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Abstract 

Multi-Agent Reinforcement Learning (MARL) has emerged as a key 

paradigm for solving complex real-world problems involving multiple 

agents interacting in dynamic environments. However, training MARL 

models, especially for cooperative reasoning tasks, remains 

computationally intensive and sample-inefficient due to non-

stationarity, credit assignment, and policy coupling issues. 

Conventional policy gradient methods struggle with convergence and 

scalability in multi-agent settings. Centralized training frameworks 

suffer from bottlenecks and synchronization overheads. Evolutionary 

algorithms, while more robust to non-differentiable objectives, are 

often too slow when applied in single-node environments. To address 

these challenges, we propose Distributed Co-evolutionary Policy 

Optimization (DCPO), a hybrid learning framework that distributes 

evolutionary computation across multiple nodes. DCPO decomposes 

the global policy search into sub-population-based parallel 

explorations, with each node evolving a subset of agent policies using 

fitness-driven mutation, crossover, and local policy gradient updates. A 

global coordinator aggregates top-performing policies periodically to 

ensure cooperative learning convergence. DCPO was tested on 

standard cooperative MARL benchmarks such as StarCraft II 

Micromanagement and Multi-Agent Particle Environments (MPE). 

Compared to traditional baselines such as MADDPG, QMIX, MAPPO, 

COMA, and EPOpt, DCPO showd up to 37% faster convergence, 25% 

higher final cumulative rewards, and enhanced generalization in 

unseen environments. 
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1. INTRODUCTION 

The rise of Multi-Agent Reinforcement Learning (MARL) has 

led to significant breakthroughs in domains requiring coordinated 

decision-making among multiple agents, such as swarm robotics, 

distributed sensor networks, autonomous vehicles, and real-time 

strategy games [1–3]. Unlike single-agent reinforcement learning 

(RL), MARL systems must learn not only optimal responses to 

environmental stimuli but also to dynamic behaviors of other 

learning agents. This introduces non-stationarity, partial 

observability, and a host of scalability challenges that degrade 

performance in traditional centralized or independent learning 

setups. 

Despite significant progress in actor-critic methods, value-

decomposition approaches, and centralized training with 

decentralized execution (CTDE), MARL still suffers from critical 

limitations. The most pressing challenges include: (1) Non-

stationarity, agents’ policies evolve simultaneously, rendering the 

environment unstable for each learning agent [4]; and (2) Credit 

assignment, determining individual contributions in cooperative 

settings is difficult, leading to inefficient learning and delayed 

convergence [5]. 

To address these, researchers have explored a variety of policy 

optimization and exploration strategies. However, most current 

methods are either gradient-based or evolution-based, rarely 

combining both efficiently in a distributed manner. Gradient-

based methods (e.g., PPO, COMA) excel at fine-tuning but are 

sensitive to noise and often require dense rewards and smooth 

gradients. Evolutionary methods, in contrast, offer robust policy 

search under sparse or non-differentiable rewards but scale poorly 

due to their inefficiency and centralized architecture [6,7]. 

This research addresses the need for a scalable, robust, and 

efficient MARL framework (figure 1) that can balance 

exploration, convergence, and generalization without suffering 

from the pitfalls of either purely gradient-based or purely 

evolutionary approaches. Specifically, we aim to accelerate the 

training of reasoning-capable multi-agent models by 

decomposing and distributing the policy search process across 

computational nodes, while preserving coordination and policy 

diversity [6] [7]. 

 

Fig.1. MARL 

The main objectives of this study are: 

• To design a hybrid learning framework combining 

distributed evolutionary optimization with local gradient 

fine-tuning for multi-agent policy training. 

• To implement parallel learning with inter-node 

synchronization for enhanced generalization and 

convergence. 

• To evaluate the proposed method on standard benchmarks 

(MPE and SC2LE) and compare against existing state-of-

the-art MARL algorithms. 

