using Eq.(6) 

3: Select Colony’s d bits out of D bits randomly and change 

according to ( )imp.
n

N X  

4: If new_colony outperforms the Colony, then 

5: Keep the new_colony, discard the Colony 

6: Else 

7: Discard the new_colony 

8: End If 

As in the case of ICA, Empires try to improve their power or 

at least maintain it. ICAwB starts a competition between Empires 

to increase their power and get more and more Colonies. For this, 

better Empires try to capture the weakest Colony (in terms of their 

profit) from the worst Empire (Fig.2). The discrimination of 

Empires is done based on their power (PE). The power PEn of an 

Empire En is calculated as an aggregated sum of its Imperialist 

and a fraction of its Colonies’ mean power as in Eq.7. The value 

of ξ represents the weightage of the Colonies in an Empire’s 

power. A lower value of ξ (≈0.25) is recommended to prioritize 

the Imperialist's profit while calculating an Empire’s power. 

 imp

imp

profit(Colonies of  )
. profit( )

.n

n

n
n

E
P E X

N X
= +   (7) 

In this imperialistic competition process, weaker Empires 

become weaker and collapse into stronger Empires. By acquiring 

more Colonies, the better Empires can improve their exploration, 

resulting in better solutions. Due to imperialistic competition, 

only one Empire remains at last, which is a desirable condition to 

terminate the algorithm. However, a maximum number of 

generations is also a better termination condition and is utilized in 

this article. 

 

Fig.2. Imperialistic competition 

2.2 IMPROVED ICAWB (IICAWB) 

The ICAwB is further improved for constrained combinatorial 

optimization problems. Various enhancements (summarized in 

Table.2) are proposed in the ICAwB framework to improve the 

search process. 

2.2.1 Better Initialization: 

Problem-specific greedy approaches based on the efficiencies 

of the objects can be utilized to generate better initial solutions in 

the initial run [14]. IICAwB incorporates seeding the initial 

population with a solution generated with some problem domain-

specific heuristic. This seeded solution provides a better start-off 

and improves the convergence speed. 

2.2.2 Assimilation between Imperialists: 

Fast convergence due to seeding better solutions sometimes 

invites the problem of falling in local optima, as enunciated in the 

No Free Lunch theorem [15] [16]. Thus, better exploration is 

required to be incorporated with heuristics in initialization. For 

this purpose, in IICAwB, assimilation is also performed between 

the Imperialists, i.e., Imperialists move toward the best 

Imperialist. 

2.2.3 Repair Operator: 

The problem-specific heuristics utilized for better 

initialization can also be used for repairing infeasible solutions. 

The sequence or sequences generated using heuristics provide an 

ordering mechanism considered while selecting an object before 

others in selection problems [17]. The reverse of the sequence is 

utilized to remove objects from an infeasible solution vector. 



LAXMIKANT et al.: IMPROVED IMPERIALIST COMPETITIVE ALGORITHM FOR SELECTION PROBLEMS IN COMBINATORIAL OPTIMIZATION 

4044 

2.2.4 Local Improvement: 

A problem domain-specific local improvement mechanism 

can improve a partial or complete solution. In a selection problem, 

objects in a solution are replaced repetitively with those not in the 

solution if this swapping process improves the solution quality. 

Moreover, if the given constraint is not violated, one or more 

objects already in the solution are selected randomly, and 

excluded objects are selected for inclusion following a greedy 

approach. 

Table.2. Algorithmic level comparison between ICAwB and 

IICAwB 

Step ICAwB IICAwB Implementation details 

Initializing the 

best solution 

using a 

heuristic 

No Yes 

The best solution generated 

using heuristic-based greedy 

order is included in the initial 

population. This solution 

provides the initial best 

solution for the first run. 

Assimilation 

between 

Imperialists 

No Yes 

Imperialists also moved 

toward the best Imperialist to 

maintain exploration. 

Repairing 

using heuristic 
No Yes 

Infeasible solutions are 

repaired using a greedy 

order. Objects are included in 

decreasing order of their 

profitability, defined by their 

value-weight ratio. However, 

their exclusion is based on 

their increasing order of 

value-weight ratio. 

