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Abstract 

The agricultural sector plays an essential part in the financial progress 

of any country. The manufacture of agriculture is significantly 

compressed by rice, a crop developed all across the globe. Prompt 

prediction of diseases is essential for limiting their propagation and 

decreasing crop damage. However, physically analyzing crop illnesses 

in areas with massive agricultural regions and limited professionals is 

hugely complex. Using deep learning (DL) and machine learning (ML) 

models for analyzing illnesses of farm yields seems effective and 

appropriate for extensive applications. Federated learning (FL) has 

become a developing technology for data analysis for vast IoT 

applications. The manuscript proposes an IoT-Enabled Federated 

Learning for Crop Yield Prediction Using Machine Learning and 

Optimization Algorithms (IoTFL-CYPMLOA) technique in 

agriculture. The IoTFL-CYPMLOA model mainly focuses on 

enhancing the crop yield prediction model that improves agricultural 

production. Initially, the data pre-processing stage involves various 

steps such as categorical to numerical, handling null values, and 

normalization to clean, transform, and organize raw data into a 

suitable format. Furthermore, the XGBoost method is utilized for 

prediction. To improve the XGBoost model’s prediction performance, 

the parameter tuning process is performed by implementing the coot 

optimization algorithm (COA)method. The analysis of the IoTFL-

CYPMLOA technique is examined under the crop yield prediction 

dataset. The experimental validation of the IoTFL-CYPMLOA 

technique portrayed results. Compared to recent approaches. 

 

Keywords:  

IoT, FL, Coot Optimization Algorithm 

1. INTRODUCTION 

Agriculture is a significant social concern since it gives 

considerable food [1]. The incorporated effects of natural weather 

changeability, soil loss, increasing population, and climate-

changing demand models guarantee production and crop growth 

in a reliable and timely way [2]. These necessities specify that 

land assessment, crop protection, and crop-yielding forecast are 

of higher significance to global food production. Consequently, 

the nation’s policymakers require a precise crop-yielding forecast 

to attain suitable import and export evaluations to improve 

national food security [3]. Nevertheless, with multiple 

complicated factors, the crop yielding prediction is difficult. 

Generally, crop yield depends upon various factors, comprising 

soil quality, landscapes, harvest planning, genotype, climatic 

conditions, pest infestations, accessibility and quality of water, 

and more [4]. Crop yield approaches and processes are non-linear 

and time specific.  

In the ever-changing landscape of technological development, 

the Internet of Things (IoT) and Artificial Intelligence (AI) project 

dual transformative forces, which have permeated several 

industries, carrying forth ground-breaking improvements and 

developing the method to interact and perceive worldwide [5]. 

With the myriad fields advancing from their convergence, 

agriculture has grown into a notable field where the fusion of IoT 

and AI is producing an impactful performance [6]. During this 

agricultural context, a single field that requires the most excellent 

attention in IoT security for crop yielding forecast, and where the 

symbiotic relations among IoT and AI might be utilized to bring 

about unprecedented developments in predictive modelling, data 

analysis, and agricultural efficacy [7]. Such methodologies 

overwhelm agricultural frameworks that are either non- or linear 

by guaranteeing a prominent forecast capability [8]. With many 

other models, the FL method is effective for yielding crop 

production [9]. FL enables us to keep data secure at the client end 

and make a method at the server end with higher precision [10]. 

The server comprises the collective details of each prediction of 

local models and is utilized for detailed examination.  

This manuscript proposes an IoT-Enabled Federated Learning 

for Crop Yield Prediction Using Machine Learning and 

Optimization Algorithms (IoTFL-CYPMLOA) technique in 

agriculture. The IoTFL-CYPMLOA model mainly focuses on 

enhancing the crop yield prediction model that improves 

agricultural production. Initially, the data pre-processing stage 

involves various steps such as categorical to numerical, handling 

null values, and normalization to clean, transform, and organize 

raw data into a suitable format. Furthermore, the XGBoost 

method is utilized for prediction. To improve the XGBoost 

model’s prediction performance, the parameter tuning process is 

performed by implementing the coot optimization algorithm 

(COA) method. The analysis of the IoTFL-CYPMLOA technique 

is examined under the crop yield prediction dataset. The 

significant contribution of the IoTFL-CYPMLOA technique is 

listed below. 

