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Abstract 

Worldwide Internet of Medical Things (IoMT) sector has been 

experiencing a vertiginous rate of evolution in the past few years, going 

from a little wristwatch to a large aeroplane. Smart Health Care (SHC) 

systems utilize innovation technologies like IoMT, cloud edge 

computing and Artificial Intelligence (AI). With connected wearable 

devices and quick replies, SHC improves healthcare management by 

making it more efficient, convenient, and personalized. Deep Learners 

(DL) in the cloud are trained using the data collected from these 

devices. These servers have a lot of memory and a lot of processing 

expenditures. By utilizing a decentralized architecture known as 

Federated Learning (FL), several edge clients can work together to 

build a unified DL model effectively protecting the privacy of their own 

data. When a model loses all memory of its prior training data after 

receiving fresh input is referred as Catastrophic Forgetting (CF) 

problem. When the data distribution on each device changes over time, 

this can happen in a FL environment. As a Federated Increment 

Learning (FIL) system, Re-Fed can reduce CF by letting all clients 

each client remembers past samples based on how important. However, 

discrepant arrival times of the new task and data from the 

malfunctioning clients are not handled by Re-Fed FIL.This paper 

propose a Federated Improved Re-Fed Incremental Learning 

(FIRFIL) which handle the above issue through temporally weighted 

aggregation. In this research, a Time-Invariant Stochastic Spiking 

Long Short Term Memory (TISSLSTM) is used in a FIRFIL scenario. 

Internet of Things (IoT) devices sent the data acquired from various 

wearable sensors including those for blood sugar, heart rate, and chest 

readings to edge devices equipped with TISSLSTM for training. In 

FIRFIL, every edge device uses its own private data set to train a local 

model. A centralized server receives the local models and merges them 

into one global model. Next, the edge devices are updated with trained 

global model once again. This loop is continued until either the global 

model converges, or specific amounts of training rounds have passed. 

Next, we use the trained model to forecast client-specific diseases based 

on incoming data. A temporal weighted aggregation model in the server 

handle temporally variants data from clients. The proposed model is 

simply known as FIRFIL-TISSLSTM. At last, the test result 

demonstrate that the proposed model achieves 95.09%, 95.25% and 

94.28% of accuracy on Comprehensive Heart Disease Dataset, UCI 

Heart Disease Dataset and Kaggle Heart Disease Dataset respectively 

outperforming traditional models. Also, the proposed model records 

lower energy consumption values 89.7J, 80.3J, 86.1J of energy 

consumption and reduced latency values of 173.8ms, 162.5ms, 168.4ms 

of latency on same datasets highlight its efficiency compared to other 

standard models. 
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1. INTRODUCTION 

. The ability of automated systems to improve accuracy, 

speed, and efficiency in human ailment classification is making 

them increasingly important in healthcare, leading to better 

patient outcomes [1]. The SHC system is generally linked to the 

IoMT to utilize and manage various smart gadgets. An intelligent 

prediction system based on the IoMT can be enhanced which it is 

integrated with machine and deep learning models [2] [3].  

 One of the primary duties in SHC is to keep an eye on 

patients’ disease predictions. One important part of SHC is 

wearable technology. Electronic gadgets that patients wear and 

have various sensors allow for the monitoring, recording, and 

analysis of their health status. SHC actively manages and 

intelligently responds to the needs of the medical ecosystem by 

dynamically accessing information from wearable devices, 

connecting with healthcare managers/clinicians, materials, and 

institutions.  

This class includes things like fitness bands, smartwatches, 

and devices that measure heart rate, blood pressure, glucose 

levels, and other vital signs [4]. The SHC system can simplify and 

secure the process of heart disease prediction using ML [5]. 

Health monitoring, habit tracking, and safety tests are all made 

easier with the help of SHC’s helpful tools. Security and 

processing massive amounts of data are two major concerns, 

though. 

 This study focuses on the healthcare industry, where the 

difficulties are tackled in the FL setting [6]. FL is a machine 

learning method that let numerous users to work together to train 

a common model while maintaining the privacy and security of 

their own locally stored data. When it comes to medical records, 

this method offers a number of benefits. FL is a decentralized 

architecture that protects the privacy of local clients’ data while 

enabling numerous edge clients to collaboratively learn a single 

DL model [7].  

The majority of FL research has taken place in static settings, 

where the quantity of training data remains constant. Because of 

the problem known as catastrophic forgetting, which causes 

performance degradation on past jobs, FL has a hard time learning 

new data while preserving previous information in ML [8]. There 

were a lot of FIL approaches introduced to fix this. On the other 

hand, standard FIL approaches suffer from a terrible forgetfulness 

problem. To get over this problem, the FIL method known as Re-

Fed [9] requires a high degree of correlation between cached 

samples and the statistical heterogeneity present in all client input. 

For Re-Fed to work, each client remembers past samples based on 

how important they are in their local dataset and how they are 

related to the global dataset. The client then uses the newly 
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acquired examples in addition to the cached samples to train the 

local model. However, discrepant arrival times of the new task 

and data from the malfunctioning clients are not handled by Re-

Fed FIL. 

Many DL models like RNN, LSTM, Bi-LSTM and GRU are 

used in FIL environment. These DL models very efficiently 

processes sequential data. However, computationally not 

efficient. By combining computationally efficient SNNs with 

LSTM and GRU models leverages the efficiency of one another. 