Local 

Improvement 
No Yes 

Random objects are excluded 

from the solution and 

included using a random or 

greedy order. 

3. PROBLEM DESCRIPTIONS AND 

DATASETS 

The effectiveness of these proposed ICAwB and IICAwB for 

solving real-life NP-hard combinatorial optimization problems is 

demonstrated on three subset selection problems – Difficult 0-1 

knapsack problems, Quadratic knapsack problems and Quadratic 

multiple knapsack problems. These problems are described as 

follows. 

3.1 DIFFICULT 0-1 KNAPSACK PROBLEMS 

In a 0-1 KP, a set of n items and a knapsack with a positive 

capacity C are given. Each item i in general KP has some 

associated positive weight wi and value vi. Several subsets of 

items can be generated from this set. The problem is to find a 

subset of such items that maximizes the overall sum of values 

while the sum of their weight does not exceed the knapsack 

capacity C. 

 
1

maximize
n

i i

i

v x
=

  (8) 

 
1

subject to:  ,
n

i i

i

w x C
=

  (9) 

 {0,1},where 1,2, ,ix i n =   (10) 

0-1 KPs are considered one of the easier NP-hard problems. 

These can be solved in pseudo-polynomial time using dynamic 

programming [18]. However, benchmark knapsack instances are 

difficult in practice [19], [20]. Most exact algorithms perform 

poorly on them. These instances are termed Difficult Knapsack 

Problems (DKPs). [21] reported nine such instance categories: 

uncorrelated data instances, weakly correlated instances, strongly 

correlated instances, inverse strongly correlated instances, almost 

strongly correlated instances, subset-sum, uncorrelated instances 

with similar weights, even-odd subset, and even-odd knapsack. 

These instances are categorized according to the correlation 

between the weights and values of items. Among these, 

uncorrelated instances are sometimes easy to solve. However, 

other instances are of varying difficulty. 

For this study, three hard knapsack category instances are 

picked: uncorrelated, weakly correlated, and strongly correlated. 

In these instances, weights (wi) of the objects were generated 

using uniform distribution in the data range R=1000, while values 

(vi) were generated as a weights function. In uncorrelated data 

instances, values and weights of objects are chosen randomly in 

[1,R]. Hence, there is no visible correlation between wis and vis. In 

weakly correlated data instances, the weights are chosen 

randomly in [1,R] and the non-zero values in [wi-R/10,wi+R/10]. 

All instances' values are chosen as vi=wi+R/10 in strongly 

correlated data instances. 

A good greedy solution to these problems is the selection of 

elements in non-increasing order of their corresponding value-

weight ratios (vi/wi) until the knapsack constraint is not violated. 

However, the problem instances with poor greedy solutions tend 

to be harder to tackle [14]. This greedy order provides an 

improved repairing mechanism for infeasible solution vectors; see 

Algorithm.3. 

Algorithm 3: Pseudo-code for RepairSolutionGreedy(X) 

1: Knapsack_overfilled ← false 

2: 
1

n

i i

i

w w x
=

  

3: If w > capacity, then 

4: Knapsack_overfilled ← true 

5: End If 

6: While Knapsack_overfilled Do 

7: Select ith object with the smallest value-weight ratio from the 

knapsack 

8: xi←0 (i.e., remove ith object from the knapsack) 

9: w←w-wi  

10: If w ≤ capacity, then 

11: Knapsack_overfilled ← false 

12: End If 

13: End While 

14: For each ith object not in knapsack considered in decreasing 

order of value-weight ratio, do 

15: If w + wi ≤ capacity then 



ISSN: 2229-6956 (ONLINE)                                                                                                                     ICTACT JOURNAL ON SOFT COMPUTING, OCTOBER 2025, VOLUME: 16, ISSUE: 03 

4045 

16: xi ← 1 (i.e., include ith object into knapsack) 

17: w ← w + wi  

18: End If 

19: End For 

3.2 . QUADRATIC KNAPSACK PROBLEMS 

QKP is a quadratic counterpart of the canonical or 0-1 

knapsack problem. It is reported as one of the most challenging 

combinatorial optimization problems in the NP-hard class [22], 

[23]. In a QKP, each pair of items: i and j has an associated non-

negative integer value vij, added to the knapsack profit when both 

the items are selected in the solution. These value pairs form a 

n×n non-negative integer matrix Q=(vij). Diagonal values vii in 

this matrix represent the selection values of the ith item, while 

other values vij represent additional profit when both items i and j 

are selected. The weight and capacity constraints are unchanged 

from 0-1 KP. 