This paper proposes DCPO (Distributed Co-evolutionary 

Policy Optimization), a novel learning architecture for MARL 

that integrates parallel co-evolution, global synchronization, and 

policy gradient refinement. Key contributions include: 

• Each agent maintains a sub-population of policies that 

evolve independently across computing nodes, significantly 

improving scalability and efficiency. 
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• After evolution, policies undergo fine-grained policy 

gradient updates, enabling better exploitation of high-

performing strategies in non-stationary environments. 

• A periodic global selection and broadcast mechanism 

ensures cross-node cooperation and helps escape local 

optima while maintaining policy diversity. 

• DCPO is rigorously benchmarked on MPE and SC2LE, 

showing superior results over MADDPG, MAPPO, QMIX, 

COMA, and EPOpt in terms of convergence speed, final 

reward, generalization, and scalability. 

2. RELATED WORKS 

Several significant contributions have shaped the field of 

MARL, especially regarding cooperative strategies, policy 

optimization, and scalable learning. 

Early approaches like MADDPG (Multi-Agent Deep 

Deterministic Policy Gradient) [6] introduced the concept of 

centralized critics with decentralized actors. While effective in 

competitive and mixed settings, MADDPG suffers from poor 

scalability due to instability and reward sparsity. To address such 

issues in cooperative environments, QMIX [7] was introduced as 

a value-decomposition network that allows mixing of individual 

agent Q-values into a joint action-value. Although QMIX 

promotes cooperation, it lacks gradient-level coordination and 

often converges to sub-optimal solutions. 

MAPPO (Multi-Agent Proximal Policy Optimization) [8] 

extended the well-known PPO algorithm to multi-agent settings, 

leveraging shared learning advantages and clipping strategies for 

stability. However, like MADDPG, MAPPO remains susceptible 

to non-stationarity and inefficiency in high-dimensional 

environments. 

COMA (Counterfactual Multi-Agent Policy Gradient) [9] 

tackled the multi-agent credit assignment problem by introducing 

a counterfactual baseline in the actor-critic framework. While this 

improves individual agent feedback, COMA is computationally 

expensive and difficult to scale for large agent populations. 

An alternative paradigm has been explored through 

Evolutionary Reinforcement Learning (ERL) frameworks. For 

instance, EPOpt (Evolutionary Policy Optimization) [10] 

introduces robustness through sampling of adversarial 

environments, yet it is not inherently distributed and requires 

large batch sizes, limiting real-time applications. Similarly, 

Population-Based Training (PBT) [11] blends evolutionary ideas 

with gradient methods, evolving hyperparameters and network 

weights. However, PBT often lacks explicit agent coordination 

and is sensitive to initial seed choices. 

Recent advances like DREAM (Distributed Recurrent 

MARL) [12] and HAPPO/HATRPO [13] have pushed the 

boundaries by leveraging recurrent architectures and hierarchical 

learning, respectively. Nevertheless, they rely heavily on gradient 

signals and cannot handle sparse or delayed reward structures 

effectively. BiCNet (Bidirectionally-Coordinated Networks) [14] 

uses RNNs to model communication but fails under dynamic 

topology or unseen agent configurations. 

Another parallel thread explores decentralized evolution 

strategies, such as M3DDPG, which integrates evolutionary 

selection and deterministic gradients. However, it operates on 

fixed communication structures and lacks adaptability. 

3. PROPOSED METHOD 

DCPO integrates distributed co-evolution with gradient-based 

learning to optimize agent policies in parallel.  

1. Population Initialization: Each agent begins with a 

unique policy. These policies form a distributed population 

across compute nodes. 

2. Policy Partitioning: The policy space is partitioned 

among worker nodes. Each node maintains a sub-

population for its assigned agents. 

3. Parallel Evolutionary Optimization: Each node applies 

mutation and crossover operations to evolve its sub-

population over episodes based on local reward signals. 

4. Gradient Fine-Tuning: After evolutionary steps, a local 

policy gradient update (e.g., PPO or REINFORCE) is 

applied for fine-grained optimization. 

5. Global Synchronization: Periodically, all nodes 

synchronize by sharing elite policies. A fitness-aware 

policy selection algorithm selects top-k candidates to form 

the next generation. 

6. Termination: The loop continues until the average global 

policy reward converges or max epochs are reached. 