SNN-LSTM(S-LSTM) required more number of training 

parameters. In addition, SNN-GRU(S-GRU) spiking GRU model 

uses less training parameters but struggles to captures the long-

term dependencies. An efficient hybrid DL model is required in 

FIL environment.  

In this paper, FIRFIL – TISSLSTM model for efficient heart 

diseases prediction. This framework proposed FIRFIL to 

overcome the issues in Re-Fed FIL. In order to account 

personalized local factors like storage capacity, computational 

resources and CF problem, the newly arrived tasks with capturing 

more important cached samples in each client, the same functions 

of Re-Fed FIL are used. However, for handling varying arrival 

time of new tasks and task especially when received from faulty 

clients in server side, temporally weighted aggregation is 

proposed. The aggregation scheme synchronizes the data arrivals 

at various times from clients and handle inconsistencies. Because 

of the proposed aggregation, the FIL system becomes resistant to 

hostile clients and data heterogeneity. TISSLSTM is proposed and 

utilized in clients and server FIRFIL scenario. Because this 

TISSLSTM applies the non-linear spiking function individually 

at each time point, it reduces the training time and spike counts 

needed by the network during inference by removing it from the 

recurrence. In particular, for the prognosis of cardiovascular 

illnesses, this integration guarantees an accurate health care 

system with effective results. 

2. LITERATURE REVIEW 

Rehman et al [10] proposed a Federated learning 

Collaborative Clinical Cancer Diagnosis (FedCSCD) and 

Generative Adversarial Network (GAN) for clinical cancer 

diagnosis. In order to forecast the occurrence of cardiac problems, 

Bebortta et al. [11] presented a FEDEHR model for the heart 

diseases prediction that integrates FL with IoT-based electronic 

health records. Malwade et al. [12] combined FL and IoT-based 

HER data to create a shared learning method for predicting heart 

diseases. Manocha et al. [13] proposed an SVM classifier 

combined with Bi-directional LSTM encoder for ECG arrhythmia 

classification in a FL environment. Birari et al. [14] developed a 

Federated Transfer Learning (FTL) model with Adaptive 

Gradient Clipping (AGC) for heart disease prediction which 

ensures privacy in healthcare devices by integrating data from 

wearables, medical devices and EHRs. A healthcare system based 

on ECGs was created by Raza et al. [15] in a federated 

environment using Deep Convolutional Neural Networks (CNN) 

and Explainable AI (XAI) which classifies arrhythmias aiding 

clinical decision-making. Annappa et al. [16] developed Fedcure, 

an intelligent healthcare application framework for IoMT 

contexts that considers heterogeneity.  

In order to improve the prediction performances in FL 

environment, hybrid DL models were utilized in literature. Khan 

et al. [17] created a FL model that integrated spiking neural 

network (SNN) with LSTM model for enabling fully supervised 

end-to-end learning for human activity detection. “Patel et al.” 

[18] A framework for Federated LSTM (F-LSTM) that safeguards 

user privacy by training various devices on distributed devices. A 

Spiking RNN(SRNN) with fully differentiable events was created 

by De et al. [19].One of the problems with FL is catastrophic 

forgetting, which happens when models forget what they have 

learnt in the past while adjusting to new tasks. Other problems 

include communication overhead and data heterogeneity. FIL 

tackles these problems. 

Dong et al. [20] created a Federated Class-Incremental 

Learning (FICL) model. In the FCIL setting, local clients 

continuously collect training data, while new clients with unseen 

classes can join at any time. Hu et al. [21] developed a FIL 

algorithm to randomly sampling samples from each client to 

maintain pre-training balance for preliminary period global model 

on the server. Psaltis et al. [22] presented a Federated knowledge 

distillation for representation based contrastive incremental 

learning (FedRCIL) which provides scalable approach for 

incremental learning in federated systems.  

Li et al. [23] presented a Personalized Federated Domain-

Incremental Learning (pFedDIL) model enables clients to choose 

an appropriate incremental task learning technique depending on 

their connection. Masum et al. [24] devised a Federated Few-Shot 

Class-Incremental Learning (FFSCIL) that handles CF issues 

with data privacy and data scarcity constraints. The 

aforementioned FIL environment, however, does not deal with 

data from clients that are malfunctioning or with new tasks that 

arrive at different times.  

The fore-mentioned limitations of FIL models is resolved in 

this paper by developed improved Re-Fed model that intends to 

provide efficient heart prediction system.  

3. PROPOSED METHODOLOGY 

3.1 DATA PRE-PROCESSING  

The collected dataset was having missing values, noise, 

distortions and class imbalance problems. K-Nearest Neighbors 

(KNN) imputation method used for filling missing data. Before 

applying in FIRFIL- TISSLSTM , data is normalized. When data 

is standardized, risk variables are scaled and numbers 

representing the difference among standard deviations around the 

mean are assigned. Eq.(1) gives the mathematical structure of 

standardization. 

 
Mean( )

Std( )

X X
X

X

−
=


 (1) 

where, X and X’ is the original and standardized data respectively.  

3.2 DATA CLASSIFICATION  

The proposed FIRFIL- TISSLSTM for heart prediction 

systems is illustrated in below sections. Figure 1 displays the 

suggested FIRFIL-TISSLSTM for smart healthcare system heart 

disease prediction.  
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Fig.1. Proposed Architecture of FIRFIL – TISSLSTM model 

3.3 DESIGN OF TISSLSTM 

Synergistically combining the event-driven speed of time 

variant stochastic spiking model [25] with LSTM model. In the 

network, majority of neurons are Leaky-Integrate-And-Fire (LIF) 

neurons. As it processes incoming data and triggers an action 

potential when the membrane potential reaches a specific 

threshold, it explains how neurons behave.  