 
1 1

max
n n

ij i j

i j

v x x
= =

  (11) 

 
1

subject to:  ,
n

i i

i

w x C
=

  (12) 

 , {0,1}i jx x  , i=1,2,…,n (13) 

QKP reverts to KP when all the quadratic values vij (i.e., profit, 

when item i≠j) become zero. It has been applied in the fields of 

compiler design [24], VLSI design [25], clique problem [26], [27] 

and others.  

Julstrom [28] provided a greedy Genetic Algorithm (GGA) 

with the use of three popular heuristics for QKP – Absolute Value 

Density (AVD), Relative Value Density (RVD), and Dual 

Heuristic. The Absolute Value Density (AVD) heuristic of an 

object i is given as the ratio of the total linear as well as quadratic 

values associated with that object to its weight, see Eq.(14). 

However, the Relative Value Density (RVD) heuristic utilizes 

only objects already in the knapsack. The RVD value of any 

excluded object i concerning a (partially filled) knapsack K is 

calculated as in Eq.(15). 

 
i ijj i

i

i

v v
AVD

w


+

=


 (14) 

 
i ijj K

i

i

v v
RVD

w


+

=


 (15) 

The pseudo-code given in Algorithm.4 is used to generate an 

RVD heuristic-based greedy order. This greedy order is utilized 

to repair an overfilled or partially filled knapsack. Pseudo-code 

given in Algorithm.5 presents this greedy repairing process. 

Algorithm.4. Pseudo-code for RVD-based GreedyOrder 

1: PS←∅, j←1  

2: Let i←max(vii/wi) (i.e., item with best diagonal value-weight 

ratio) 

3: GO[j]←i  

4: PS←PS∪i  

5: For j∈[2,n] Do 

6: let ( )max GO

i
i PS

i RVD


  

7: GO[j]←i 

8: PS←PS ∪ i  

9: End For 

10: Return (GO) 

Algorithm 5: Pseudo-code for RepairSolutionGreedyOrder(X) 

1: Knapsack_overfilled ← false 

2: 
1

n

i i

i

w w x
=

  

3: If w>capacity then 

4: Knapsack_overfilled ← true 

5: End If 

6: While Knapsack_overfilled Do 

7: For i from GO[n] to GO[1] Do 

8: If xi = 1 then 

9: xi←0  

10: w←w - wi  

11: End If 

12: End For 

13: If w≤capacity, then 

14: Knapsack_overfilled ← false 

15: End If 

16: End While 

17: For i from GO[1] to GO[0] Do 

18: If xi=0 and w + wi≤capacity, then 

19: xi←1  

20: w←w+wi  

21: End If 

22: End For 

The dual heuristic utilizes both AVD and RVD heuristics. It 

starts with a filled knapsack. Objects from this knapsack are 

iteratively removed with a greedy approach if the knapsack 

capacity is violated. Pseudo-code for generating such a greedy 

solution is presented in Algorithm.6. The solution thus generated 

is further improved using local improvement (see Algorithm.7). 

Algorithm 6: Pseudo-code for Dual heuristic-based 

GreedySolution 

1: GS←{1,2,...,n}  

2: 
1

n

i

i

w w
=

  

3: While true Do  

4: let ( )min GS

i
i GS

i RVD


∣  

5: If w>capacity then 

6: GS←GS/i  

7: w←w-wi  

8: Else 

9: ImproveLocal(GS)  



LAXMIKANT et al.: IMPROVED IMPERIALIST COMPETITIVE ALGORITHM FOR SELECTION PROBLEMS IN COMBINATORIAL OPTIMIZATION 

4046 

10: return (GS) 

11: End If 

12: End While 

Algorithm.7. Pseudo-code for ImproveLocal(X) 