This hybrid approach enables faster exploration and robust 

optimization in large-scale cooperative reasoning environments. 

3.1 POPULATION INITIALIZATION 

The Population Initialization stage sets the foundation for the 

evolutionary learning process by generating a diverse set of policy 

parameters for each agent across distributed nodes. Each agent 

1 2{ , , , }i NA A A A   is associated with an initial policy (0)

i , 

parameterized by a neural network (0)

i  that maps observations oi 

to actions ai, i.e.: 

 (0) (0) (0)( | ; ) Softmax( ( ; ))i i i i i ia o f o  =  (1) 

A total of P policy instances per agent are initialized randomly 

using uniform distribution over parameter space: 

 
(0)

, ~ ( , ), {1, , }i j j P  −   U  (2) 

This ensures diversity in the policy search space to improve 

the exploratory capacity of the algorithm. These policy instances 

form the sub-populations maintained by distributed workers. 

Table.1. Initial Policy Parameters for Agent A1 

Policy ID j Weight w1 Weight w2 Bias B 

(0)

1,1  0.12 -0.21 0.05 

(0)

1,2  -0.08 0.18 -0.04 

(0)

1,3  0.03 -0.15 0.11 

The Table.1 shows a of initialized policy weights for one 

agent. Each row corresponds to one policy variant maintained in 

the evolutionary pool. This diverse initialization mitigates 
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premature convergence and fosters policy diversity during 

evolution. 

3.2 POLICY PARTITIONING 

Once the initial population is generated, the Policy 

Partitioning phase assigns sub-populations to distributed nodes. 

The aim is to reduce centralized overhead and ensure each node 

handles a manageable portion of the optimization. For M nodes 

and N agents, the population Π is partitioned such that each node 

m receives: 

  , , {1, , }|m i j mi S j P =     (3) 

where {1, , }mS N  is the agent index subset assigned to node 

m. The partitioning is often done by a simple round-robin or load-

balanced mechanism. Assuming 4 agents and 2 compute nodes, 

an example policy assignment is shown below. 

Table.2: Policy Partitioning Across Nodes 

Node ID Assigned Agents Total Policy Instances 

Node 1 A1, A2 2×P=40 

Node 2 A3, A4 2×P=40 

The Table.2 shows how the global population is partitioned. 

Each node evolves and updates policies independently before 

synchronization. Each node locally optimizes its sub-population 

using fitness feedback and later participates in global 

coordination. This process reduces computational contention and 

accelerates convergence. 

3.3 PARALLEL EVOLUTIONARY OPTIMIZATION 

In the Parallel Evolutionary Optimization phase, each 

distributed node evolves the policy sub-populations of its 

assigned agents using fitness-based genetic operations. Each node 

independently performs the evolutionary cycle comprising 

selection, crossover, mutation, and fitness evaluation, allowing 

simultaneous exploration across multiple agents and nodes. 

3.3.1 Fitness Evaluation: 

Each policy instance 
,i j  is evaluated over multiple episodes 

to compute its average return: 

 
( )

, ,

1

1 K
k

i j i j

k

F R
K =

=   (4) 

where
( )

,

k

i jR is the episodic reward and K is the number of 

evaluation episodes. 

3.3.2 Selection: 

Top E% of the population is selected based on fitness 

(elitism): 

 
,:Top- %( )i iE F=E  (5) 

3.3.3 Crossover: 

New policies are generated by combining pairs of elite 

policies via weighted averaging: 

 
new (1 ) , ~ (0,1)a b    = + − U  (6) 

3.3.4 Mutation: 

Random Gaussian noise is added to promote diversity: 

 2

mut new , ~ (0, )  = +ò ò N  (7) 

Table.3. Evolutionary Cycle for Agent A2 on Node 1 

Policy  

ID 

Fitness  

Score F2,j 

Operation  

Applied 

Resulting  

Action 

2,1  8.2 Elitism Retained 

2,3  7.9 
Crossover  

with 
2,1  New Policy 

2,5  7.2 Mutation Perturbed Policy 

The Table.3 shows a set of actions taken during one evolution 

cycle for agent A2 on Node 1. Fitness scores guide policy selection 

and transformation. This evolutionary phase allows each node to 

rapidly explore its local search space. Independent optimization 

boosts parallelism and reduces dependency on centralized 

synchronization, ultimately accelerating learning and improving 

diversity. 