The following equation provides a mathematical description 

of the LIF neuron model. 

 rest

( )
[ ( ) ] ( )

dV t
V t V RI t

dt
 = − − +  (2) 

In Eq.(2), V(t) is the potential of neuron based on membrane 

at time t. I(t) is the input current, R is the membrane resistance, τ 

is the time-dependent constant of the neuron’s membrane, and 

Vrest is the membrane at its lowest potential. A neuron will fire, 

resetting V(t), whenever the membrane potential V(t) rises beyond 

a certain threshold. Neuronal integration and signal transmission 

in the brain can be simplified using this paradigm. 

However, the LIF neuron cannot be time-parallelized since the 

non-linear firing function must be applied to the potential at time 

t-1 in order to calculate the membrane potential at time t. To 

overcome this limitation, we tweak the LIF neuron such that the 

recurrence does not include a non-linear spiking function. This is 

necessary because parallelization can only be achieved for linear 

systems. 

The result is a variety of parts, including models for fixing LIF 

neurons, such as the Concurrent Leaky Integrator (CLI) neuron, 

and non-linear spiking function. 

3.3.1 Concurrent Leaky Integrator:  

The computation of membrane potential in a CLI is linearly 

time invariant since it does not depend on a non-linear spiking 

function. Therefore, representations that are not sequential are 

possible. Examine the LTI system delineated in Eq.(3), 

characterized by the state vector m, input vector v, and the state 

and input scalars a and b, respectively. 

 [ ] [ 1] [ ]n t a m t b v t=  − +   (3) 

This can also be written in Eq.(4) as, 

 
1

[ ] [ ]
t

t j

j

m t a v j−

=

=   (4) 

Using 1 2 0[ ,   ,   ,   ]t th a b a b a b− −=  , which can be expressed in 

Eq.(4) as a non-sequential vector multiplication. 

 [ ]m t h v=   (5) 

Consequently, Eq.(5) determines the state of m at time n. A 

convolution of values among ℎ and 𝑣 can be performed for each 

state. 

 [1: ]m t h v=   (6) 

Employing the convolution theorem, Eq.(6) can be efficiently 

evaluated in the Fourier domain, whereby ℱ denotes the Fourier 

transform. 

  1[1: ] { } { }m t h v−= F F F  (7) 

The previous equations demonstrated how to parallelize a 

sequential LTI system Eq.(8). This approach can consequently be 

used to the LI neuron Eq.(7). 

  1[1: ] { } { }i t x−= F F F  (8) 

  1[1: ] { } { [1: ]}u t y i t−= F F F  (9) 

where,  

1 2 0[ ,   ,   ,   ]t t  − −=  ,  

1 2 0[ (1 ),   (1 ),   ,   (1 )]t ty      − −= − −  − ,  

i is the input current and x is the membrane time constant. Finally, 

Eq.(8) and Eq.(9) can be combined as follows, 

  1[1: ] { } { } { }u t k x−=  F F F F  (10) 

It is possible to quickly and parallelly determine the LI 

membrane potential using the Eq.(10). The next step in 

implementing the suggested SPSN is to show how the spikes are 

generated. 

3.3.2 Stochastic Firing: 

An approximation of the stochastic spike production observed 

experimentally in biological neurons is achieved by modelling the 

firing process with a firing probability formula based on 

membrane potential. Eq.(11) describes this function using 𝑎, 𝑏, 
and 𝑐 as matching parameters.  

 
1 ( )

( ) exp
u t b

t
a c


− 

=  
 

 (11) 

 A stochastic firing criterion, 
th( ) ( ( ) )t f u t u = − where f is 

the escape function, is used to generate spikes in this model 

instead of a tight firing threshold. Two stochastic spiking 
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functions, each applicable at distinct times, are shown in this 

study.  

 

Fig.2. Proposed TISSLSTM model 

One kind of RNN that can learn long-term dependencies is the 

LSTM network [26], which is used for sequence prediction tasks 

using TIS input. LSTMs address the problems of standard RNNs, 

such as disappearing and exploding gradients, by deploying gates 

that govern the flow of information. The three types of gates that 

comprise each LSTM unit (cell) are input, output, and forget 

gates. These gates regulate the flow of data into and out of the 

LSTM, which allows it to store data for extended periods of time.  

3.4 FEDERATED INCREMENTAL LEARNING 

(FIL)  

FIL cases in which edge clients might not have sufficient 

storage to keep complete data. The FIL framework ensures clients 

save crucial samples for later playback by caching a subset of 

previously collected samples based on their global and local 

relevance. Clients then use these newly acquired examples in 

addition to the cached samples to train the local model. Within the 

conventional IL, namely in a non-federated setting, a model is 

trained via a series of streaming tasks {T1 , T2,…, Tn}, where Tt 

signifies the tth task in the dataset. In this case, ( ) ( ) ( )

1
,

tN
t i i

t t
i

T x y
=

=

, where ( )i t

tx X  and ( )i t

ty Y are Nt pairs of sample data. The 

domain set and label space for the tth  task are denoted by Xt and 

Yt respectively. The current task contains |Yt| classes and 

1

n
t

t=

=Y Y , where Y represents the total classes of all time. In a 

similar vein, the complete domain space for activities across time 

can be represented by 
1

n
t

t=

=X X . Pay attention to two kinds of IL 

situations: In a class-incremental job, all tasks are performed on 

the same domain space, where 
1

n
t

t=

=X X  for every t in the 

interval [n]. As the learning challenges are introduced, the number 

of classes can change, meaning Y1≠Yt, where t is an integer from 

1 to n. 