• The IoTFL-CYPMLOA model cleans and structures raw 

data by converting categorical variables to numerical values, 

efficiently handling missing values, and normalizing 

features. This improves data quality and enhances model 

performance and reliability in predictions. 

• The IoTFL-CYPMLOA method employs the XGBoost 

approach for precise and scalable crop yield prediction, 

utilizing its gradient boosting and regularization merits. This 

enables robust learning from complex, high dimensional 

data. It significantly improves prediction accuracy and 

model stability. 

• The IoTFL-CYPMLOA approach integrates the COA 

technique to fine-tune XGBoost hyperparameters, ensuring 

optimal learning configurations. This adaptive tuning 

improves convergence and model generalization. It 

effectually improves performance while minimizing the risk 

of overfitting. 



J JAGADEESAN AND R NAGARAJAN: IOT-ENABLED FEDERATED LEARNING MODEL FOR CROP YIELD PREDICTION USING MACHINE LEARNING AND OPTIMIZATION  

                                                                     ALGORITHMS IN AGRICULTURE SECTOR 

3834 

• Integrating the COA for tuning XGBoost presents a novel 

strategy combining biologically inspired metaheuristics with 

advanced ensemble learning. This integration improves the 

model’s capability of navigating complex parameter spaces, 

resulting in superior prediction accuracy and improved 

adaptability. The novelty is in applying COA specifically for 

crop yield prediction using XGBoost. 

2. LITERATURE SURVEY 

Abu-Khadrah et al. [11] projected a model aimed at sensor 

operations, which assist agricultural production developments. 

The control operations are implemented based on the modified 

control acute sensor and sensor control validation that raises 

productivity. The operation and sensor controls are established 

utilizing FL. Oikonomidis et al. [12] focused on giving an outline 

of the advanced application of DL in crop-yielding prediction. A 

complete analysis and integration of the primary analysis are 

accomplished concerning the major motivations, target crops, 

models, features, and data resources. CNN is the standard model 

with better performance regarding RMSE. Senapaty et al. [13] 

focused on progressing a strong method. This method is 

incorporated with IoT-generated data and FL-based FS models to 

enhance the database precision. 

Diverse FS models are implemented in the database. ML 

models are utilized to enhance and analyze the performance. The 

FL model is applied to train the local models utilizing the specific 

partitioned database. Zafar [14] presented a comprehensive 

analysis of models, challenges, and future directions in using ML 

and IoT for predictive analytics in smart farming. This model 

inspects the existing cutting-edge models in IoT-enabled data 

acquisition and the application of ML models like SVM, RF, and 

ANN in agricultural predictive analytics. In [15], aimed at the 

crop yield prediction challenge. It employs feature attribution 

approaches to calculate input feature contributions, recognize 

significant growth levels, and explain lesser precision predictions. 

Mohan et al. [16] utilized XAI and AI models to forecast crop 

yield and evaluate the effects of climate change on agriculture.  

Existing studies illustrated progress in integrating IoT, FL, 

ML, and DL for crop yield prediction, yet challenges remain in 

model interpretability, scalability, and real-time deployment. 

Many approaches concentrate on specific crops or localized 

datasets, limiting broader applicability. The research gap is in 

developing a unified, explainable, and scalable model that 

effectively integrates diverse data sources while maintaining high 

accuracy across various agricultural conditions.  

3. MATERIALS AND METHODS 

This manuscript proposes the IoTFL-CYPMLOA technique in 

the agriculture sector. The IoTFL-CYPMLOA model mainly 

focuses on enhancing the crop yield prediction model, which aids 

agricultural production improvements. It contains three stages: 

data pre-processing, prediction mode, and parameter tuning. The 

Fig.1 demonstrates the workflow of the IoTFL-CYPMLOA 

technique. 