3.4 GRADIENT FINE-TUNING 

Once the evolutionary stage converges to a set of high-fitness 

policies, a gradient-based fine-tuning step is applied to enhance 

exploitation and fine-tune policy behavior using collected 

trajectories. This is achieved through local policy gradient 

methods such as PPO or REINFORCE. For each policy πi, the 

agent collects rollouts ( ),  ,  t t to a r , and the policy is updated by 

maximizing the expected return: 

 
0

( )
i

T
t

i t

t

J r 
=

 
=  

 
E  (8) 

The gradient is computed as: 

 ˆ( ) log ( | ; )
i i ii i t t i tJ a o A      =  

 
E  (9) 

where ˆ
tA is the advantage estimate (e.g., from GAE or a baseline). 

Policies are updated using stochastic gradient ascent: 

 ( )
ii i iJ    +   (10) 

Table.4. Gradient Fine-Tuning Updates for Agent A3 

Epoch 
Avg. Reward  

Before 

Avg. Reward  

After 
Loss Advantage  

1 9.3 10.1 0.42 GAE (λ=0.95) 

2 10.1 11.0 0.36 GAE (λ=0.95) 

The Table.4 illustrates two successive gradient updates for 

Agent A3, showing improved average rewards and the use of 

Generalized Advantage Estimation (GAE). Gradient fine-tuning 

ensures the evolutionary policies are not only diverse but also 

locally optimized for performance. This hybrid learning step 

stabilizes the training, fine-tunes action probabilities, and helps 

agents refine cooperative strategies in complex environments. 
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3.5 GLOBAL SYNCHRONIZATION 

After several local evolutionary and gradient-based updates 

across distributed nodes, Global Synchronization is initiated to 

ensure cooperative learning and to exchange knowledge between 

agents trained on separate nodes. This step prevents overfitting to 

local strategies and maintains a balance between exploration and 

exploitation globally. 

Each node m selects its top-performing policies 
mE  based on 

local fitness: 

  , , thresholdm i j i j mF= E ∣  (11) 

All elite policies from all nodes are sent to a central 

coordinator. Global fitness ranking is performed: 

 
( )

global , ,

1

1
( )

K
k

i j i j

k

F R
K


=

=   (12) 

The top G policies globally (across agents and nodes) are 

selected to update the next-generation population on shared test 

environment. These global elite policies are then redistributed 

(broadcast) to all nodes. Each node updates its local population: 

 
new local

globalmerge( , )m m = E  (13) 

This ensures diversity and convergence consistency across 

distributed learners. 

Table.5. Global Synchronization Results after Generation 20 

Node 

ID 

Local Avg.  

Fitness 

Selected  

Elites 

Global Rank  

of Top Policy 

Synced  

Back 

Node 1 10.3 1,5 2,3,   #2 Yes 

Node 2 9.7 3,7  #4 Yes 

Node 3 11.1 4,1  #1 Yes 

The Table.5 illustrates the global synchronization step where 

policies from various nodes are evaluated, ranked, and 

redistributed. Policies such as 
4,1  (from Node 3) become global 

elites due to higher fitness across test environments. This 

synchronization mechanism plays a pivotal role in ensuring 

convergence towards a globally cooperative policy pool, enabling 

agents to learn from diverse strategies while avoiding local 

optima. 

The Termination phase defines the stopping criteria for the 

DCPO algorithm. To prevent overtraining or stagnation, training 

halts when either the convergence threshold is met or the 

maximum number of generations is reached. 

 | |t tR R −−  ò  (14) 

where 
tR  is the mean global reward at generation t, and ϵ is a 

small threshold (e.g., 0.01) for 10 =  generation. 

If no policy in the population improves for Tstall consecutive 

generations: 

 stall( )( )

, ,max( ) max( )
t Tt

i j i jF F −
−   (15) 

Training ends if the number of generations 
maxt T . 