Tasks in the domain-incremental model have an equal number 

of classes, Y1=Yt where t is an integer from 1 to n. The client must 

acquire new skills when the tasks are introduced, all the while 

their domain and data distribution are altered, so X1≠Xt, for every 

t ∈ [n]. Think about IL more in a federated context. Client k only 

has access to the local confidential streaming tasks 

{𝑇𝑘
1 , 𝑇𝑘

2, … , 𝑇𝑘
𝑛 }, hence in order to train a global model for K total 

clients, we must accept this assumption. The objective is to train 

a global model 𝑤𝑡across all t tasks when the 𝑡𝑡ℎ task arrives, even 

if clients can remember all samples from prior tasks in their cache. 

They may express it as Eq.(12), which is 
1 1

t K
t n

k

n k

T T
= =

 
=  
 
 .  

 ( )( )( ) ( )

, ,

1 1 1

1
arg min ,

n
k

k

Nt K
t i i

w k n k ntw
n k i

w f x y
T= = =

= 
∣ ∣

 (12) 

The cross-entropy loss is denoted by 𝑙(・) and the result of 

the model 𝑤𝑘 in client 𝑘 is represented by 𝑓𝑤𝑘
. Then, because 

shared edge devices have limited storage capacity, clients store 

incomplete samples in their caches for later use. Assume that each 

client has a storage capacity of M samples and must cache 
t

kM N−  samples from previous jobs at time (t−1). This is 

represented as ( )( 1) ( ) ( )

,cached , 1 , 1

1

,

t
kM N

t i i

k k t k t

i

T yx
−

−

− −

=

=  . Using both preloaded 

samples and the tth new task, the objective is to train a global 

model wt, which may be expressed as Eq.(13). 

 ( )( )( ) ( )

, ,

1 1 ,local

1
arg min ,

k

K M
t i i

w k t k ttw
k i k

w f x y
T= =

= 
∣ ∣

  (13)  

where, ( )( 1) ( ) ( )

,local ,cached , ,

1

,
M

t t t i i

k k k k t k t

i

T T T x y−

=

= + =  

3.5 RE-FED: FRAMEWORK FOR FIL 

In order to facilitate the arrival of new tasks, Re-Fed 

prioritizes samples based on their importance and coordinates 

with clients to cache crucial earlier samples using limited local 

storage. During communication rounds, clients train local models 

using private tasks, while the server compiles all models. Each 

client uses both global and local models to train an additional 

informative model using past local samples, ensuring efficient 

communication [9].  

The sample relevance scores are determined by keeping track 

of the gradients averages of each sample when this sort of model 

is changed. As a general rule, in a FL scenario, every client has 

access to both their local model, which is location-specific, and 

their global model, which is FL-wide. This means that clients can 

cache samples that have greater relevance ratings before going on 

to the next assignment. 

Using both local and global models, one may easily determine 

the relative relevance of a sample and then use these scores to 

inform data response from cache samples. Afterwards, one can 

expand upon this concept by incorporating the following features:  

The global model’s gradient norm can be computed locally 

without training, and local models from clients aggregate it. The 

relative weight of local and global data in the sample can be 

adjusted using a control mechanism. In order to achieve the 

aforementioned goals, a Personalized Informative Model (PIM) is 

presented for every customer. This model takes in data from both 

the local and global models. After that, it is suggested a ratio 

factor to modify the local-to-global information proportion. 

Imagine for a moment that client k has received the global model 

𝑤𝑡−1 and the 𝑡𝑡ℎ new task has arrived. In s iterations, the clients 

update PIM 𝑣𝑘
𝑡−1using prior local samples 𝑇𝑘,𝑙𝑜𝑐𝑎𝑙

𝑡−1 according to 

Eq.(14).  
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( 1) ( 1)

, 1

,

( )

t
k s

M
i i

k t k tvt t
ik s k s

t t

k s

f x y
v v

q v w






−
−

− −− −
=−

− −

−

 
 

= −  
 + −
 


 (14) 

The rate to control the step size of the update, η, and the 

function q(λ) = 1-λ 2λ for every λ ∈ (0,1). The hyper-parameter 𝜆 

modifies the equilibrium of the update by adjusting the proportion 

of local and global information. Likewise, the momentum 

component is represented by ( )( 1) ( 1)

, 1( ) t t

k sv w − −

− − . In order to 

influence the update of PIM ( 1)t

kv − , it uses data from the global 

model 
1tw −

. The hyper-parameter λ, which is between 0 and 1, 

determines the weight of this momentum component. Recovering 

the global model 
1tw −

is PIM’s main aim when λ is around 0. 

Basically, it will adjust its behavior to match the facts from across 

the world. Conversely, a greater focus on local training is caused 

by an increase in λ.  

 An upper bound is defined by the sample gradient norm as 

given in Eq.(11), and it is directly related to the difference 

between the gradient of the loss function regardless of a sample

( )( ) ( )

, 1 , 1,i i

k t k tx y− − . The training dynamics are best preserved when 

samples are cached according to sample gradient norms, as this 

method has the least impact on the gradient. PIM uses both local 

and global models, so a sample with a higher gradient norm is 

more likely to fit the job using both sets of information. This effect 

may be more pronounced during early training iterations. 