1: While true Do 

2: bg←0  

3: mi=-1  

4: mj=-1  

5: For ∀i∉X Do 

6: If capacityi k

k X

w w


 − then 

7: ii i k

k X

g v v v


= +  

8: If g>bg then 

9: bg ← g  

10: mi=i  

11: End If 

12: Else 

13: For ∀j∈X Do 

14: ( )
/

ii jj i k j k

k X j

g p p v v v v


= − + −  

15: If g>bg then 

16: bg←g  

17: mi=i  

18: mj=j  

19: End If 

20: End For 

21: End If 

22: End For 

23: If bg=0 then 

24: exit 

25: End If 

26: X←X∪mi 

27: If mj≠-1 then 

28: X←X/mj  

29: End If 

30: End While 

For QKP instances, in this study, a benchmark dataset of 100 

instances with 100, 200, and 300 objects is taken from [29]. These 

instances are classified into 4 groups according to their quadratic 

value density distributions: 0.25, 0.5, 0.75 and 1.0. This quadratic 

value density of objects represents the proportion of object pairs 

that provide additional benefit when selected together. A lower-

density instance has more independent objects in quadratic terms. 

3.3 QUADRATIC MULTIPLE KNAPSACK 

PROBLEMS 

A multiple knapsack problem (MKP) places objects into (K, 

where K≥2) knapsacks. The capacity of such multiple knapsacks 

could be identical. The solution to such a problem is to search for 

the best way to put the objects without repetition into different 

available knapsacks to maximize their total value without 

exceeding corresponding capacity constraints. The mixture of 

multiple and quadratic knapsack concepts yields the quadratic 

multiple knapsack problem (QMKP). 

The total value of a particular knapsack (k) in QMKP is 

calculated by totalling the values (vi) of the included objects 

(∀i∈k) along with their quadratic values (vij: i≠j,∀j∈k). QMKP 

maximizes the total value of all the knapsacks at once. A greedy 

heuristic for such a problem can be prepared from already defined 

AVD, RVD, or dual heuristic concepts. 

For QMKP, instances from the QKP benchmark dataset are 

taken. Ten 25% density QKP instances are the first five instances 

of 100 and 200 objects. These instances are solved for three 

knapsack configurations, 3, 5, and 10, making 30 QKP instances 

with 25% density. Similarly, ten instances with 75% density are 

chosen; this study considers 60 QMKP instances. For each of 

these instances, capacity constraints are recalculated. An 80% of 

the total objects’ weight is used as the complete capacity, divided 

by the number of knapsacks, to calculate each knapsack's 

capacity. Hence, each knapsack’s capacity constraints are 

identical and calculated as in Eq.(16) for these instances. 

 1
0.8

,

n

ii
k

w
C k K

K
=


= 


 (16) 

4. COMPUTATIONAL EXPERIMENTS 

In a metaheuristic algorithm, exploration and exploitation are 

the fundamental operations to search for the optimum solution. A 

proper balance in the computational effort devoted to these two 

operations is critical to the success of a metaheuristic algorithm. 

Exploration is used to explore the feasible solution space to find 

better solutions. Exploitation searches for the solution space 

around the solution in hand to find more promising solutions 

nearby. These exploration and exploitation activities are 

controlled using various algorithmic parameters. The 

performance of a population-based metaheuristic algorithm varies 

with the change in its underlying parameter values. In 

conformance with the general principle in population-based 

search and optimization algorithms, the initial phase has more 

exploration, and the later phase is devoted to exploitation. Hence, 

proper parameter tuning can provide better results.  

The initial number of population individuals to be generated 

is one of the basic parameters in any metaheuristic algorithm. A 

larger population size provides a high exploration rate. However, 

it increases the computational time, while a smaller population 

size utilized to decrease the computational effort can show slower 

convergence speed or premature convergence due to less 

exploration. Therefore, a balanced number of individuals in the 

initial population is essential. 

During population initialization, ICA has an extra parameter 

in addition to population size (Npop), the number of Imperialists 

(Nimp). It is typically considered 10-13% of the population [7]. The 

remaining Countries (Npop-Nimp) become Colonies; hence, no 

separate parameter is required for the number of Colonies. A 

population size of 100 Countries and 10 Imperialists is used in all 

the experiments reported in this paper. 