Table.6. Termination Monitoring Log (Final 10 Generations) 

Generation t 
Global Avg.  

Reward 
tR   

Δ  

Reward 

Max  

Fitness 

Stop  

Trigger 

91 92.4 - 98.1 - 

92 92.5 +0.1 98.3 - 

93 92.6 +0.1 98.4 - 

... ... ... ... ... 

100 92.6 0.0 98.4 Converged 

The Table.6 provides a log of average rewards and decision-

making for the termination check. By generation 100, the global 

average reward stabilizes with zero change over 10 generations, 

triggering the convergence-based stop condition. The termination 

process ensures the training efficiency of DCPO by stopping 

unnecessary computation once global policies exhibit stable 

cooperative behavior. This not only conserves resources but also 

ensures reliable final policy deployment. 

4. RESULTS AND DISCUSSION 

Simulation Tools used for the research includes StarCraft II 

Micromanagement Benchmark (SC2LE via PySC2) and Multi-

Agent Particle Environment (MPE). 

Hardware is used: 

• Distributed Cluster: 8 nodes with dual Intel Xeon CPUs, 

128 GB RAM, and NVIDIA A100 GPUs 

• Software: PyTorch, Ray/RLlib, MPI4Py for 

communication, TensorBoard for visualization 

The proposed method is compared with existing methods 

including MADDPG: Multi-Agent DDPG with centralized 

critics, QMIX: Value decomposition method for cooperative 

MARL, MAPPO: Multi-Agent Proximal Policy Optimization, 

COMA: Counterfactual Multi-Agent Policy Gradients and 

EPOpt: Evolutionary Policy Optimization with robustness 

emphasis. 

Table.7. Experimental Parameters  

Parameter Value 

Number of Agents 5 (MPE), 20 Units (SC2LE) 

Population Size per Node 20 

Mutation Rate 0.1 

Crossover Rate 0.6 

Learning Rate (Policy) 0.0003 

Discount Factor (γ) 0.99 

Synchronization Interval Every 10 Generations 

Number of Episodes 10,000 

Optimizer Adam 

Batch Size 1024 

5. PERFORMANCE METRICS  

• Convergence Speed: Number of episodes required to reach 

90% of final reward. Lower is better. 
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• Final Average Reward: Mean reward over the last 100 

episodes. Higher values reflect better performance. 

• Efficiency: Total number of steps or episodes needed to 

converge. Important in resource-constrained settings. 

• Generalization Ability: Tested on unseen tasks or altered 

environments. Measures robustness of trained policies. 

• Scalability: Performance (reward and time) as number of 

agents or nodes increases. Evaluated using both runtime and 

quality of learned behavior. 

Table.8. Final Average Reward (Higher is Better) 

Agents /  

Units 
MADDPG QMIX MAPPO COMA EPOpt 

DCPO  

(Proposed) 

MPE - 1 82.3 84.6 85.1 79.8 81.0 88.9 

MPE - 2 80.7 83.4 84.7 78.6 80.2 88.2 

MPE - 3 79.5 82.1 83.5 77.3 79.0 87.4 

MPE - 4 78.2 80.8 82.6 76.1 77.8 86.7 

MPE - 5 77.0 79.5 81.4 75.0 76.4 86.0 

SC2LE - 4 64.3 66.9 68.2 60.5 63.7 72.1 

SC2LE - 8 62.8 65.2 66.7 59.3 62.1 70.4 

SC2LE - 12 60.9 63.4 65.2 57.2 60.7 68.6 

SC2LE - 16 59.1 61.2 63.1 55.5 59.3 67.3 

SC2LE - 20 57.4 59.7 61.8 53.7 57.8 66.0 

Table.9. Efficiency (Episodes to Reach 95% of Final Reward) 

Agents /  

Units 
MADDPG QMIX MAPPO COMA EPOpt 

DCPO  

(Proposed) 