Therefore, to determine the sample importance, the gradient norm 

are integarted while training PIM, with a focus on the early stages 

of training, and use Eq.(15) 

 ( ) ( )( ) ( )

, 1 , 1

1

1s
i p i

k t k t

p

I x G x
p

− −

=

=   (15) 

In iteration 𝑝 ∈ [1, 𝑠], each client continues to train the local 

model t

kw using local samples ,local

t

kT in accordance with Eq.(13), 

following the caching of significant samples that have greater 

significance scores.  

 ( )( )
, 1

( ) ( )

, , 1 , 1 ,

1

,t
k p

M
t t i i

k p k p k p k tv
i

w w f x y 
−

− −

=

= −   (16) 

The TISSLSTM model is a strong combination of SNN’s 

event-driven performance and LSTM’s sequential modelling 

capacity. 

D. Temporally Weighted Aggregation  

In order to pritorize new arrivals, temporal weight aggregation 

model is integrated is applied in Re-Fed to enhance the 

synchronization and address the issues in faulty client and task 

arrival timings. The temporally weighted aggregation of the local 

and global models on the servers is given in Eq.(17) 

 
( , ) 1

,
( , ) 1

1

k p

t t t

k p Y k p

t ty

w
 

 

−

−

=

−
=

−
 (17) 

where, 
t represents the adaptive weighting coefficient, ( , )k p

t

represents the present model parameter (p) of kth client. Assuming 

the time effect during the federated communications, the 

temporally weighted aggregation of the local and global models 

on the server is termed as Eq.(18): 

 

( , )( )

( , )

1

1 2

k pt tY
k pk

t t

y

n e

n
 

− −

+

=

 
=  

 
  (18) 

where, 𝑡 is the present update round, t(y) will be the update round 

of the newest α(y) and e is the constant. α(t+1) is the upgrade global 

model parameter after aggregation. In addition to the temporal 

factors, the accuracy of the local and global models can also act 

as the key reference of adjusting the weights adaptively. The 

training process of FIRFIL- SLSTM is given in below a FIRFIL- 

SLSTM algorithm. 

Algorithm 1 FIRFIL – TISSLSTM training 

1. Data: Client 𝑖 =  1, 2. . 𝑁, initial variables for the model w0,  

2. Results: Parameters of the trained model 𝑤 

3. Method: Initialisation  

4. For every client 𝑖 work with simultaneously, 

5. 𝐷(𝑖) ← local dataset  

6. 𝑤 (i) ← 𝑤0 {Get the local model started}  

7.  end for 

8. Method: FL training 

9. for iterationsr =  1, 2, . . . , R, execute 

10. A subset of devices 𝑆𝑡 is randomly selected by the server. 

11. Call ServerUpdate 

12. send 𝑤𝑡−1 to all clients  

13. end for  

14. For every chosen client 𝑘 from the set 𝑆𝑡 simultaneously  

15. In each cycle, update 𝑣𝑘
𝑡−1 locally. 

16. As 𝑣𝑘
𝑡−1) is being updated, do 

17. Determine the sample’s significance score following a total of 

𝑠 iterations (˜𝑥𝑘,𝑡−1
(𝑖)

, ˜𝑦𝑘,𝑡−1
(𝑖)

)  

18. end for 

19. Keep earlier samples with higher priority scores in a cache; 

 //Usi> 𝑛𝑔 previously stored samples and a fresh task to train a 

local model 

20. LocalTraining(𝑣, 𝐷) 

21. Reply to the server with the model 𝑤𝑘
𝑡  

22. end for  

23. end 

24. Method: LocalTraining(𝑤, 𝐷)  

25. Set up the learning rate 𝜂 and local parameters 𝑤 (i), to their 

initial values.  

26. For iteration at time interval 𝑡 =  1, . . . , 𝑇 do 

27. Find the local gradient  

28. Calculate ∆𝑤 from 𝑤 (i)(𝑡)  

29. end for  

30. Return ∆𝑤 

31. Method: ServerUpdate({∆w (i)} 
𝑁

𝑖 = 1
)  

32.  𝑤 ← aggregate({∆ 𝑤 (i)}) \\ temporal weight aggregation 

33. return updated model parameters 𝑤 

34. Rank the new arrivals 
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4. RESULTS AND DISCUSSION 

4.1 DATA AGGREGATION 

Comprehensive Heart Disease Dataset [27]: Eleven criteria 

from 1190 cases make up this dataset, which is a combination of 

five popular heart disease datasets.  

1. UCI Heart Disease Dataset [28]: This dataset contains a 

variety of numerical variables utilized in multivariate 

numerical data analysis. It includes 14 variables shown in 

table1. As shown in Table.1, these characteristics allow for 

the analysis of data patterns and correlations, and they also 

provide information on several facets of cardiovascular 

health.  

2. Kaggle Dataset [29]: The 76 qualities include the 

anticipated attribute, which is a subset of 14 of those 

attributes. The presence of cardiac disease in the patient is 

what the "target" field is referring to. Its value is an integer 

An illness is present if the value is 1 and absent if it is 0. 