ISSN: 2229-6956 (ONLINE)                                                                                                                     ICTACT JOURNAL ON SOFT COMPUTING, OCTOBER 2025, VOLUME: 16, ISSUE: 03 

4047 

Metaheuristic algorithms with too many parameters require 

extra experimental work to tune the best parameters for a given 

problem. One of the disadvantages of ICA is its increased number 

of parameters. In ICAwB, one ICA parameter: assimilation rate 

(β) is omitted. In the case of binary encoding, it is impossible to 

move Colonies toward their Imperialist with certain bits more 

than their difference. Thus, the new assimilation process devised 

in this paper does not require an assimilation rate (β) parameter. 

Revolution introduces random changes in the solution 

individuals. It prevents ICAwB from falling in local optima and 

is implemented using a mutation operator. A low revolution rate 

(𝛾) is enough to provide good exploitation. However, a more 

significant revolution rate provides more exploration than 

exploitation [30]. The revolution (or mutation) rate (𝛾) is 0.05 for 

good exploitation in our implementations carried out by empirical 

experimentations. 

 

Fig.3(a). Comparison of solution quality for a DKP instance 

In ICA, while calculating the overall power of an Empire 

(P.En), Imperialists and a proportion (ξ) of Colonies’ mean power 

are aggregated. The power of an Empire represents its 

possessiveness over other weaker Colonies. The value of ξ 

determines the Colonies’ role while calculating an Empire’s 

power. A high value of ξ may lead to the possession of most of 

the weaker Colonies to a particular Empire having the highest 

number of Colonies. However, a small value may emphasize the 

possessiveness of an Empire depending only upon its Imperialist 

giving less preference to its possessed Colonies. ξ=0.3 is taken in 

this study based on computational experiments. 

5. RESULTS AND DISCUSSIONS 

All the algorithms are implemented in C++ using JetBrains 

Clion. The experiments were done on Intel® CoreTM i7-7700 CPU 

(3.60GHz) with 8M cache and 8GB RAM. The machine uses 

Windows 10 as the operating system. 

First, the computational experiments have been performed on 

the 21 DKP instances mentioned for the data range R=1000 and 

the number of items ranging from 100 to 10000. For BICA, 

optimal parameters - assimilation rate (β)=1.5, revolution rate 

(γ)=0.8 and value of ξ=0.77 as suggested in [12] are utilized. 

ICAwB and IICAwB are demonstrated on these DKP instances 

with parameter values γ=0.05 and ξ=0.3. These parameter values 

are summarized in Table.3. In all experiments, the number of 

initial populations and Imperialists are taken as 100 and 10, 

respectively, and the number of maximum decades/iterations is 

taken as 1000. The Table.4 reports computational results of BICA 

on these benchmark DKP instances. BS and WS are the best and 

worst solutions found in a run, and MBS is the average of best 

solutions in 30 runs. 

Table.3. Parameter values used in BICA, ICAwB and IICAwB 

Algorithm Parameter Settings 

BICA β = 1.5, γ = 0.8, ξ = 0.77 

Proposed ICAwB γ = 0.05, ξ = 0.3 

Proposed IICAwB γ = 0.05, ξ = 0.3 

It is clear from Table.4 that BICA with TF9 outperforms other 

versions of BICA in most instances. A comparison between the 

best results demonstrated by any version of BICA, ICAwB, and 

IICAwB on DKP instances is given in Table.5. ICAwB performed 

better than the best BICA in 18 out of 21 instances. IICAwB 

performed even better and provided optimal solutions for 16 out 

of 21 instances. In the remaining 5 instances, IICAwB is near the 

optimal. The Fig.3(a) illustrates the comparison of solution 

quality for a DKP instance; the upper horizontal line represents 

the optimal solution. 

In addition, the performance of these algorithms is 

demonstrated and compared on QKP instances of 100, 200 and 

300 objects. The Table.6, Table.7 and Table.8 provide the results 

of these algorithms on different object sizes. It is clear from 

Table.6 that ICAwB provided near-optimal solutions and 

performed better than BICA in all instances. IICAwB provided 

near-optimal solutions with a maximum gap of 0.01%. 