MPE - 1 6000 5400 5200 6900 6700 4300 

MPE - 2 6200 5600 5400 7100 6900 4400 

MPE - 3 6400 5800 5600 7300 7100 4500 

MPE - 4 6600 6000 5800 7500 7300 4600 

MPE - 5 6800 6200 6000 7700 7500 4700 

SC2LE - 4 23500 22500 21000 27000 26800 18500 

SC2LE - 8 24000 23000 21400 27300 27100 19000 

SC2LE - 12 24500 23500 21900 27600 27400 19500 

SC2LE - 16 25000 24000 22300 28000 27700 20000 

SC2LE - 20 25500 24500 22700 28300 28000 20400 

Table.10. Generalization Ability  

(Avg. Reward on Unseen Test Tasks) 

Agents /  

Units 
MADDPG QMIX MAPPO COMA EPOpt 

DCPO  

(Proposed) 

MPE - 1 76.1 78.3 79.5 73.8 75.5 84.0 

MPE - 2 74.7 77.1 78.4 72.1 74.0 83.2 

MPE - 3 73.2 75.6 77.1 70.6 72.5 82.1 

MPE - 4 71.8 74.0 75.7 69.0 71.0 81.4 

MPE - 5 70.4 72.5 74.3 67.8 69.6 80.6 

SC2LE - 4 55.0 57.4 59.3 52.1 54.6 63.2 

SC2LE - 8 53.7 56.1 58.0 50.7 53.1 61.9 

SC2LE - 12 52.1 54.6 56.4 49.2 51.5 60.7 

SC2LE - 16 50.5 53.0 54.8 47.8 49.9 59.4 

SC2LE - 20 49.0 51.3 53.1 46.4 48.3 58.0 

Table.11. Scalability  

(Avg. Reward / Time in Minutes with Increasing Agents/Units) 

Agents  

/ Units 
MADDPG QMIX MAPPO COMA EPOpt 

DCPO  

(Proposed) 

MPE - 1 
82.3 / 

38 min 

84.6 / 

34 min 

85.1 / 

32 min 

79.8 / 

45 min 

81.0 / 

41 min 

88.9 / 

27 min 

MPE - 2 
80.7 / 

40 min 

83.4 / 

36 min 

84.7 / 

34 min 

78.6 / 

47 min 

80.2 / 

43 min 

88.2 / 

28 min 

MPE - 3 
79.5 / 

42 min 

82.1 / 

38 min 

83.5 / 

36 min 

77.3 / 

49 min 

79.0 / 

45 min 

87.4 / 

29 min 

MPE - 4 
78.2 / 

44 min 

80.8 / 

40 min 

82.6 / 

38 min 

76.1 / 

51 min 

77.8 / 

47 min 

86.7 / 

30 min 

MPE - 5 
77.0 / 

46 min 

79.5 / 

42 min 

81.4 / 

40 min 

75.0 / 

53 min 

76.4 / 

49 min 

86.0 / 

31 min 

SC2LE - 4 
64.3 / 

92 min 

66.9 / 

85 min 

68.2 / 

78 min 

60.5 / 

106 min 

63.7 / 

98 min 

72.1 / 

66 min 

SC2LE - 8 
62.8 / 

96 min 

65.2 / 

89 min 

66.7 / 

81 min 

59.3 / 

110 min 

62.1 / 

102 min 

70.4 / 

68 min 

SC2LE - 12 
60.9 / 

100 min 

63.4 / 

92 min 

65.2 / 

84 min 

57.2 / 

115 min 

60.7 / 

105 min 

68.6 / 

70 min 

SC2LE - 16 
59.1 / 

104 min 

61.2 / 

96 min 

63.1 / 

87 min 

55.5 / 

119 min 

59.3 / 

109 min 

67.3 / 

72 min 

SC2LE - 20 
57.4 / 

108 min 

59.7 / 

100 min 

61.8 / 

90 min 

53.7 / 

123 min 

57.8 / 

113 min 

66.0 / 

74 min 

Table.12. Convergence Speed (Episodes to Reach 90% of Final 

Reward) 

Agents /  

Units 
MADDPG QMIX MAPPO COMA EPOpt 

DCPO  

(Proposed) 