 

Fig.1. Workflow of IoTFL-CYPMLOA technique 

3.1 DATA PRE-PROCESSING  

At first, the data pre-processing stage involves various steps 

such as categorical to numerical, handling null values, and 

normalization to clean, transform, and organize raw data into a 

suitable format. To guarantee that the data was ideal for the 

modelling of ML, a sequence of pre-processing stages was 

utilized [17]: 

• Processing Missing Values: ML methods are the methods 

that might turn out to be biased and/or make low, precise 

projections when there is missing data. This method might 

understand a missing value as a particular feature or 

tendency, making it misleading and vague. The initial stage 

in the analysis of data of the provided dataset concerned 

checking for non‐numeric and missing data utilizing the 

isnull() Pandas device function in the programming 

language of Python. It can be mentioned as NaN, meaning 

no data exists in these data frame columns. After describing 

the missing values, the model consented to eliminate the 

archives with these instances. This model can implement 

this for the provided data set containing an adequate sum of 

rows, and some missing rows might not be influenced. The 

dropna() function from the Pandas DataFrame was utilized 

to remove rows containing NaNs. This step helps reduce 

redundant data input before the actual modelling process. 

However, due to its simplicity, eliminating partial rows was 

identified as a more suitable approach for this specific 

dataset. 

• Encoding Categorical Variables: The inputs utilized in an 

ML development and training model are arithmetical. This 

implies that the models applied to the study need to 

transform qualitative aspects, such as state, crop, and season, 

into measurable ones. Later, without encoding, the methods 

would not process these attributes, leading to inefficiency or 

errors. As the autonomous variable comprised of a definite 

nature, the utilized encoder category was the label encoder 

category that only required transforming the classes to 

numbers. This model sets the integer to all the attribute 

types, permitting comparison among classes. The process 

involves intricate mapping of all state names to the integer, 

guaranteeing that Assam obtained the integer value 1. To 

implement the encoder, this study applied Scikit‐Learn’s 

Label Encoder. This specific model is mainly examined 
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because of its speed and simplicity in processing 

characteristic data that needs transformation into an 

arrangement suitable for ML methods. The other measured 

encoder category was one‐hot, which transforms a feature 

category into K columns. Thus, all columns are binary 

variables demonstrating the characteristics in the provided 

type. Nevertheless, label encoding was chosen as a more 

efficient alternative due to the drawback of one-hot 

encoding, which can inflate dimensionality when applied to 

categorical variables with many possible categories. 

• Normalization: StandardScaler (a standard scaling function 

from scikit‐learn) is utilized to determine the numeric 

characteristics for scaling. Normalization moves the average 

of the data value to 0 and middles the data so that each 

feature has a similar scale. 

The equation applied for standardization is: 

 
x

z




−
=  (1) 

3.2 PREDICTION USING XGBOOST 

IoTFL-CYPMLOA technique employs XGBoost as the 

prediction method [18]. This is chosen for its high accuracy, 

efficiency, and robustness with structured data. It utilizes gradient 

boosting with built-in regularization to prevent overfitting and 

effectively handles missing values. Compared to models like 

SVM and RF, XGBoost presents better performance, faster 

training, and robust generalization. Its ability to highlight crucial 

features also assists interpretability. 

XGBoost is an effective model that incorporates numerous 

poor learners to enhance the prediction result and method estimate 

by incorporating numerous trees (usually decision trees). Its basic 

notion is to utilize a gradient descent optimizer to form novel trees 

in all iterations and slowly decrease the mistakes of the present 

method. 

As presented in Eq.(2), it is the additive method made from 

numerous basis methods, namely, by overlaying the estimates of 

multiple trees to make the last forecast output yi. At the same time, 

fk characterizes the estimation function of the Kth tree, xi is the 

input instance, and K signifies tree counts. 

 
1

ˆ ( ),
K

i k i k

k

y f x f 
=

=   (2) 

The XGBoost objective function contains dual portions, as 

demonstrated in Eq.(3): the regularization term Ω(fk) and the error 

term . The term of error calculates the errors amongst the true and 

the forecast values, and the term of regularization controls the 

model difficulty. The equation is: 
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During this equation, yj refers to the sample being predicted; γ 

stands for the regularization parameter of the leaf node counts that 

can be applied to stop the constant nodes splitting; T denotes the 

tree’s depth that represents the leaf node counts within the tree; 

and λ signifies minimal sample weighting of the leaf node to avoid 

the leaf node weighting from being too big. wj symbolizes all leaf 

node’s values. 

In the training procedure, the succeeding aims should be 

reduced in round iteration: 
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where ( 1)ˆ t

iy −  and ( )ˆ t

iy  denote forecast values in the t-1 and t 

iteration correspondingly, η represents the learning rate. To avoid 

overfitting, the model decreases the impact of all trees by adding 

a penalty to the leaf node counts, preventing the development of 

leaf nodes, and presenting the rate of learning. 