The Table.7 shows the results of 40 QKP instances of size 200. 

Again, for object size 200, ICAwB performed better than BICA 

for all the instances. However, IICAwB provided the best results 

for most instances, with a maximum gap of 0.34%. 

20 QKP instances of 300 objects are solved with these 

algorithms in Table.8. In these instances, IICAwB provided the 

best results with a maximum gap of 0.5% from the optimal. A 

graphical comparison of these algorithms on a QKP instance is 

presented in Fig.3b. 

 

Fig.3(b). Comparison of solution quality for a QKP instance 

The Table.9 and Table.10 provide the results of the best BICA, 

ICAwB, and IICAwB on QMKP instances with three knapsack 

configurations. The results provided by ICAwB and IICAwB 



LAXMIKANT et al.: IMPROVED IMPERIALIST COMPETITIVE ALGORITHM FOR SELECTION PROBLEMS IN COMBINATORIAL OPTIMIZATION 

4048 

easily outperform the best BICA. Our IICAwB provides the best 

solutions to the maximum gap of 0.22% on 25% density instances 

and 0.1% on 75% density instances. 

Further, to clarify the significant differences between the 

algorithms, two statistical non-parametric tests (Wilcoxon signed 

rank test and Friedman test) are performed and summarized in 

Table.11, Table.12, and Table.13. The Table.11 shows how 

ICAwB and IICAwB outperformed BICA on all the problems 

considered in this article. The Table.12 compares ICAwB and 

IICAwB using the Wilcoxon signed rank test. ICAwB performs 

comparably to IICAwB on QKP with 100 objects, while on other 

problems, IICAwB easily overperforms ICAwB. 

Table.11. Performance comparison summary of BICA with 

ICAwB and IICAwB using Wilcoxon signed rank test 

Problem BICA vs R+ R- p + ≈ - Dec. 

DKP 
ICAwB 9 222 0.00 3 0 18 - 

IICAwB 0 231 0.00 0 0 21 - 

QKP (100) 
ICAwB 0 820 0.00 0 0 40 - 

IICAwB 0 820 0.00 0 0 40 - 

QKP (200) 
ICAwB 0 820 0.00 0 0 40 - 

IICAwB 0 820 0.00 0 0 40 - 

QKP (300) 
ICAwB 0 210 0.00 0 0 20 - 

IICAwB 0 210 0.00 0 0 20 - 

QMKP (25%) 
ICAwB 0 465 0.00 0 0 30 - 

IICAwB 0 465 0.00 0 0 30 - 

QMKP (75%) 
ICAwB 0 465 0.00 0 0 30 - 

IICAwB 0 465 0.00 0 0 30 - 

Table.12. Comparing ICAwB with IICAwB using Wilcoxon 

signed rank test 

Problem R+ R- p + ≈ - Dec. 

DKP 0 230 0.00 0 1 20 - 

QKP (100) 353 297 0.74 12 18 10 ≈ 

QKP (200) 45 774 0.00 5 1 34 - 

QKP (300) 0 210 0.00 0 0 20 - 

QMKP (25%) 7 458 0.00 2 0 28 - 

QMKP (75%) 0 465 0.00 0 0 30 - 

Additionally, Table.13 shows the algorithms' ranks on 

different problems calculated using the Friedman test. Again, only 

on QKP with 100 objects IICAwB ranked second; otherwise, it 

was first. BICA always performed the last, while ICAwB ranked 

second on average. 

Table.13. Ranking of all algorithms on each problem by 

Friedman test 

Problem BICA ICAwB IICAwB 

DKP 2.8571 2.1190 1.0238 

QKP (100) 3.0000 1.4750 1.5250 

QKP (200) 3.0000 1.8625 1.1375 

QKP (300) 3.0000 2.0000 1.0000 

QMKP (25%) 3.0000 1.9333 1.0667 

QMKP (75%) 3.0000 2.0000 1.0000 

6. CONCLUSIONS AND FUTURE WORKS 

This paper proposes a binary version of the Imperialist 

Competitive algorithm dubbed ICAwB. A novel binary 

assimilation process is devised for this purpose. Furthermore, an 

improved version of our proposed ICAwB, dubbed IICAwB, is 

also proposed. For better exploration, IICAwB also utilizes 

assimilation between Imperialists. The proposed algorithms are 

first demonstrated on 21 DKP benchmark problem instances, and 

then the results obtained are compared with a discrete version of 

ICA, namely the Binary Imperialist Competitive Algorithm 

(BICA). Results show that our algorithm works better than BICA 

for all DKP instances. 