MPE - 1 5200 4800 4500 6100 5800 3900 

MPE - 2 5400 5100 4700 6300 5900 4000 

MPE - 3 5600 5300 4900 6500 6100 4100 

MPE - 4 5900 5500 5000 6800 6200 4200 

MPE - 5 6100 5700 5200 7000 6400 4300 

SC2LE - 4 22000 21000 19800 25000 24500 17400 

SC2LE - 8 22500 21500 20100 25200 24800 17800 

SC2LE - 12 23000 21800 20500 25700 25100 18100 

SC2LE - 16 23800 22500 21000 26200 25500 18500 

SC2LE - 20 24500 23200 21500 26800 26000 18900 

Final average reward results (Table.8) show that DCPO 

achieves higher quality policies. In MPE (5 agents), DCPO 

achieves an average reward of 86.0 compared to 81.4 (MAPPO) 

and 79.5 (QMIX). In SC2LE (20 units), DCPO reaches 66.0, 

outperforming all baselines, MAPPO (61.8), QMIX (59.7), and 

MADDPG (57.4). This reflects DCPO’s stronger ability to find 

optimal policies in complex coordination tasks. 

The efficiency (Table.9) reinforces DCPO’s effectiveness. 

DCPO requires only 4,700 episodes in MPE-5 to reach 95% of 

peak reward, whereas MAPPO and QMIX require 6,000+ 

episodes. In SC2LE-20, DCPO requires just 20,400 episodes 

versus 25,500 (MADDPG) and 27,000+ (COMA/EPOpt), 

reflecting ~25% better efficiency, crucial for large-scale or real-

time applications. 

Generalization ability (Table.10) on unseen tasks shows that 

DCPO-trained policies retain robust behavior. On SC2LE with 20 

units, DCPO achieves 58.0 reward, outperforming MAPPO 
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(53.1), EPOpt (48.3), and COMA (46.4). The gap (~5–12%) 

confirms DCPO’s enhanced robustness due to periodic global 

synchronization and elite preservation. 

Finally, scalability (Table.11) reveals that DCPO maintains 

superior rewards with lower training time. At MPE-5, it achieves 

86.0 reward in 31 minutes, whereas MAPPO takes 40 minutes. In 

SC2LE-20, DCPO’s 66.0 reward is achieved in 74 minutes, 

versus 113 minutes for EPOpt and 90+ minutes for other 

baselines. 

Convergence speed (Table.12) highlights DCPO’s efficiency. 

On MPE, DCPO converges on average in 4100 episodes across 5 

agents, while the next best (MAPPO) requires ~4860 episodes. In 

SC2LE, for 20 units, DCPO converges in 18,900 episodes, 

significantly faster than MAPPO (21,500), QMIX (23,200), and 

COMA (26,800). This shows DCPO achieves stable performance 

with ~15–30% fewer episodes due to parallel exploration and 

distributed search. 

These results confirm that DCPO accelerates convergence, 

enhances final reward, improves generalization, and scales better 

than leading multi-agent learning frameworks. 

6. CONCLUSION 

This study presents DCPO, a novel framework that 

synergistically integrates evolutionary search with policy gradient 

refinement in a distributed setting for multi-agent reinforcement 

learning. Through extensive evaluation on MPE and SC2LE, 

DCPO consistently outperformed five competitive baselines 

(MADDPG, QMIX, MAPPO, COMA, and EPOpt) across all core 

performance metrics. Notably, DCPO reduced convergence time 

by 15–30%, improved final rewards by up to 10%, and required 

significantly fewer episodes to reach optimal performance. Its 

global synchronization mechanism enabled superior 

generalization on unseen environments, while the distributed 

evolutionary process ensured scalability and robustness under 

increasing agent/unit counts. The hybrid approach of combining 

parallel co-evolutionary learning with local gradient fine-tuning 

proved essential in overcoming issues of non-stationarity and 

credit assignment. DCPO's architecture is highly adaptable to 

modern distributed systems, making it an ideal solution for real-

world multi-agent problems in areas such as autonomous systems, 

collaborative robotics, and decentralized control. 
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