3.3 COA-BASED PARAMETER TUNING  

To improve the prediction performance of the XGBoost 

model, the parameter tuning process is performed using COA 

[19]. This model is chosen due to its robust global search ability, 

inspired by the cooperative behaviour of coot birds. It assists in 

efficiently exploring the solution space. It balances exploration 

and exploitation, producing optimal hyperparameter settings with 

fewer iterations. Compared to conventional methods like grid or 

random search, COA presents faster convergence and better 

accuracy. This enhances the overall performance and reliability of 

the prediction model. 

Stimulated by the coordinated activities of Coots, a type of 

marine bird, the COA utilizes a meta-heuristic optimizer model. 

In this water, they show an extensive range of locomotive patterns 

designed to bring them to specific food resources or locations. 

These processes turn into a portion of the architecture of the Coot 

method. During the performance, the model initiates by random 

primary majorities, utilizing Eq.(6) as explained in the strategies: 

 CootPos( ) rand(1, ) (UB LB) LBi N=  − +  (6) 

CootPos(i) refers to the position value of a particular coot; N 

stands for parameter counts complex or the task’s difficulty. LB 

and UB both act as a representation of the upper and lower limits 

of the exploration region that is being hunted. 
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Next, the primary majority arrangement, the coot’s locations 

are successfully updated by utilizing four dissimilar motion 

designs. 

3.3.1 Random Movement: 

For this particular motion, the starting location Q task is 

arbitrarily chosen by applying the process specified in Eq.(8): 

 rand(1, ) (UB LB) LBQ N=  − +  (8) 

To move away from locally optimal solutions, the position is 

transformed succeeding Eq.(9): 

 
2CootPos( ) CootPos( ) ( CootPos( ))i i A R Q i= +   −  (9) 

The value of 𝑅2 is an integer generated at random among 

(0,1), and 𝐴 is established by utilizing the process provided in 

Eq.(10): 
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L embodies the present iteration counts, whereas Iter displays 

the maximal number permitted. 

3.3.2 Chain Movement: 

The equation in Eq.(11) might be applied to compute the mean 

location of two coot birds to implement the sequential motion. 
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2

i i
i

− +
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3.3.3 Fine-tuning Location based on Leader: 

In all clusters, the position of a coot bird changes depending 

on the leader’s location, causing the supporter to move nearer to 

the leader. The equation provided in Eq.(12) can decide the head’s 

designation. 

 1 ( modNL)K i= +  (12) 

where, i represents the number assigned to the supporter coot bird, 

K for the index of the leader, and NL for the entire leader counts 

within this cluster. The location of the coot is upgraded during this 

particular movement utilizing the equation established in Eq.(13): 

 1CootPos( ) LeaderPos( ) 2 cos(2 )

(LeaderPos( ) CootPos( ))

i K R R

K i

= +

 −
 (13) 

CootPos(i) signifies the coot bird’s present location, while 

LeaderPos(K) embodies the position of the selected leader. R1, 

whereas other random values, specified as R, are chosen from the 

range [‐1, 1], a randomly generated value is designated from the 

range [0,1]. 

3.3.4 Leader Movement 

According to the concepts offered in Eq.(14), the leader’s 

positions shift from localized best locations to global optimality. 
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In such a case, randomly chosen values from the range [0,1] 

are characterized by B3 and B4, while gbest signifies the optimal 

position, which might be attained. The equation provided in 

Eq.(15) is applied to compute the variable value B: 
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COA is applied to determine the parameter contained in the 

XGBoost model. The MSE is measured as an objective function, 

and its mathematical formulation is below. 

 ( )
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j i

y d
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While L and M signify the resulting value of data and layer 

respectively, i

jd  and i

jy  means the appropriate and attained 

extents for jth unit from the resulting layer in tth time 

correspondingly. Algorithm 1 specifies the COA model. 

 

 

Algorithm 1: COA technique 

1: Initialization: Initialize COOT_POPUL (candidate 

solutions) randomly within the search space. 

2: Set algorithm parameters: coots count, max iterations, etc. 

3: Leader Selection: Choose a subset of coots as leaders based 

on fitness (best objective values). 