Furthermore, to establish the superiority of our proposed 

algorithm, BICA, ICAwB, and IICAwB are demonstrated and 

compared on benchmark QKP and QMKP instances. ICAwB 

outperformed BICA in finding the best and average best solutions. 

However, IICAwB provided the best results for most of the 

instances. 

A recent development in the ICA field is mainly devoted to 

combining ICA with well-known state-of-the-art algorithms. In 

future works, ICAwB can also be hybridized with these state-of-

the-art algorithms. Parallelization of these algorithms for faster 

computational results for large-scale problems can also be 

attempted with advantage. 

REFERENCES 

[1] Ingo Rechenberg, “Optimierung Technischer Systeme Nach 

Prinzipien Der biologischen Evolution”, Available at 

https://gwern.net/doc/reinforcement-

learning/exploration/1973-rechenberg.pdf, Accessed in 

1970. 

[2] H. John Holland, “Adaptation in Natural and Artificial 

Systems: An Introductory Analysis with Applications to 

Biology, Control and Artificial Intelligence”, MIT Press, 

1992. 

[3] J. Kennedy and R. Eberhart, “Particle Swarm Optimization”, 

Proceedings of International Conference on Neural 

Networks, Vol. 4, pp. 1942-1948, 1995. 

[4] Marco Dorigo and Gianni Di Caro, “Ant Colony 

Optimization: A New Meta-Heuristic”, Proceedings of 

International Conference on Evolutionary Computation, 

Vol. 2, pp. 1470-1477, 1999. 

[5] E. Atashpaz-Gargari and C. Lucas, “Imperialist Competitive 

Algorithm: An Algorithm for Optimization Inspired by 

Imperialistic Competition”, Proceedings of International 

Conference on Evolutionary Computation, pp. 4661-4667, 

2007. 

[6] Hans-Paul Paul Schwefel, “Evolution and Optimum 

Seeking: The Sixth Generation”, John Wiley and Sons, 1993. 

[7] Seyedmohsen Hosseini and Abdullah Al Khaled, “A Survey 

on the Imperialist Competitive Algorithm Metaheuristic: 

Implementation in Engineering Domain and Directions for 



ISSN: 2229-6956 (ONLINE)                                                                                                                     ICTACT JOURNAL ON SOFT COMPUTING, OCTOBER 2025, VOLUME: 16, ISSUE: 03 

4049 

Future Research”, Applied Soft Computing, Vol. 24, pp. 

1078-1094, 2014. 

[8] Hans Kellerer, Ulrich Pferschy and David Pisinger, 

“Knapsack Problems”, Springer Berlin, 2004. 

[9] Shirin Nozarian, Hodais Soltanpoora and Majid Vafaei 

Jahanb, “A Binary Model on the Basis of Imperialist 

Competitive Algorithm in Order to Solve the Problem of 

Knapsack 1-0”, Proceedings of International Conference on 

System Engineering and Modeling, pp. 130-135, 2012. 

[10] Hojjat Emami and Shahriar Lotfi, “Graph Colouring 

Problem based on Discrete Imperialist Competitive 

Algorithm”, International Journal in Foundations of 

Computer Science and Technology, Vol. 3, No. 4, pp. 1-12, 

2013. 

[11] S.J. Mousavirad and H. Ebrahimpour-Komleh, “Feature 

Selection using Modified Imperialist Competitive 

Algorithm”, Proceedings of International Conference on 

Computer and Knowledge Engineering, pp. 400-405, 2013. 

[12] Mina Mirhosseini and Hossein Nezamabadi-Pour, “BICA: 

A Binary Imperialist Competitive Algorithm and its 

Application in CBIR Systems”, International Journal of 

Machine Learning and Cybernetics, Vol. 9, No. 12, pp. 

2043-2057, 2018. 