4.2 EXPERIMENTAL SETUP 

Simulation codes for proposed and current protocols were run 

on a laptop with the following specifications: 1TB HDD, 4GB 

RAM, Intel® Core™ i5-4210 CPU @ 2.80GHz, and Windows 10 

64-bit. Python 3.7 was used to run the simulation. This framework 

encompasses 3 dataset illustrated in section 4.1. The proposed 

model adjust the hyperparameter λ=0.5 to faciliate identically 

distributed data across 20 clients. Also, the exemplary memory 

size (M) is set as {500,1000,1500,2000}, m is set to be the twice 

of the total number of classes from dataset in every task. The 

Table.2 depicts the parameter configuration of the proposed 

model.  

Table.1. Dataset Description (UCI Heart Disease Dataset) 

Variable Name Type 

Existence or Nonexistence of  

Cardiac Disease (Target variable) 
Integer 

Age Integer 

Chest Pain Type Categorical 

Serum Cholesterol Integer 

Angina Induced by Exercise Categorical 

Fasting Glucose Level  Categorical 

Peak Heart Rate Attained Integer 

Number of Major Vessels Integer 

Previous peak (ST segment depression  

elicited by activity compared to rest) 
Integer 

Resting Blood Pressure Integer 

Resting Electrocardiographic Results Categorical 

Gender Categorical 

Slope of the Peak Exercise ST Segment Categorical 

Thalassemia Categorical 

 

7Table.2. Parameter Configuration (TISSLSTM) 

Parameters Range 

No. of. hidden layers 3 

Training rate 0.001 

Dropout rate 0.5 

Momentum 0.7 

Number of epochs 120 

Batch size 64 

Optimizer Adam 

4.3 PERFORMANCE ANALYSIS 

In this section, the proposed FIRFIL – TISSLSTM model is 

evaluated on three dataset evaluated on different metrics. The 

proposed TISSLSTM is compared with standard models like 

LSTM, Bi-LSTM, Spiking LSTM (S-LSTM), Invariant LSTM (I-

LSTM) [30] and TISSLSTM. The metrics applied for 

performance analysis are listed below.  

The appropriate predictions made by proposed classifier is 

evaluated by Accuracy (Acc) which is expressed as Eq.(19) 

 Accuracy
TP TN

TP TN FP FN

+
=

+ + +
 (19) 

In Eq.(14), True Positive (TP) and True Negative (TN) 

signifies the model’s accurate prediction of the negative case, 

while the positive case is predicted accurately as well. False 

Positive (FP) and False Negative (FN) denote instances where the 

model erroneously predicts a positive case and a negative case, 

respectively.  

The proportion of TP within a set of projected positives is 

called precision (Pre). The mathematical expression for in 

Eq.(20). 

 Precision
TP

TP FP
=

+
 (20) 

One way to measure the impact of the overall number of FN 

occurrences on the total number of TP instances is by using Recall 

(Rec) or Sensitivity (Sen). It can be expressed mathematically as 

Eq.(21). 

 Recall
TP

TP FN
=

+
 (21) 

F1-score (F1): It is calculated by Eq.(22) 

 
2 Precision Recall

1
Precision Recall

F
 

=
+

 (22) 

In case of FIL, the proposed FIRFIL model is compared with 

FedRCIL [18], FedDIL [19], FFSCIL [20] Re-Fed [26] using 

different metrics give below.  

Energy consumption (Joule (J)): It is referred to as the average 

energy disbursed by all sensor nodes per round. 

 ( )mean init res

1

1 N
x x

x

E E E
N =

= −  (23) 

In Eq.(23), 𝐸𝑖𝑛𝑖𝑡
𝑥  is the original energy of 𝑥, 𝐸𝑟𝑒𝑠

𝑥  is the residual 

energy of 𝑥 after simulation runs, and 𝑁 represents the overall 

quantity of sensor nodes. 
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Using comparable performance indicators, the suggested 

model’s effectiveness is evaluated by contrasting it with the 

current arrhythmia classification model. 30% of the gathered 

dataset is used for testing, while 70% is used for training. 

Additionally, using the same assessment criteria, a comparison 

study is conducted to determine how much the TISSLSTM model 

has improved over the current models, such as LSTM, Bi-LSTM, 

SLSTM and I-LSTM. 

The Table.3 presents a comparison of different heart disease 

prediction models on Wearable device data. The proposed model 

archives highest accuracy, precision, recall and f1-score values 

than LSTM, Bi-LSTM, S-LSTM and I-LSTM models 

respectively on comprehensive, UCI and kaggle heart disease 

datasets. The proposed FRFIL architecture enhances the model’s 

adaptability from multiple angles. These advantages markedly 

improve the effectiveness and dependability of the model in 

identifying and categorizing arrhythmias from wearable sensor 

data. The Table.4 depicts the comparison of different network 

metrics like energy consumption and latency of proposed and 

existing models on three datasets. In this analysis, the proposed 

model shows lower results on comprehensive, UCI and kaggle 

heart disease datasets. 