4: Movement Update:  

a. Follower Coots: Update positions based on leader 

guidance and random movement. 

b. Leader Coots: Adjust positions utilizing a sinusoidal 

function and memory of best positions. 

5: Fitness Evaluation: Compute each coot’s fitness (objective 

function value). 

6: Update Best Solution: Keep track of the global best solution 

found so far. 

7: Repeat steps 2–5 until the maximum number of iterations is 

reached or convergence criteria are met. 

8: Output: Return the best solution (optimized parameters). 

4. EXPERIMENTAL VALIDATION  

The proposed IoTFL-CYPMLOA technique is examined 

under the crop yield prediction dataset [20]. The method is 

simulated using Python 3.6.5 on a PC with an i5-8600k, 250GB 

SSD, GeForce 1050Ti 4GB, 16GB RAM, and 1TB HDD. 

Parameters include a learning rate of 0.01, ReLU activation, 50 

epochs, 0.5 dropouts, and a batch size of 5. 

The Fig.2 demonstrates the predicted outcome analysis for 

actual vs predicted of the IoTFL-CYPMLOA methodology on 

epoch 50. The figure specifies that the IoTFL-CYPMLOA 

methodology correctly predicted the result. It is also observed that 

the predictive outcomes of the IoTFL-CYPMLOA approach are 

closer to the actual values. 

 

Fig.2. Result analysis for Actual vs Predicted Epoch – 50 

The Fig.3 established the predicted outcome analysis for the 

actual vs. expected results of the IoTFL-CYPMLOA approach on 

epoch 100. The figure shows that the IoTFL-CYPMLOA method 

accurately predicted the result. It also implies that the expected 

solution by the IoTFL-CYPMLOA method is near the actual 

values. 



ISSN: 2229-6956 (ONLINE)                                                                                                                            ICTACT JOURNAL ON SOFT COMPUTING, JULY 2025, VOLUME: 16, ISSUE: 02 

3837 

 

Fig.3. Result analysis for Actual vs. Predicted Epoch – 100 

In Fig.4, the TRA loss (TRALOS) and TES loss (TESLOS) 

analysis of the IoTFL-CYPMLOA technique below epoch 0-100 

is exhibited. The values of loss are computed across the range of 

0-100 epochs. It is denoted that the TRALOS and TESLOS 

analyses demonstrate a decreasing tendency, informing the 

capacity of the IoTFL-CYPMLOA methodology to balance a 

trade-off between data fitting and generalization. The continuous 

reduction in loss values promises maximum performance of the 

IoTFL-CYPMLOA approach and tunes the prediction outcomes 

over time. 

 

Fig.4. Loss Curve analysis for all metrics with Epoch 0-100 

The Table.1 and Fig.5 signify the Iotfl-CYPMLOA 

technique’s training set (TR) and testing set (TS) results below 

different metrics. With TR, the IoTFL-CYPMLOA technique 

accomplishes an MSE of 0.0010, RMSLE of 0.0293, MAE of 

0.0199, and MAPE of 0.1953. Simultaneously, with TS, the 

IoTFL-CYPMLOA model achieves an MSE of 0.0026, RMSLE 

of 0.0407, MAE of 0.0226, and MAPE of 0.2726. 

Table.1. TR and TS outcome of IoTFL-CYPMLOA method 

under various metrics 

Metrics TR TS 

MSE 0.0010 0.0026 

RMSLE 0.0293 0.0407 

MAE 0.0199 0.0226 

MAPE 0.1953 0.2726 

 

Fig.5. TR and TS outcome of IoTFL-CYPMLOA method under 

various metrics 

The comparison experiment of MSE and MAE of IoTFL-

CYPMLOA technique with existing methodologies is ended in 

Table.2 [21-22]. The Fig.6 delivers the MSE result of the IoTFL-

CYPMLOA approachwith existing methods. The table values 

inferred that the IoTFL-CYPMLOA approach has attained greater 

performance with an MSE of 0.0010, whereas the existing 

methods ANN, MLR, 2DCNN+FC+FC, GLM, SVM, KNN, and 

BRNN have achieved better MSE of 0.0501, 0.0435, 0.0374, 

0.0310, 0.0231, 0.0154, and 0.0077, correspondingly. 