[13] E. David Goldberg, “Genetic Algorithms in Search, 

Optimization and Machine Learning”, Addison-Wesley 

Longman Publishing House, 1989. 

[14] Chellapilla Patvardhan, Sulabh Bansal and Anand Srivastav, 

“Towards the Right Amount of Randomness in Quantum-

Inspired Evolutionary Algorithms”, Soft Computing, Vol. 

21, No. 7, pp. 1765-1784, 2017. 

[15] H. David Wolpert and G. William Macready, “No Free 

Lunch Theorems for Search”, Technical Report, pp. 1-38, 

1995. 

[16] H. David Wolpert and G. William Macready, “No Free 

Lunch Theorems for Optimization”, IEEE Transactions on 

Evolutionary Computation, Vol. 1, No. 1, pp. 67-82, 1997. 

[17] Zhongyu Zhao, Xiyuan Peng, Yu Peng and Enzhe Yu, “An 

Effective Repair Procedure based on Quantum-Inspired 

Evolutionary Algorithm for 0/1 Knapsack Problems”, 

Proceedings of International Conference on 

Instrumentation, Measurement, Circuits and Systems, pp. 

16-18, 2006. 

[18] H. Christos Papadimitriou, “On the Complexity of Integer 

Programming”, Journal of the ACM, Vol. 28, No. 4, pp. 765-

768, 1981. 

[19] Silvano Martello and Paolo Toth, “Upper Bounds and 

Algorithms for Hard 0-1 Knapsack Problems”, Operations 

Research, Vol. 45, No. 5, pp. 768-778, 1997. 

[20] David Pisinger, “Where are the Hard Knapsack Problems?”, 

Computers and Operations Research, Vol. 32, No. 9, pp. 

2271-2284, 2005. 

[21] Silvano Martello, David Pisinger and Paolo Toth, “Dynamic 

Programming and Strong Bounds for the 0-1 Knapsack 

Problem”, Management Science, Vol. 45, No. 3, pp. 414-

424, 1999. 

[22] Alberto Caprara, David Pisinger and Paolo Toth, “Exact 

Solution of the Quadratic Knapsack Problem”, Informs 

Journal on Computing, Vol. 11, No. 2, pp. 125-137, 1999. 

[23] David Pisinger, “The Quadratic Knapsack Problem-A 

Survey”, Discrete Applied Mathematics, Vol. 155, No. 5, pp. 

623-648, 2007. 

[24] C. Helmberg, F. Rendl and R. Weismantel, “Quadratic 

Knapsack Relaxations using Cutting Planes and 

Semidefinite Programming”, Integer programming and 

Combinatorial Optimization, pp. 175-189, 1996. 

[25] E. Carlos Ferreira, Alexander Martin, C. Carvalho de Souza, 

Robert Weismantel and A. Laurence Wolsey, “Formulations 

and Valid Inequalities for the Node Capacitated Graph 

Partitioning Problem”, Mathematical Programming, Vol. 

74, No. 3, pp. 247-266, 1996. 

[26] G. Dijkhuizen and U. Faigle, “A Cutting-Plane Approach to 

the Edge-Weighted Maximal Clique Problem”, European 

Journal of Operational Research, Vol. 69, No. 1, pp. 121-

130, 1993. 

[27] Kyungchul Park, Kyungsik Lee and Sungsoo Park, “An 

Extended Formulation Approach to the Edge-Weighted 

Maximal Clique Problem”, European Journal of 

Operational Research, Vol. 95, No. 3, pp. 671-682, 1996. 

[28] A. Bryant Julstrom, “Greedy, Genetic and Greedy Genetic 

Algorithms for the Quadratic Knapsack Problem”, 

Proceedings of the International Conference on Genetic and 

Evolutionary Computation, pp. 607-614, 2005. 

[29] J.E. Beasley, “OR-Library”, Available at 

http://people.brunel.ac.uk/ ~mastjjb/jeb/info.html, Accessed 

in 2018. 

[30] E. Agoston Eiben and A. Cornelis Schippers, “On 

Evolutionary Exploration and Exploitation”, Fundamenta 

Informaticae, Vol. 35, No. 1, pp. 35-50, 1998. 

 