Table.3. Performance analysis of proposed and standard models 

on three dataset 

Dataset  Metrics 
Models 

LSTM Bi-LSTM S-LSTM I-LSTM TISSLSTM 

Compre 

-hensive  

Heart  

Disease  

Dataset 

Acc 82.75 85.49 88.67 94.28 96.12 

Pre 81.33 83.01 86.52 92.19 94.88 

Rec 80.6 83.95 87.18 93.43 95.57 

F1 81.81 84.69 87.97 93.24 95.09 

UCI  

Heart  

Disease  

Dataset 

 LSTM Bi-LSTM S-LSTM I-LSTM TISSLSTM 

Acc 80.12 84.05 88.37 91.48 95.33 

Pre 82.62 86.64 90.13 94.24 96.24 

Rec 81.07 87.59 89.47 92.06 94.74 

F1 83.27 85.25 89.67 92.06 95.24 

Kaggle  

Heart  

Disease  

Dataset 

 LSTM Bi-LSTM S-LSTM I-LSTM TISSLSTM 

Acc 81.67 86.43 89.65 91.43 94.28 

Pre 80.23 87.56 91.28 94.29 95.65 

Rec 82.52 85.12 89.17 90.14 96.14 

F1 83.07 86.32 89.49 92.75 94.28 

Table.4. Analysis of Energy Consumption and Latency for 

proposed and standard models 

Dataset 
 

Metrics 

Models 

FedRCIL FedDIL FFSCIL Re-Fed FIRFIL 

Comprehensive  

Heart Disease Energy  

Consumption 
(J) 

120.4 114.8 110.3 102.6 89.7 

UCI Heart  105.2 99.6 95.1 91.4 80.3 

Kaggle Heart  112.7 108.2 104.5 98.3 86.1 

Comprehensive  

Heart Disease Latency 

(ms) 

235.6 222.1 210.4 198.2 173.8 

UCI Heart  218.3 205.7 198.9 187.6 162.5 

Kaggle Heart  225.0 212.6 202.3 191.9 168.4 

Table.5. Computational Metrics Evaluation of 20 clients 

(Exemplary memory size M, incremental task T= 20) *(Average 

Test Accuracy = ATA (all dataset); Training Time (TT); 

Inference Time (IT); Seconds (s)) 

Model 
ATA 

(%) 

TT 

(s) 

IT  

(s) 

ATA 

(%) 

TT 

(s) 

IT  

(s) 

ATA 

(%) 

TT 

(s) 

IT  

(s) 

ATA 

(%) 

TT 

(s) 

IT 

(s) 

 M = 500 M = 1000 M = 1500 M = 2000 

FedRCIL 32.5 315.7 115.3 29.8 621.2 233.3 25.4 933.1 411.5 21.4 1245.9 778.9 

FedDIL 33.9 298.2 127.6 32.2 590.5 220.1 28.1 880.4 397.6 23.50 1190.3 674.1 

FFSCIL 36.5 275.8 143.9 35.0 555.3 208.4 30.6 833.6 366.7 26.8 1132.8 668.9 

Re-Fed 39.2 248.6 129.8 38.9 497.5 187.6 33.3 750.2 315.3 28.7 1016.9 602.4 

FIRFIL 41.7 210.4 133.4 40.4 425.9 160.8 35.6 640.1 308.6 30.22 875.2 552.6 

 

Fig.3. Performance for number of incremental tasks 𝑛 for three 

datasets. 

4.4 COMPUTATIONAL ANALYSIS  

 In this section, the proposed and existing models are 

performed under varying exemplary memory size ((M = 500, 

1000, 1500, 2000) configurations with incremental task (T = 20), 

as illustrated in Table.5. FIRFIL consistently achieves the highest 

ATA at all memory sizes (41.7% at M = 500, 40.4% at M = 1000, 

35.6% at M = 1500, and 30.22% at M = 2000), showcasing its 

superior performance. Although its TT and IT are higher than 

other models, which are not extensive, maintaining a balance 

between accuracy and efficiency. In comparison, FedRCIL 

exhibits the lowest ATA at all memory sizes (32.5% at M = 500, 

29.8% at M = 1000, 25.4% at M = 1500, and 21.4% at M = 2000), 

alongside significantly higher computational times, especially 

with larger memory sizes. FedDIL and FFSCIL perform 

moderately in terms of ATA but still fall short of FIRFIL’s 

consistency and efficiency. Re-Fed also shows good results, but 

its ATA decreases more noticeably as memory size increases, 

further solidifying FIRFIL as the top contender for optimal 

performance in the context of these models. The proposed model 

highlights FIRFIL’s suitability for resource-constrained 

applications, especially in real-time smart healthcare systems, due 

to its efficient computational and memory capabilities. 

The Fig.3 depicts the performance analysis for number of 

incremental task (n = 20) of proposed and existing models on 

three dataset. As the number of incremental tasks increases from 

5 to 20, all methods show a decline in test accuracy, highlighting 

the challenge of maintaining performance in incremental learning 

task. Among the methods, FIRFIL consistently outperforms 

others across all datasets, demonstrating its robustness and 

effectiveness. Re-Fed and FFSCIL also perform relatively well 

but fall short of FIRFIL’s accuracy. FedRCIL and FedDIL show 

the lowest accuracy, indicating limitations in adapting to 

incremental learning tasks. 
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Table.6. t-test Result of Proposed and Existing models 

Metric Model t 
Diff 

(df) 

Sig.  