Table.2. Comparative Results of the IoTFL-CYPMLOA method 

with existing models 

Method MSE MAE 

ANN 0.0501 0.0672 

Multiple linear regression 0.0435 0.0605 

2DCNN+FC+FC 0.0374 0.0545 

GLM Model 0.0310 0.0490 

SVM 0.0231 0.0415 

KNN 0.0154 0.0338 

BRNN 0.0077 0.0268 

IoTFL-CYPMLOA 0.0010 0.0199 

 

Fig.6. MSE outcome of IoTFL-CYPMLOA method with 

existing models 
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Fig.7. MAE outcome of IoTFL-CYPMLOA method with 

existing models 

The Fig.7 provides the MAE result of the IoTFL-CYPMLOA 

approach with other approaches. The table values inferred that the 

IoTFL-CYPMLOA method has attained higher performance with 

MAE of 0.0199, where the existing techniques ANN, MLR, 

2DCNN+FC+FC, GLM, SVM, KNN, and BRNN have gained 

maximal MSE of 0.0672, 0.0605, 0.0545, 0.0490, 0.0415, 0.0338, 

and 0.0268, respectively. 

5. CONCLUSION 

In this manuscript, the IoTFL-CYPMLOA technique in the 

agriculture sector is proposed. The IoTFL-CYPMLOA technique 

mainly focuses on enhancing the crop yield prediction model that 

aids agricultural production improvements. Initially, the data pre-

processing stage involves various steps such as categorical to 

numerical, handling null values, and normalization to clean, 

transform, and organize raw data into a suitable format. Also, the 

XGBoost method is employed for prediction. The parameter 

tuning process is performed using COA to improve the prediction 

performance of the XGBoost model. The experimental evaluation 

of the IoTFL-CYPMLOA technique takes place using a 

benchmark dataset. The simulation outcomes implied the 

enhanced performance of the IoTFL-CYPMLOA technique 

compared to recent approaches. The limitations of the IoTFL-

CYPMLOA technique comprise limited validation across diverse 

climatic and geographical regions, which may affect the 

generalizability of results. It also relies on static input features 

without accounting for real-time variability in agricultural 

conditions. Further work may explore dynamic data integration 

and broader dataset coverage to improve adaptability and 

accuracy. 

REFERENCES 

[1] S. Mehta, V. Kukreja and A. Gupta, “Revolutionizing Maize 

Disease Management with Federated Learning CNNs: A 

Decentralized and Privacy-Sensitive Approach”, 

Proceedings of International Conference for Emerging 

Technology, pp. 1-6, 2023. 

[2] P. Kumar, G.P. Gupta and R. Tripathi, “PEFL: Deep 

Privacy-Encoding-based Federated Learning Framework for 

Smart Agriculture”, IEEE Micro, Vol. 42, No. 1, pp.33-40, 

2021. 

[3] P.S. Nishant, P.S. Venkat, B.L. Avinash and B. Jabber, 

“Crop Yield Prediction based on Indian Agriculture using 

Machine Learning”, Proceedings of International 

Conference for Emerging Technology, pp. 1-4, 2020. 

[4] R. Medar, V.S. Rajpurohit and S. Shweta, “Crop Yield 

Prediction using Machine Learning Techniques”, 

Proceedings of International Conference for Convergence 

in Technology, pp. 1-5, 2019. 

[5] F. Abbas, H. Afzaal, A.A. Farooque and S. Tang, “Crop 

Yield Prediction through Proximal Sensing and Machine 

Learning Algorithms”, Agronomy, Vol. 10, No. 7, pp. 1-16, 

2020. 

[6] M. Rashid, B.S. Bari, Y. Yusup, M.A. Kamaruddin and N. 

Khan, “A Comprehensive Review of Crop Yield Prediction 

using Machine Learning Approaches with Special Emphasis 

on Palm Oil Yield Prediction”, IEEE Access, Vol. 9, pp. 

63406-63439, 2021. 

[7] P.M. Gopal and R. Bhargavi, “A Novel Approach for 

Efficient Crop Yield Prediction”, Computers and 

Electronics in Agriculture, Vol. 165, pp. 1-7, 2019. 

[8] S. Khaki, L. Wang and S.V. Archontoulis, “A CNN-RNN 

Framework for Crop Yield Prediction”, Frontiers in Plant 

Science, Vol. 10, pp. 1-6, 2020. 

[9] A.X. Wang, C. Tran, N. Desai, D. Lobell and S. Ermon, 

“Deep Transfer Learning for Crop Yield Prediction with 

Remote Sensing Data”, Proceedings of the International 

Conference on Computing and Sustainable Societies, pp. 1-

5, 2018. 

[10] F.V. Naranjo, F.C. Galarza and E.J. Arias, “Internet of 

Things based Predictive Crop Yield Analysis: A Distributed 

Approach”, Full Length Article, Vol. 13, No. 2, pp. 106-113, 

2023. 

[11] A. Abu-Khadrah, A.M. Ali and M. Jarrah, “An Amendable 

Multi-Function Control Method using Federated Learning 

for Smart Sensors in Agricultural Production 

Improvements”, ACM Transactions on Sensor Networks, pp. 

1-23, 2023. 

[12] A. Oikonomidis, C. Catal and A. Kassahun, “Deep Learning 

for Crop Yield Prediction: A Systematic Literature Review”, 

New Zealand Journal of Crop and Horticultural Science, 

Vol. 51, No. 1, pp. 1-26, 2023. 

[13] M.K. Senapaty, A. Ray and N. Padhy, “Enhancing Soil 

Fertility Prediction through Federated Learning on IoT-

Generated Datasets with a Feature Selection Perspective”, 

Engineering Proceedings, Vol. 82, No. 1, pp. 1-12, 2024. 

[14] A. Zafar, “Integration of IoT and Machine Learning for 

Predictive Analytics in Smart Farming: Techniques, 

Challenges and Future Directions”, Journal of Advanced 

Computing Systems, Vol. 4, No. 7, pp. 1-10, 2024. 

[15] H. Najjar, M. Miranda, M. Nuske, R. Roscher and A. 

Dengel, “Explainability of Sub-Field Level Crop Yield 

Prediction using Remote Sensing”, IEEE Journal of Selected 

Topics in Applied Earth Observations and Remote Sensing, 

pp. 1-21, 2025. 

[16] R.J. Mohan, P.S. Rayanoothala and R.P. Sree, “Next-gen 

agriculture: Integrating AI and XAI for Precision Crop Yield 



ISSN: 2229-6956 (ONLINE)                                                                                                                            ICTACT JOURNAL ON SOFT COMPUTING, JULY 2025, VOLUME: 16, ISSUE: 02 

3839 

Predictions”, Frontiers in Plant Science, Vol. 15, pp. 1-16, 

2025. 

[17] J. Basit, H. Arshad and A. Bibi, “Optimizing Crop Yield 

Forecasts using Quantum Machine Learning Techniques 

with High-Dimensional Soil and Weather Data”, Journal of 

Computers and Intelligent Systems, Vol. 3, No. 1, pp. 1-15, 

2025. 

[18] H. Xu, S. Yan, X. Qin, W. An and J. Wang, “Interpretable 

Intelligent Fault Diagnosis for Heat Exchangers based on 

SHAP and XGBoost”, Processes, Vol. 13, No. 1, pp. 1-16, 

2025. 

[19] L.I. Guo and H. Sheng, “Hybrid Models for Forecasting 

Allocative Localization Error in Wireless Sensor 

Networks”, International Journal of Cognitive Computing 

in Engineering, Vol. 6, pp. 333-350, 2025. 

[20] “Crop Yield Prediction Dataset”, Available at 

https://www.kaggle.com/datasets/ysnreddy/crop-yield-

prediction-dataset, Accessed in 2023. 

[21] T. Hu, Z. Liu, R. Hu, L. Zeng, K. Deng, H. Dong, M. Li and 

Y.J. Deng, “Yield Prediction Method for Regenerated Rice 

based on Hyperspectral Image and Attention Mechanisms”, 

Smart Agricultural Technology, Vol. 12, pp. 1-12, 2025. 

[22] C. Kumar, J. Dhillon, Y. Huang and K. Reddy, “Explainable 

Machine Learning Models for Corn Yield Prediction using 

UAV Multispectral Data”, Computers and Electronics in 

Agriculture, Vol. 231, pp. 1-15, 2025. 

 

https://www.kaggle.com/datasets/ysnreddy/crop-yield-prediction-dataset
https://www.kaggle.com/datasets/ysnreddy/crop-yield-prediction-dataset