(2-tailed) 
Mean 

Mean  

Diff 

95% CI  

[Lower,  

Upper] 

T
es

t 
A

cc
u

ra
cy

 

(%
) 

FedRCIL 23.078 2000 0.0000 27.27 21.70 [28.88, 29.52] 

FedDIL 35.932 2000 0.0000 29.30 17.67 [25.26, 28.09] 

FFSCIL 33.945 2000 0.0000 30.97 15.00 [23.02, 26.98] 

Re-Fed 27.415 2000 0.0000 35.02 13.95 [25.43, 27.47] 

FIRFIL 32.675 2000 0.0000 34.97 9.96 [24.85, 26.32] 

T
ra

in
in

g
 T

im
e 

(s
) 

FedRCIL 74.174 2000 0.0000 78.97 42.07 [79.14, 83.55] 

FedDIL 69.130 2000 0.0000 79.85 34.95 [74.28, 78.87] 

FFSCIL 72.904 2000 0.0000 69.37 30.47 [70.80, 73.10] 

Re-Fed 64.010 2000 0.0000 62.30 24.40 [69.53, 72.42] 

FIRFIL 75.258 2000 0.0000 73.91 20.68 [62.58, 65.22] 

In
fe

re
n

ce
 

T
im

e 
(s

) 

FedRCIL 51.899 2000 0.0000 54.75 25.90 [49.28, 52.33] 

FedDIL 47.436 2000 0.0000 56.85 21.32 [44.87, 47.07] 

FFSCIL 52.652 2000 0.0000 55.97 17.12 [40.11, 43.89] 

Re-Fed 48.690 2000 0.0000 53.77 14.73 [39.17,42.08] 

FIRFIL 55.137 2000 0.0000 52.85 10.99 [37.03, 40.18] 

4.5 STATISTICAL ANALYSIS 

For the statistical analysis, the proposed and the standard 

model are evaluated in terms of Confidence Intervals (CIs) and T-

test. The CIs relies on the range within the true value (accuracy), 

which is likely expected to fall within a certain level of confidence 

(usually 95%). It is expressed in Eq.(24) 

 / 2, 1CI n

s
t

n
x  −=     (24) 

where, x is the mean sample, s and n represents the sample 

standard deviation and sample size. 𝑡𝛼/2,𝑛−1 will be the t-score 

based on the confidence level. 

A t-test is a statistical procedure employed to ascertain 

whether a significant difference is present in the means of two 

groups. It evaluates whether the differences noticed are 

attributable to chance or signify a genuine effect. It is presented 

in Eq.(24) 

 1 2

2 2

1 2

1 2

t
s s

n n

x x−
=

+

  (25) 

where, x1, x2 represents the samples, s1, s2 are the standard 

deviations, x1, x2 defines the number of samples in a group. 

The Table.6 shows t-test findings comparing the performance 

of proposed and existing models across three crucial metrics: 

training time, inference time and memory size. For test accuracy, 

FIRFIL and Re-Fed achieve superior performance, while 

FedRCIL ranks lowest result. Despite FIRFIL having slightly 

lower test accuracy than Re-Fed, its mean difference and 

confidence interval suggest a more consistent performance. In 

terms of training time, FIRFIL is efficient, showing the second-

lowest average after Re-Fed making it suitable for time-sensitive 

applications. FedRCIL and FedDIL require the most training 

time, indicating heavier computational demands. For inference 

time, FIRFIL again leads with the shortest average, followed 

closely by Re-Fed, while FedRCIL and FedDIL lag behind. 

Overall, this demonstrates that FIRFIL is not only quicker, but 

highly suitable to apply in resource-constrained in real-time 

healthcare applications.  

4.6 DISCUSSION 

The ablation study in previous sections methodically assesses 

the importance of each element in the FIRFIL–TISSLSTM model. 

The substitution of TISSLSTM with traditional LSTM-based 

models resulted in a decline in overall classification accuracy, 

underscoring TISSLSTM’s superiority in effectively learning 

temporal relationships. Removing the FIRFIL component 

resulted in increased latency and energy consumption due to 

inefficient synchronization and sample caching. Excluding the 

temporal weighted aggregation caused model performance 

degradation under asynchronous client updates. Reducing the 

memory size (M) significantly impacted accuracy, indicating its 

role in incremental learning. Replacing stochastic spiking neurons 

with deterministic units diminished generalization in dynamic 

conditions. Without FIL, overfitting occurred due to reliance on 

localized data. The complete FIRFIL–TISSLSTM model 

achieved the highest performance across all metrics. These results 

demonstrate that each module plays a critical role in enhancing 

accuracy, efficiency, and robustness for smart healthcare 

applications. 

5. CONCLUSION 

This paper presents the FIRFIL - TISSLSTM model for heart 

disease prediction. TISSLSTM) is applied in a FIRFIL situation. 

IoT devices sent data collected from different wearable sensors, 

including blood sugar, heart rate, and chest measurements, to edge 

devices equipped with TISSLSTM for training. In FIRFIL, each 

edge device trains a local model using its own private dataset. A 

centralized server accepts local models and integrates them into a 

single global model. Next, the edge devices are updated with the 

trained global model once again. This loop is repeated until either 

the global model converges or a set number of training rounds 

have elapsed. Next, we utilize the trained model to predict client-

specific illnesses based on incoming data. A temporal weighted 

aggregation model on the server handles temporally varying data 

from clients. Finally, the experimental result devises that the 

proposed model attains accuracy of 95.09%, 95.25%, and 94.28% 

on three datasets respectively which outperforms other models. In 

addition, the proposed model records lower energy consumption 

values of 89.7J, 80.3J and 86.1J, along with reduced latency of 

173.8 ms, 162.5 ms, and 168.4 ms on the same datasets, 

underscoring its efficiency compared to other standard models. 

This demonstrates the models ability to deliver high performance 

heart diseases prediction system within resource-constrained 

health care environments. 
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